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ABSTRACT:

As any supervised classification procedure, also Local Climate Zone (LCZ) mapping requires reliable reference data. These are usually
created manually and inevitably include label noise, caused by the complexity of the LCZ class scheme as well as variations in cultural
and physical environmental factors. This study aims at evaluating the impact of the training set configuration, i.e. training sample
number and imbalance, on the performance of Canonical Correlation Forests (CCFs) for a classification of the 11 urban LCZ classes.
Experiments are carried out based on globally available Sentinel-2 imagery. Besides multi-spectral observations, different index mea-
sures extracted from the images as well as the Global Urban Footprint (GUF) and Open Street Map (OSM) layers are fed into the CCFs
classifier. The results show that different LCZs favor different configurations in terms of training sample number and balance. Based on
the findings, majority voting of different predictions from different configurations is proposed and performed. This way, a significant
accuracy improvement can be achieved.

1. INTRODUCTION

Local Climate Zone (LCZ) mapping (Stewart and Oke, 2012),
originally developed for meta-data communication of observa-
tional Urban Heat Island (UHI) studies, has gained great interest
in the field of remote sensing. The 17 LCZ classes, as displayed
in Fig. 1, are based on climate-relevant surface properties mainly
related to 3D surface structure (e.g. height and density of build-
ings and trees) as well as surface cover (e.g., pervious or imper-
vious). Recently, researchers have started to use the LCZ scheme
to classify the internal structure of urban areas, providing criti-
cal support for various applications such as urban climatology,
infrastructure planning, disaster mitigation, etc.

Supervised classification methods using remote sensing data as
input provide a valuable tool for LCZ mapping and have been
widely studied in the 2017 Data Fusion Contest organized by the
Image Analysis and Data Fusion Technical Committee (IADFTC)
of the IEEE Geoscience and Remote Sensing Society (GRSS)
(Yokoya et al., 2017). The supervised strategy requires a train-
ing dataset in order to train a classifier, which can later be used
to predict the labels of unseen samples. Each sample in the train-
ing dataset is defined by a feature vector and its class label. This
training dataset is crucial for the classification accuracy as well
as the generalization ability of the trained classifier. In order to
guarantee a satisfying LCZ mapping accuracy, the training data
should be of sufficient size and provide well balanced sample
numbers for all 17 LCZ classes.Unlike training data for other
land cover/land use classifications, LCZ training samples are not
easy to extract from existing databases. Therefore, it is common
to generate LCZ reference data manually (Bechtel et al., 2015),
in spite of being time consuming. Unfortunately, obtaining refer-
ence data of high quality is challenging, especially when it comes
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Figure 1. Visualization of the LCZ concept (Stewart, 2011).

to global scale where variations in cultural and physical environ-
mental factors exist.

Few works have systematically analyzed the effect of the train-
ing set configuration on classification, such as training sample
number and balance among different classes, and much less are
specifically dealing with LCZ mapping. Existing literature either
deals with the problem from a theoretical perspective (Natarajan
et al., 2013), or focuses on the relation between label noise and
classification complexity using some benchmark dataset (Garcia
et al., 2015). In the remote sensing community, two closely re-
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lated works are (Goldblatt et al., 2016) and (Pelletier et al., 2017).
The former shows that, for built-up area detection, increasing the
number of training samples of one class will improve the clas-
sifier’s performance even though it will introduce imbalance be-
tween classes. The latter one investigates the effect of training
class label noise for land cover mapping, with a well balanced
training dataset. While inspiring, these works provide limited
guidance for the training set configuration necessary for success-
ful LCZ mapping.

Aiming for global LCZ mapping for which training data is costly
and resource intensive to collect, our work intends to provide an
answer to these questions: How do the training set size and the
distribution of training samples across the classes impact the LCZ
classification performances? For simplicity, we focus on the first
ten LCZ classes, which are referred to as urban LCZ classes in
this paper. In addition, we add two background classes, namely
vegetation and water, to achieve land cover completeness. As a
framework for our investigations, we use Canonical correlation
Forests (CCFs) (Rainforth and Wood, 2015). We feed different
CCF classifiers with different training set configurations using
the globally available imagery provided by the Sentinel-2 mis-
sion (Radoux et al., 2016). The results achieved in this paper
also provide perspectives for other large scale classification tasks
employing different classifiers.

2. DATASET AND CLASSIFICATION FRAMEWORK

In this section, we describe the test dataset and the classification
framework we use to carry out our experiments.

2.1 Study Areas and LCZ Dataset

Our study areas are spread over 7 cities located in the heart of
Europe. They are depicted in Fig. 2. For all those cities, we have
downloaded Sentinel-2 imagery from ESA’s SciHub (https://
scihub.copernicus.eu/). In addition, we were allowed to ac-
cess DLR’s Global Urban Footprint (GUF), a binary layer de-
rived from TanDEM-X data, which indicates urban areas (Klotz
et al., 2016). Finally, we have downloaded the Open Street Map
layers building and land-use from OpenStreetMap Data Extracts
(http://download.geofabrik.de/) for each city.

Figure 2. The seven test cities distributed across Europe.

The LCZ ground truth labels available for selected neighborhoods
in the 7 cities are taken from the LCZ42 dataset (Zhu, 2018). The
number of samples available for each class over the seven cities
can be seen in Fig. 3, in which the vegetation class combines the

LCZ classes A, B, C, D, and F. Figure 3 illustrates the variabil-
ity of both the sample number and the class distribution among
different cities, which highlights the importance of assessing the
effect of training set configurations. It should be noted that in
these 7 cities, LCZ class 7 (lightweight low-rise), which mostly
indicates slums, does not exist.
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Figure 3. Urban LCZ training sample number of seven cities.

2.2 Classification Framework

We use a Canonical Correlation Forests (CCF) classifier (Rain-
forth and Wood, 2015) as framework for our investigations, since
it has shown strong potential in the IEEE-GRSS Data Fusion con-
test (Yokoya et al., 2017). As the most important hyperparameter,
we fix the number of trees to 20. Furthermore, we define 18 fea-
tures as input to the classifier: Input Features and datasets are
described as follows.

1. Spectral reflectance
10 bands of Sentinel-2 imagery are used in this study: B2,
B3, B4 and B8 with 10 m Ground Sampling Distance (GSD)
and B5, B6, B7, B8a, B11 and B12 with 20 m GSD. The
20 m bands are up-sampled to 10 m GSD. The bands B1,
B9 and B10 are not considered in this study because they
contain mostly information about the atmosphere and thus
bear little relevance to LCZ classification.

2. Indices
The well-established indices Normalized Difference Vegeta-
tion Index (NDVI), Enhanced Vegetation Index (EVI), Mod-
ified Normalized Difference Water Index (MNDWI), Nor-
malized Difference Built Index (NDBI) and Bare-Soil Index
(BSI) are also considered (Tucker, 1979), since they can pro-
vide indications about vegetation, water, buildings and soil,
respectively (Yokoya et al., 2017, Bechtel et al., 2015).

3. Other auxiliary data
Besides the Open Street Map layers buildings and land use,
we also use the Global Urban Footprint (GUF) data (Klotz
et al., 2016) as an additional input feature. Both OSM and
GUF are re-sampled to 10 m GSD.

3. TRAINING SET CONFIGURATION ANALYSIS

In order to evaluate the effect of training sample number and im-
balance on the performance of the CCFs for urban LCZ classifi-
cation, different configurations of training samples are designed
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Table 1. Setups for training sample number and balance effect analysis. For setup I and II, the experiment was carried out five times.
Each time, the samples used are randomly chosen from the original dataset. For setup III, the experiment was carried out ten times.

Each time, 1
10

of each class sample was randomly chosen and used.

Configuration
name

Sample Number Imbalance-
Correction

Description

I nmin × 11 Yes nmin is the minimum of the sample
number of all classes.

II
∑11

i=1 min{ni, nmedian} Partly nmedian is the median of the sample
number of all classes. ni is the training

sample number of each class,
i ∈ {1, 2, 3, ...11}.

III
∑11

i=1(ni × 1
10
) No

baseline N No N is the total number of the original
training samples.
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Figure 4. Precision, recall and F1 score of different classes resulted from different training set. For each class, from left to right,
corresponding to configuration I, II, III and baseline in Table. 1. These values are averaged over seven cities.

based on different number of samples and different amounts of
balancing applied to the different classes. These configurations
are summarized in Table. 1.

By comparing the classification accuracies of configurations I, II
and III with a baseline configuration in Table. 1, the relative im-
portance of training sample balance and number can be studied.
For all experiments, we rely on cross validation, i.e., each time
samples from six cities are used for training while those from the
seventh city are used for testing. The difference of classification
accuracy corresponding to different configurations can be seen in
Fig. 4.

Comparing the green and blue bars in Fig. 4, it can be seen that no
big difference exists between configuration III and the baseline.

This indicates that training set size plays a limited role under the
stated experimental conditions. From Fig. 4, it can also be seen
that different classes favor different configurations. Specifically,
based on the standard of recall and F1 score, configuration I out-
performs the other configurations for compact low rise, open high
rise, sparsely built and industry, while it provides slightly worse
results for the other classes. This means that training sample bal-
ance is important for classes with few samples.

Based on these results, it can be concluded that given a certain
amount of unbalanced training samples for tasks like LCZ clas-
sification, a potential classification improvement can be achieved
by elaborately preparing the training dataset, instead of directly
using all the training samples when training the classifiers.
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Table 2. Classification accuracy after major voting and the increased ratio compared to the baseline accuracy.

city
after majority voting increased ratio
OA Kappa AA OA Kappa AA

Amsterdam 0.70 0.65 0.47 2.61 3.41 1.96
London 0.72 0.66 0.48 7.35 9.54 3.72
Berlin 0.64 0.56 0.49 2.54 3.66 4.52
Paris 0.82 0.77 0.56 1.33 1.76 2.27

Cologne 0.68 0.62 0.60 3.25 4.32 2.93
Munich 0.83 0.79 0.53 3.96 5.26 7.29
Milan 0.84 0.80 0.65 2.15 2.76 7.10
Mean 0.75 0.69 0.54 3.31 4.39 4.26

(a) (b)

Figure 5. The LCZ map of Munich (a) produced using majority voting, and the corresponding Sentinel-2 RGB imagery (b). The
legend is the same with that in Fig. 3

4. IMPROVING URBAN LCZ CLASSIFICATION

Different CCFs can be trained using the different configurations
from Table. 1. A final classification can be achieved by applying
majority voting on the results of all the 20 configurations. The
classification accuracy after majority voting and its improvement
relative to the baseline accuracy is shown in Table. 2. Using this
majority voting-based result, an LCZ classification map over the
city of Munich, Germany, is shown in Fig. 5.

5. DISCUSSION

The final result achieved in Section 4 shows that a promising
accuracy can be achieved by majority voting of CCFs trained
with different training set configurations. As the values in Ta-
ble. 2 show, about 4% of improvement of Overall Accuracy (OA),
Kappa coefficient and Averaged Accuracy (AA) can be achieved
in this case. This improvement is resulted from the increased ac-
curacy of classes with fewer samples, such as compact high rise
and compact low rise, as Section 3 shows training set balance

plays a crucial role to the classification accuracy for classes with
fewer samples.

Nevertheless, even after majority voting, averaged accuracy are
still less than 50% for about 3 of the 7 test cities. The misclassifi-
cation between classes can be analyzed using confusion matrices
of the classification results. For conciseness Figure 6(a) depicts
the combined confusion matrix of all the 7 test cases, and Fig-
ure 6(b) highlights the misclassification errors higher than 30%.
Class 1 (compact high rise) is falsely classified into class 2 (com-
pact middle rise). This is resulted from the challenge of distin-
guishing height difference using Sentinel-2 images, since high
rise and middle rise are quite similar in the two dimensional opti-
cal images. Besides, class 9 (sparsely built) and 10 (heavy indus-
try) are falsely classified into class 6 (open low rise) and 8 (large
low rise), respectively. This is due to inter-class similarity, as
they appear quite similar, as can be seen in Fig. 1. Besides, class
3 (compact low rise) is unexpectedly misclassified into class 5
(open middle rise).The first reason may be also related to the dif-
ficulty to distinguish low rise and middle rise. Another possible
reason is that the sample number of class 3 is the fewest and much
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(a) (b)

Figure 6. Combined confusion matrix of 7 cities (a) and the cases with a misclassification error higher than 30% (b).

fewer than the others (only 466 samples for all 7 cities), as can
also be seen in Fig. 3. As a result, the intra-class variability is not
well learned during training.

To solve these problems, one possible solution is to include addi-
tional datasets such as Synthetic Aperture Radar images to make
use of radar’s unique range measurements. Another solution is
to adapt the LCZ scheme considering the feasibility of optical
images, or a multi-level classification might be beneficial. Last
but not least, negative human influence on ground truth should
be weaken to guarantee the quality of the training samples across
cities (Bechtel et al., 2017).

6. SUMMARY AND CONCLUSION

This paper presents an investigation of the effect of the training
set configuration on urban LCZ classification. It intends to pro-
vide potential answers to the question: how do the training set
size and potential class imbalances affect the classification re-
sults? Based on the powerful classification framework Canonical
Correlation Forests, a series of experiments has been carried out
over 7 cities in Europe. Based on the experimental results, it
can be concluded that the training set size is not as important as
the training sample balance, especially for classes with relatively
few samples. Based on the findings of this analysis, majority
voting of classification results from different configurations was
investigated as well, which lead to a significant improvement in
the achievable classification accuracy. Still, even majority voting
does not provide the perfect solution to urban LCZ classification,
which motivates investigations towards more advanced classifiers
and the fusion of complementary data in the future.
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