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ABSTRACT: 

The paper is devoted to the problem of semi-automatic initialization of the tracking algorithm, i.e. selecting an object of interest by 

unmanned aerial vehicles or drones. In this work, we propose an algorithm to refine the position and dimensions of the boundary box 

of the tracked object at the initial time (on the first frame), based on saliency detection algorithm, which simulates the map of human 

attention. We tested existing algorithms for object tracking by UAVs on the largest and most complex dataset – UAV 123. It is shown 

that the quality of tracking as a result of initialization by the proposed algorithm varies within acceptable limits for successful tracking 

of the object. The advantage of the proposed approach is that it applies the principles, used by the human visual system: the color, 

contrast, central focus. 

1. INTRODUCTION 

The recent progress in using UAVs for different human needs 

motivates software development researches in the fields of 

security and video surveillance. In security systems it is crucial 

to define the current position of the tracked object, so, applied to 

the UAV tracking problem, also to plan and form an optimal 

flight path of the unmanned aircraft in three-dimensional space. 

Therefore, a lot of computer vision teams work on the task of 

moving object detection and tracking from UAV in real-time.  

A critical issue in tasks of visual tracking is the initialization or 

detection of an object of interest. The quality of tracking largely 

depends on it, as roughly defined position and size of the object 

of interest in the first frame entails rapid breakdown of the 

tracking process. Usually UAV operator marks an object of 

interest using his control pad, but due to wind, UAV speed and 

other disturbing factors, the result is mostly unsatisfactory for the 

future tracking. Bad initialization makes tracking a lot more 

difficult, because it leads to either the case when parts of the 

scene background occupy a significant part of the object’s region 

(Vishnyakov et al., 2015), or the case when important parts of the 

object are discarded. 

The task of semantic segmentation is also called scene parsing, it 

splits an image into semantically independent regions. It is also 

related to the object detection task. Such algorithms can be used 

to define the position and size of a traceable object. But they give 

redundant information in this situation, since we are only 

interested in the area, containing the traceable object. In addition, 

the algorithms of semantic segmentation are rather slow. 

The first stage of the proposed approach is preliminary 

processing of the image (noise removal) by the Gaussian filter 

and converting the image into the CIE LAB color space. The next 

step is segmenting the image into homogeneous areas 

(superpixels) by the simple linear iterative clustering (SLIC) 

algorithm (Achanta et al., 2012). 

 

2. MAIN BODY 

 

2.1 Image pre-processing 

 

The basic pre-processing task is noise reduction. Smoothing 

filters perform this task quite well. There are many linear and 

non-linear smoothing algorithms. Their usual application area is 

noise reducing, luminance stabilization, contrast and clarity 

enhancement. One of the popular smoothing methods is Gauss 

filtering. It has the successful application in many areas. 

Gaussian kernel coefficients are sampled from the 2D Gaussian 

function. 

 

           𝐹(𝑖, 𝑗) =
1

2𝜋𝛿2
exp (−

𝑖2+𝑗2

2𝛿2
)                    (1) 

 

where σ is the standard deviation of the distribution, 

 𝑖, 𝑗 – pixel coordinates. 

 

We use 3x3 convolution kernel. Smoothed image is converted 

into the CIE LAB color space. The Lab color space describes 

mathematically all perceivable colors in the three 

dimensions: 𝐿 for lightness and 𝑎, 𝑏 for the color components 

green–red and blue–yellow respectively. The nonlinear relations 

for 𝐿∗, 𝑎∗, and 𝑏∗ are intended to simulate the nonlinear response 

of the human eye. Perceptual differences between any two colors 

can be approximated by taking the Euclidean distance between 

values in Lab color space. In our tests the algorithm showed 

better results using Lab than using RGB color space.  

 

For the computational effectiveness homogeneous areas were 

used instead of discrete pixels. 

 

2.2 Segmentation 

Methods of segmentation as k-means method (Mirkes, 2011), 

watershed method (Beucher and Meyer, 1993), the method of 

graph cut (Boykov et al., 2001), simple linear iterative clustering 

(Simple Linear Iterative Clustering, SLIC) (Achanta et al., 2012) 

are able to break up the source image on different, but, in some 

sense, homogeneous areas named “superpixel” in a reasonable 

amount of time.  SLIC method perform a local clustering of 

pixels in the 5-D space, defined by the 𝐿, 𝑎, 𝑏 values of the 

CIELAB color space and outputs better quality superpixels by a 

very low computational and memory cost. 

SLIC segmentation algorithm: 

1. Initialize cluster centers 𝐶𝑘  = [𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑥𝑘 , 𝑦𝑘]  by sampling 

pixels at regular grid steps 𝑠. 

2: Perturb cluster centers in an n × n neighborhood, to the lowest 

gradient position.  
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3: repeat  

4: for each cluster center 𝐶𝑘 do  

5: Assign the best matching pixels from a 2𝑠 ×  2𝑠 square 

neighborhood around the cluster center according to the distance 

measure (1).  

6: end for  

7: Compute new cluster center and residual error 𝐸 {𝐿1 distance 

between previous centers and recomputed centers}  

8: until 𝐸 ≤ threshold  

9: Enforce connectivity. 

 

All the pixels of image are allocated to clusters, referred to as 

‘superpixels’ after segmentation algorithm. There is used non-

oriented graph to store information about segments of image. 

Vertices of this graph are superpixels. Every vertex stores 

information about corresponding superpixel average color 

components, mean coordinates and it is on the boundary or not. 

Weight of the edges is a Euclidian distance between average 

colors of vertices. 

Then, we need to calculate the object and the background 

measures. 

 

2.3 Background measure 

 

Background superpixels recognition is based on the idea that 

background regions have large perimeter on the boundary and 

object regions mostly have central location (Zhu et al., 2014). 

Define geodesic distance 𝑑𝑔𝑒𝑜(𝑝, 𝑞) as the shortest path between 

two vertices of superpixels graph. We calculate it using Johnson 

algorithm. 
  

             𝑑𝑔𝑒𝑜(𝑝, 𝑞) = min
𝑝=𝑝1,…,𝑝𝑛=𝑞

∑ 𝑑𝑎𝑝𝑝(𝑝𝑖 , 𝑝𝑖+1),𝑁−1
𝑖=1   (1) 

 

where  𝑝, 𝑞 ∈ 𝑆  – a set of superpixels, |𝑆| = 𝑁 

 𝐵 – set of boundary superpixels, 𝐵 ∈ 𝑆, 

  𝑑𝑎𝑝𝑝(𝑝, 𝑞) = 𝑑𝑖𝑠𝑡(𝑝, 𝑞) – a color contrast 

component, i.e. Euclidean distance between average color 

components of superpixels. 

 

Let us define the boundary length: 

  

 Len𝑏𝑛𝑑(𝑝) = ∑ exp (
−𝑑𝑔𝑒𝑜(𝑝,𝑞)2

2𝛿𝑐𝑙𝑟
2 ) , 𝑝 ∈ 𝑆𝑞∈𝐵     (2) 

 

where  𝛿𝑐𝑙𝑟
  – some color variation constant. 

 

Bounding area of superpixel:   

  

 Area(𝑝) = ∑ exp (
−𝑑𝑔𝑒𝑜(𝑝,𝑞)2

2𝛿𝑐𝑙𝑟
2 ) , 𝑝 ∈ 𝑆𝑞∈𝑆    (3) 

 

We can calculate background measure of superpixel 𝑝 as 𝑤𝑏𝑔(𝑝), 

using (2) and (3): 

  

 𝑤𝑏𝑔(𝑝) =  
Len𝑏𝑛𝑑(𝑝)

√Area(𝑝)
, 𝑝 ∈ 𝑆     (4) 

 

2.4 Object measure 

 

In (Zhu et al., 2014) “Background weighted contrast” is used as 

an object measure. 

  

𝑤𝑐𝑡𝑟(𝑝) =  ∑ 𝑑𝑎𝑝𝑝(𝑝, 𝑝𝑖)𝑝𝑖∈𝑆 𝑤𝑠𝑝𝑎(𝑝, 𝑝𝑖)𝑤𝑏𝑔(𝑝𝑖), 𝑝 ∈ 𝑆      (5) 

 

where the spatial component 𝑤𝑠𝑝𝑎(𝑝, 𝑞) is: 

  

 𝑤𝑠𝑝𝑎(𝑝, 𝑞) = exp (
−𝑑𝑠𝑝𝑎(𝑝,𝑞)2

2𝛿𝑠𝑝𝑎
2 )  

 

where 𝑑𝑠𝑝𝑎(𝑝, 𝑞) – Euclidean distance between centers of 

superpixels 𝑝 and 𝑞, 

 𝛿𝑠𝑝𝑎
  – some spatial variation constant. 

 

2.5 Saliency measure 

The resulting saliency measure С(s) of a saliency map 𝑠, that we 

are trying to find, for each superpixel is calculated by optimizing 

the objective function value (Zhu et al., 2014), which combines 

background, foreground measures and a smoothing component: 

  

С(𝑠) = ∑ 𝑤𝑖
𝑏𝑔

𝑠𝑖
2

𝑁

𝑖=1

+ ∑ 𝑤𝑖
𝑓𝑔(𝑠𝑖 − 1)2

𝑁

𝑖=1

+ 

+ ∑ 𝑤𝑖𝑗(𝑠𝑖 − 𝑠𝑗)
2𝑁

𝑖=1 → min
𝑠

     (6) 

 

where 𝑠 – saliency map, 

  𝑖, 𝑗 – indexes of superpixels 𝑝𝑖 , 𝑝𝑗 , 

 𝑤𝑖
𝑏𝑔

 – background measure, 

 𝑤𝑖
𝑓𝑔

= 𝑤𝑐𝑡𝑟(𝑝𝑖) – foreground (object) measure, 

 𝑤𝑖𝑗 – weight of the edge between adjacent superpixels 

in the graph:  

 

 𝑤𝑖𝑗 = exp (−
𝑑𝑎𝑝𝑝

2 (𝑝𝑖,𝑝𝑗)

2𝛿𝑛𝑒𝑖
2 ) +  𝜇 ⋅ 𝐼(𝑝𝑖 , 𝑝𝑗), 

𝐼(𝑝𝑖 , 𝑝𝑗) =  {
1, if 𝑝𝑖 , 𝑝𝑗 are adjacent

0, else
. 

 

To find the optimal values {𝑠𝑖}𝑖=1
𝑁  that minimize 𝐶(𝑠), we have 

to solve equation (6) using least squares method. Considering (8-

11), the optimal value of saliency map 𝑠 can be found from (7): 

  

  𝐴 ⋅ 𝑠 = 𝑤𝑐𝑡𝑟(𝑝𝑖),   (7) 

 

where 𝐴 = 𝐷 − 𝑊 + 𝐸𝑏𝑔 + 𝐸𝑓𝑔.  

 

Component 𝑊 is the matrix of components 𝑤𝑖𝑗 that defines the 

weights between superpixels 𝑝𝑖 and 𝑝𝑗. 

  

 𝑊𝑖𝑗 = 𝑤𝑖𝑗 = 𝑤(𝑝𝑖 , 𝑝𝑗)   (8) 

 

Component D is the sum of the adjacent edges weights of 

superpixel: 

  

 𝐷𝑖𝑗 = {
w̅(𝑝𝑖), 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
    (9) 

 

where  w̅(𝑝𝑖) =  ∑ 𝑤(𝑝𝑗∈𝑆 𝑝𝑖 , 𝑝𝑗). 

 

Component 𝐸𝑏𝑔 defines background measure. 

  

 𝐸𝑖𝑗
𝑏𝑔

(𝑖, 𝑗) = {
w̅(𝑝𝑖), 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
   (10) 
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Figure 1. There are original images in the first row, saliency map in the second, binary saliency maps in the third 

Component 𝐸𝑓𝑔 defines foreground or object measure. 

 

 𝐸𝑖𝑗
𝑓𝑔

(𝑖, 𝑗) = {
𝑤𝑐𝑡𝑟(𝑝𝑖), 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
   (11) 

 

We used such values of hyperparameters in our experiments: 

𝛿𝑐𝑙𝑟 = 7, 𝛿𝑐𝑙𝑟 = 0.4, 𝛿𝑐𝑙𝑟 = 5, 𝛿𝑐𝑙𝑟 = 10, 𝜇 = 0.1. 
 

Each region in the generated saliency map is identified by values 

between 0 and 1, where the object of has values near 0 (marked 

white) as background has values near 1 (marked black). 

 

2.6 Binarization 

 

We convert the resulting saliency map into the binary image 

using binarization with an upper threshold: 

 

Threshold can be found using Otsu method (Otsu, 1979). 

  

 𝑠∗(𝑖) = {
1, 𝑠(𝑖) ≥ 𝑡

0, 𝑠(𝑖) < 𝑡
    

 

2.7 Shadow removal 

 

Then we perform shadow detection on image and remove shadow 

regions from object superpixels. 

In this paper, shadow detection is based on the method (Blajovici, 

2011), which uses the luminance statistics. Approach is based on 

the following considerations: 

- the pixel belongs to the shadow when its brightness is less than 

60% of the average brightness of the entire image. 

- the pixel belongs to the shadow when its brightness is less than 

70% of the average brightness in a superpixel.  

 

2.8 Binary image processing  

 

Binarization results may lead to small objects that lay outside the 

target object or target object can be divided into parts. Therefore, 

we need to delete some needless separate elements and bring 

parts of the foreground together. 

For small target objects (width and height of 5-20 pixels) we use 

erosion operation to small fragments with a structuring element 

in the form of a circle (having two-pixel radius). As a result, all 

found objects will be reduced in size. To restore the shape of 

objects, the dilating operation with the same structuring element 

is then used. Next, to connect the small parts into one, a dilating 

operation with a circle (having three-pixel radius). All constants, 

mentioned above, may vary for a target object of different size. 

 

2.7 Experiments 

 

By the next step we apply described approach to initialize a 

number of fast and effective methods of tracking object: 

"DCF_CA" (Mueller et al., 2017), "MOSSE_CA" (Mueller et al., 

2017), "SAMF" (Kristan et al., 2014), "DCF" (Henriques et al., 

2012), "DSST" (Danelljan et al., 2014), "MOSSE" (Bolme, 

2010), "SRDCF" (Danelljan et al., 2015). In this way we test the 

quality of the algorithm on the largest and complex database of 

video clips taken with unmanned aerial vehicle – UAV 123.  

 

The scores for these trackers are based on two metrics, precision 

and success rate (Table 1). Precision is measured as the distance 

between the centers of a tracker bounding box and corresponding 

ground truth bounding box. The precision plot shows the 

percentage of tracker bounding boxes within a given threshold 

distance in pixels of the ground truth. To rank the trackers, we 

use a threshold of 20 pixels (Bolme et al., 2010). The success is 

measured as intersection over union of pixels in tracker bounding 

box and corresponding ground truth bounding box. 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =  
𝑏𝑔𝑡 ⋃ 𝑏𝑡𝑟

𝑏𝑔𝑡 ⋂ 𝑏𝑡𝑟
  

 

where 𝑏𝑔𝑡 – ground truth bounding box,  

 𝑏𝑡𝑟 – tracker bounding box. 

 

For initialization of the tracker we use: 

1) triple-sized ground truth region with our saliency algorithm, 

predicting the initialization region of an object; 

2) ground truth region. 
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Figure 2. There are original images in the first column, saliency map in the second, binary saliency maps in the third, object shadows, 

detected on the image in the fourth column, binary image without shadow in the fifths and bounding boxes in sixths. 

Table. 1. Trackers average FPS, success rate difference for semi-

automatic and ground truth initialization with IoU > 0.5 and 

precision difference for semi-automatic and ground truth 

initialization with 20-pixel precision threshold. 

The success plot (Table 2) shows the percentage of tracker 

bounding boxes whose overlap score 𝑆 is larger, than a given 

threshold. 

 

3. CONCLUSIONS 

 

According to the results of the experimental testing we can 

conclude that the best tracking quality in the initialization of the 

proposed algorithm is achieved by tracking algorithms "SRDCF" 

and "MOSSE_CA". It is easy to notice that the tracking algorithm 

"MOSSE_CA" outperforms other algorithms according to the 

experiments. Thus, the most appropriate algorithm for tracking 

objects from UAVs combined with the proposed algorithm of the 

initialization is "MOSSE_CA", because it was least sensitive to 

the accuracy of initialization and it is the most fast-acting in 

comparison with its competitors. 

 

The proposed algorithm does not require special hardware and 

can work in real-time. It is implemented in C++. The average 

time required before the object is specified, occupying 40% of 

the image size 256 256 pixels, is equal to 60 milliseconds on 

the Intel® Core ™ i5-3470 CPU @ 3.20GHz. 
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Tracking 

algorithm 

Average 

FPS 

Success 

difference 

Precision 

difference  

DCF_CA 182.2102 0.176 0.176 

MOSSE_CA 271.7864 0.064 0.065 

SAMF 8.5000 0.216 0.182 

DCF 238.9312 0.160 0.154 

DSST 130.7184 0.155 0.165 

MOSSE 253.6889 0.136 0.124 

SRDCF 8.9679 0.234 0.175 
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Tracking 

algorithm 

Success plot with semi-

automatic initialization   

Success plot with ground truth 

initialization   

Precision plot with semi-

authomatic initialization   

Precision plot with ground 

truth initialization   

DCF_CA 

    

MOSSE_CA 

    

DSST 

    

SAMF 

    

DCF 

    
 

 

MOSSE 

    
 

SRDCF 

    

Table 2. Success and precision graphs of different tracking algorithms with semi-automatic and ground truth initialization.
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