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ABSTRACT: 
 
The vehicle-based mobile mapping system (MMS) is effective for capturing 3D shapes and images of roadside objects. The laser 
scanner and cameras on the MMS capture point-clouds and sequential digital images synchronously during driving. In this paper, we 
propose a method for detecting and classifying pole-like objects using both point-clouds and images captured using the MMS. In our 
method, pole-like objects are detected from point-clouds, and then target objects, which are objects attached to poles, are extracted for 
identifying the types of pole-like objects. For associating each target object with images, the points of the target object are projected 
onto images, and the image of the target object is cropped. Each pole-like object is represented as a feature vector, which are calculated 
from point-clouds and images. The feature values of a point-cloud are calculated by point processing, and the ones of the cropped 
image are calculated using a convolutional neural network. The feature values of point-clouds and images are unified, and they are 
used as the input to machine learning. In experiments, we classified pole-like objects using three methods. The first method used only 
point-clouds, the second used only images, and the third used both point-clouds and images. The experimental results showed that the 
third method could most accurately classify pole-like objects.  
 

1. INTRODUCTION 

The vehicle-based mobile mapping system (MMS) is effective 
for capturing shapes and images of road environment. The MMS 
is a vehicle, on which laser scanners, cameras, GPSs and IMU 
are mounted, as shown in Figure 1. The MMS can capture dense 
point-clouds and sequential digital images synchronously during 
driving. Since point-clouds and images include various types of 
objects, such as utility poles, traffic signals, and trees, it is often 
required to segment and classify each object. Especially, 
detection and classification of pole-like objects are practically 
important, because many pole-like objects are placed on 
roadsides, and they have to be repeatedly maintained.  
 
Golovinskiy, et al., Weinmann et al., Zhu et al., used point-clouds 
to extract road-side objects and classified them using supervised 
machine learning. However, their research is a rough 
classification of feature classes,  and the classified types of pole-
like objects were limited (Golovinsky et al., 2009; Zhu et al., 
2010; Weinmann et al, 2014). Fukano, et al. proposed a method 
for segmenting and classifying pole-like objects from point-
clouds (Fukano et al., 2015). Their method could achieve good 
recognition rates, but it sometimes  misclassified objects. Some 
failure cases are shown in Figure 2. When the vehicle runs at a 
high speed, scan-lines on objects become sparse, as shown in 
Figure 2(a). In such cases, it is difficult to distinguish the 
difference of object shapes using point-clouds. In addition, if the 
shapes of objects are similar as shown in Figure 2(b), objects may 
be incorrectly classified. 
 
In recent years, image-based object recognition based on a 
convolutional neural network (CNN) has been greatly improved. 
Zhu et al. classified traffic signs into ten or more classes using 
CNN  (Zhu, et al., 2016a, Zhu, et al., 2016b). However, their 
method focused on only traffic signs.  
 

The image-based classification is effective only if objects are 
correctly segmented from images. In our evaluation, 
segmentation failed in some cases if the object color was similar 
to the background color or if the image was backlighted, as 
shown in Figure 3(a). The classification also failed when object 
colors were faded, as shown in Figure 3 (b). 
 
Point-clouds maintain 3D shapes, while images maintain object 
colors. Therefore, it is reasonable to use both point-clouds and 
digital images to correctly classify objects. Soilán, et al. detected 
traffic signs from point-clouds and images (Soilán, et al., 2016). 
Since point-clouds of traffic signs have very high intensity values, 
traffic signs can be easily and robustly extracted from point-

 

     
(a) Mobile mapping system 

   
(b) Equipment on the MMS 

Figure 1. Mobile mapping system 
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clouds. By projecting points on images and cropping traffic signs 
on the  images, they could achieve very high recognition rate. 
However, their method was only be applied to traffic signs, and 
classified using only images. Their method is similar to our 
method, but our method classifies objects using both point-clouds 
and images.  
 
In this paper, we propose a new classification method for pole-
like objects by using both point-clouds and images, which are 
synchronously captured by an MMS. In our method, feature 
values are calculated from both point-clouds and images. Feature 
values are combined and they are used for machine learning.  

 
2. OVERVIEW OF OBJECT CLASSIFICATION 

Since pole-like objects commonly have cylindrical poles, objects 
attached to the poles are important for differentiating pole-like 
objects. The object attached to a pole is called target objects in 

this paper. Target objects include signals, signs, lights, cables, 
and so on.  
  
The MMS used in this research is the Mitsubishi MMS-X 
(Mitsubishi Electric, 2018), as shown in Fig. 1. The laser scanner 

 
Figure 4. Output of the MMS  

 
 

 
Figure 5. Process of object classification 

 

   
(a) Low resolution of points 

  
(b) Similar shapes 

Figure 2. Failure cases of point-based object recognition. 
 

 
(a) Backlighted image of traffic signal 

 

 
(b) Faded traffic sign 

Figure 3. Failure cases of image-based object recognition. 
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on the MMS is RIEGL VQ 250. The rotational frequency and the 
scan rate of this laser scanner is 100Hz and 300,000 
measurements, respectively.  Point-clouds and digital images are 
captured during driving. Each point and each image have the GPS 
time, which is the time sent from satellites and represents when 
the point was captured. 
 
Figure 4 shows the output from the MMS. The digital cameras 
output sequential images captured at certain time intervals. The 
laser scanner outputs point-clouds, in which 3D coordinates, 
intensity values, and GPS times are included. The MMS also 
outputs positions and attitudes of the cameras and the laser 
scanners during driving. The camera parameters for each camera 
are given in the setting files. By using these data, it is possible to 
associate each point in a point-cloud with a pixel of an image, as 
shown in Figure 4. 
  
The process of our classification method is shown in Figure 5. 
The input data are point-clouds and digital images. First, 
cylindrical poles are extracted from point clouds. When poles are 
detected, target objects are extracted from points near the poles. 
Then feature values are calculated using poles and target objects. 
Feature values consist of sizes, relative positions, eigenvalues of 
the principal component analysis (PCA), and so on. Feature 
values are calculated for each pole-like object.   
 
Feature values are also calculated from digital images. Since 
points and images are synchronously captured and the relative 
position between the laser scanner and the digital camera is given,  
points of each target object can be projected on an image using 
the pinhole camera model. Then, the region of each target object 
is identified and it is cropped from the image. The feature values 
of the cropped image are automatically calculated using CNN. 
 
In our method, point-based feature values and image-based 
feature values are combined, and the unified feature values are 
used for machine learning. Since the number of image-based 
feature values is much larger than the number of point-based 
feature values, the dimension of image-based feature values is 
reduced using the importance of features. We apply the Random 
Forest classifier (Breiman, 2001) to image-based feature values, 
and calculate the importance of each feature. Only features with 
high importance are selected, and they are combined with point-
based feature values. Finally, we classify pole-like objects using 
the unified feature values. 
 

3. DETECTION OF POLES AND TARGET OBJECTS 

3.1 Detection of Poles 

Fukano, et al. proposed a method for stably extracting pole-like 
objects from point-clouds captured using the MMS (Fukano, et 
al., 2015). In this paper, we detect pole-like objects using this 
method. 
 
First, a point-cloud is converted to a wireframe model, in which 
points are connected by edges. When the rotational frequency of 
the laser scanner is denoted as 𝑓 , neighbour points between 
scanlines are captured every 1/𝑓 second, as shown in Figure 6 
(Masuda, et al., 2015; Kohira, et al. 2017). The nearest points on 
the next scan-line are detected using the GPS time of each point, 
and wireframe models are generated by connecting neighbour 
points.  
 
Figure 7 shows a process for detecting a pole. When a wireframe 
model is generated from points, it is sliced using horizontal 

planes. In our method, the interval between horizontal planes is 
set to 10 cm. Intersection points are calculated between the 
wireframe and each horizontal plane. Then a circle is fitted to the 
intersection points, because the section shape of a pole is a circle. 
Poles are extracted using circles that are vertically aligned. 
 
The shape of a pole is typically a cylinder or a cone. In our 
method, the taper of a pole can be calculated using the radii of 
circles. The taper is calculated as the change rate of the radius of 
a pole in the height direction. The taper is used as one of shape 
features for recognition.   
 
3.2 Detection of Target Objects 

When poles are extracted, they are eliminated from the wireframe 
model. Then the wireframe model is subdivided into connected 
components, and target objects are extracted as connected 
components near the pole. In our method, a connected component 
is selected as a target object only if it is located at a height of 1.5 
m or more from the bottom of the pole. Figure 8 shows examples 
of target objects. 
 

 

 

 
Figure 6. Conversion to wireframe model 

 
 

 
(a) Points       (b) Scan-lines         (c) Wireframe 
 

 
 
(d) Horizontal 

planes 
(e) Intersection 

points 
(f) Circles 

Figure 7. Detection of pole 
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4. FEATURE VALUES OF 3D POINT-CLOUD 

In order to apply machine learning for classification, we represent 
each pole-like object as a set of feature values. In our method, 
feature values are calculated using point-clouds of target objects 
and poles.  
 
Table 1 shows feature values of the point-cloud of a pole-like 
object. From a target object, a bounding box and eigenvalues of 
PCA are calculated. Figure 9(a) shows the bounding box of a 
target object. The bounding box is defined so that the bottom face 
is horizontal and the width 𝑎 is the size in the maximum principal 
component direction for xy coordinates.  
 
The eigenvalues of the target object are obtained by applying 
PCA to the 3D coordinates of the points. We denote the 
eigenvalues as 𝜆&, 𝜆(, 	𝜆*	(𝜆& ≥ 𝜆( ≥ 	𝜆*), and their ratios as a 
𝑟& = 𝜆&/𝜆(, 𝑟( = 𝜆(/𝜆*, and 𝑟* = 𝜆*/𝜆&. Also let 𝜃  be the angle 
of the maximum principal component direction from the 
horizontal plane. 
 
In addition, local shapes are calculated using PCA. For each point, 
neighbour points are detected within a certain distance. In our 
research, the distance was specified as 30 cm. Eigenvalues and 
their ratios are calculated using the neighbour points. We 
introduce thresholds 𝛼  and 𝛽 , and define a point to be linear 
when 𝑟& ≥ 𝛼 , planar when 𝑟& < 𝛼  and 𝑟( ≥ 𝛽 , and spherical 
otherwise. In Table 1, 𝑟4, 𝑟5, and 𝑟6 are ratios of numbers of linear, 
planar, and spherical points. In this research, we specified 𝛼 = 6 
and 𝛽 = 5. These values were determined experimentally. 
 
Since each point has an intensity value, the average of intensity 
values is also added to feature values of the target object. Figure 
9(b) shows feature values for a pole. The diameters of the bottom 
and top circles are denoted as 𝐷& and 𝐷(. The height of the pole 
is ℎ. The taper 𝑡 of a pole is  defined as (𝐷& − 𝐷()/ℎ. Figure 9(c) 
shows relative positions between a pole and a target object. Two 
distances 𝑑&  and 𝑑( , and two heights ℎ&  and ℎ(  are added to 
feature values. 
 

5. FEATURE VALUES OF 2D IMAGE 

5.1 Cropping Images of Target Objects 

Normally, multiple cameras are mounted on the MMS, and many 
images are taken while the vehicle is moving. With the MMS we 
used in this research, images were taken every 0.1 seconds. Since 
the same object appears in some images, it is necessary to select 
the image most suitable for object recognition. 
 
The MMS records the time of acquisition of points and images.  
When a target object is extracted from a point-cloud, the average 
time 𝑡̅  is calculated from points of the target object. Images 

captured during 𝑡̅ ± 𝛥𝑡  are selected as candidates. In this 
research, we set 𝛥𝑡 = 2 sec. Then, the points of a target object 
are projected onto each image, and the region of the target object 
is determined on the image. The image is selected according to 
the following criteria. 
(1) All points of a target object are projected on the image. 
(2) The number of pixels in the projected region is the largest. 
Figure 10 shows three images that were sequentially captured.  In 
these images, the image in Figure 10(c) satisfies these criteria. 
 
When points are projected onto an image, the pinhole camera 
model is used. For projection, the camera parameters, the relative 
positions between the laser scanner and digital cameras are 
required. By using these parameters, points can be projected on a 
digital image,  as shown in Figure 11. In this research, we use the 
pinhole camera model proposed by Zhang, et al. (Zhang, 2000). 
 
When the resolution of the selected image is larger than the 
resolution of  a point-cloud, projected points cannot fill the region 
of the image. Therefore, we create the bounding box of the 
projected points, and crop the rectangle region from the image. 
In Figure 12 shows an image, the projected points, and the 
cropped image.  
 
The cropped images are used for object recognition. To input 
them into CNN, the sizes of images are regularized to 227 × 227 
pixels, which is the required size for CNN we used in this 
research. Since the selected region is not a square in general, 
black pixels are added at the boundary of the region, as shown in 
Figure 12(d). 

 
Figure 8. Target objects near poles 

Table 1. Feature values of the point-cloud of a pole-like object 

 
 

 
(a) Bounding box     (b) Pole sizes    (c) Relative positions 

Figure 9. Feature values of poles and target objects 
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5.2 Feature Values of Images 

For obtaining feature values from images, we generate an image 
with 227 × 227 pixels for each target object. Then feature values 
are automatically calculated using CNN. In our setting, a 4096-
dimensional vector is output as feature values for each target 
object. 
 
CNN calculates feature values on multiple layers with different 
image resolutions. In this research, we use AlexNet that has 
learned ImageNet. AlexNet is a convolutional neural network, 

and ImageNet is a large scale learning data set of images 
(Krizhevsky, et al., 2012). AlexNet has five layers for 
convolution, normalization, and pooling. Convolution is the 
image filtering operation. Normalization is the operation to 
reduce the influence of brightness and contrast of the input image. 
Pooling is the operation to lower the resolution by setting the 
maximum value within a certain range of pixels.  
 
Following the five layers, AlexNet has three fully connected 
layers, each of which outputs a vector of feature values. In this 
research, we use 4096 feature values generated from the second 
fully connected layer.  
 
5.3 Selection of Important Features 

The dimension of feature vectors for an image is much larger than 
the dimension of ones for a point-cloud. Furthermore, 4096-
dimensional vectors are very sparse and the most elements are 0.  
 
Therefore, we reduce the dimension of feature values by applying 
the random forest method to a set of 4096-dimensional vectors. 
The random forest allows us to calculate the importance of each 
feature. Roughly speaking, the importance of a feature represents 
how the feature is needed to classify the data set.  The dimension 
of feature values can be reduced by selecting features with high 
importance values.  
 
In this research, we reduce the dimension to 64 feature values. 
When a set of images of target objects are given as learning data, 
4096 feature values are calculated for each target object using 
CNN. Then the random forest method is applied for classification, 
and  the features with the top 64 importance values are selected. 
 
5.4 Classification of Poke-like Objects 

For each target object, 22 feature values are calculated from 3D 
points, and 64 features are calculated from an image. These 
feature values are combined into a feature vector with 86 values. 
In this research,  we classify pole-like objects using the random 
forest, because the random forest is robust to outliers.  

 
6. EXPERIMENTAL RESULT 

6.1 Data and Method 

Point-clouds and digital images for evaluating our method were 
captured in residential restricts in Japan. In our experiment, we 
automatically extracted pole-like objects and target objects from 
point-clouds. The image of each target object was also 
automatically cropped from candidate images. Then we visually 
identified the class of each pole-like object, and manually 
classified the pole-like objects into the predefined classes.  
 
We classified pole-like objects into destination signs, pedestrian 
signals, traffic signals, street lights, and traffic signs, as shown in 
Figure 13. We introduced the exceptional class for pole-like 
objects that are not included in the predefined classes. Pole-like 
objects in the exceptional class includes commercial signs, boxes, 
trees, and so on. Table 2 shows the numbers of pole-like objects 
in our dataset. For evaluation, we randomly divided the dataset 
into two halves, and made them into learning data and test data.  
 
For comparison, we classified objects using three methods. One 
is the point-based method, which classifies using only point-
clouds. The second is the image-based method, which uses only 
images. The third is the integrated method, which uses both 

 
(a ) Small area                       (b) Out of image 

 
(c) Selected image 

Figure 10. Image selection 

 
Figure 11. Projection of 3D points on an image 

 

      
      (a) Digital image                      (b) Projected points 

 
 

 (c) Cropped image               (d) 256 x 256 image 
Figure 12. Cropping the image of a target object 
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point-clouds and images. We used CNN for extracting feature 
values of images, and used the random forest for classifying pole-
like objects. 
 

 

 
 

Table 2. Number of pole-like objects 
Types Number 

Destination Sign 60 
Pedestrian Signal 56 

Traffic Signal 136 
Street Light 204 
Traffic Sign 82 

Exceptional Objects 290 

 

 

  
 

   
(a) Destination Sign (b) Pedestrian 

Signal 
(c) Traffic 

Signal  
 
 

 
  

  
  

(d) Street Light  (e) Traffic Sign (f) Other types 
 

Figure 13. Type of pole-like objects 

Table 3. Recognition rate only using points.  

 
   

Table 4. Recognition rate only using images. 

 
 

Table 5. Recognition rate using points and images.    

 
  
 
 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-731-2018 | © Authors 2018. CC BY 4.0 License.

 
736



 

6.2 Results 

Table 3-5 show experimental results of classification for three 
methods. We calculated recall, precision, and F-measure. F-
measure is the harmonic mean of recall and precision. Table 6 
summarizes these results. 
 
Comparing the F-measure scores of the point-based method and 
the image-based method, the point-based method was superior in 
recognizing destination signs, traffic signs, street lights, and 
traffic signs. On the other hand, the image-based method was 
superior in recognition of pedestrian signals and exceptional 
objects. This result indicates that point-clouds and images are 
complementary for classifying pole-like objects.  
 
In the integrated method, the F-measure scores were improved in 
all classes, as shown in Table 6. Figure 14 shows the important 
values of the top 10 most important features. In this figure, P: 
means a feature from point-clouds, and I: means a feature from 
images. In this table, variables of point-clouds are defined in 
Table 1, and the number of the image feature indicates the 
sequential number in 4096 features. In the top 10 features, 6 
features are from point-clouds and 4 features are from images. 
This result also shows that  point-clouds and images are 
complementary for classifying pole-like objects. 
 
The integrated method incorrectly classified several cases when 
the point-based method and the image-based method output 
different results. Figure 15 shows an example. In this case, the 
pedestrian signal without light was classified into the exceptional 
class, although the point-based method correctly recognized it as 
a pedestrian signal. This is because the image of the pedestrian 
signal without light is rare and it is similar  to the image of a 
switchboard, which was learned as the exceptional class. 
However, we believe that this problem will be solved if the 
system learns many signals without light. 
 

 

 
7. CONCLUSION 

In this paper, we proposed a classification method for pole-like 
objects. In our method, poles and target objects were extracted 
from point-clouds, and feature values were calculated using 
point-clouds. Then points of each target object were projected 
onto an image, and the object region was cropped from the image. 
Feature values of the cropped image were calculated using CNN. 
The feature values of point-clouds and images are unified, and 
they are used for machine learning. For evaluating our method, 
we classified objects using three methods. The first method used 
only point-clouds, the second used only images, and the third 
used both point-clouds and images. The experimental results 
showed that the third method could most accurately classify pole-
like objects.  
   
In future work, we would like to improve the method for 
extracting target objects. We also would like to investigate how 
many classes can be identified using our method.  
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