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ABSTRACT:

A pure GNSS navigation is often unreliable in urban areas because of the presence of obstructions, thus preventing a correct reception
of the satellite signal. The bridging between GNSS outages, as well as the vehicle attitude reconstruction, can be recovered by using
complementary information, such as visual data acquired by RGB-D or RGB cameras. In this work, the possibility of integrating
low-cost GNSS and visual data by means of an extended Kalman filter has been investigated. The focus is on the comparison between
the use of RGB-D or RGB cameras. In particular, a Microsoft Kinect device (second generation) and a mirrorless Canon EOS M
RGB camera have been compared. The former is an interesting RGB-D camera because of its low-cost, easiness of use and raw
data accessibility. The latter has been selected for the high-quality of the acquired images and for the possibility of mounting fixed
focal length lenses with a lower weight and cost with respect to a reflex camera. The designed extended Kalman filter takes as input
the GNSS-only trajectory and the relative orientation between subsequent pairs of images. Depending on the visual data acquisition
system, the filter is different because RGB-D cameras acquire both RGB and depth data, allowing to solve the scale problem, which is
instead typical of image-only solutions. The two systems and filtering approaches were assessed by ad-hoc experimental tests, showing
that the use of a Kinect device for supporting a u-blox low-cost receiver led to a trajectory with a decimeter accuracy, that is 15% better
than the one obtained when using the Canon EOS M camera.

1. INTRODUCTION

The task of precise navigation in urban areas is quite challeng-
ing, mainly because the complexity of urban environments pre-
vents the use of a single sensor for recovering trajectories. In
the last decades, the use of Global Navigation Satellite System
(GNSS) has been widespread, mainly thanks to its easiness of
use. However, a pure GNSS navigation is often unreliable in ur-
ban areas because of the presence of obstructions (e.g. tall build-
ings, narrow streets, trees, tunnels) that could prevent a correct
reception of the satellite signal. To overcome the problem of
sky visibility, solving at the same time the navigation and the
mapping tasks, the so-called Mobile Mapping Systems have been
employed for decades. These systems are usually very expen-
sive, especially when high accuracies are required. Nowadays,
a plenty of possible low-cost solutions are available, e.g. sup-
porting GNSS receiver with Micro Electro-Mechanical Systems
(MEMS) (Noureldin et al., 2009), reduced inertial sensor systems
(Georgy et al., 2010) or radio-frequency wireless technologies
(Nur et al., 2013).
Interesting low-cost solutions are also represented by image-based
techniques, useful to overcome GNSS leakages in urban areas.
The use of photogrammetric techniques for navigation purposes
has been widely discussed by several authors (see e.g. Chaplin,
1999; Da Silva et al., 2003; Pagliari et al., 2018). Also Computer
Vision (CV) techniques are quite common to solve navigation
tasks concerning autonomous robots and Unmanned Aerial Sys-
tems (UAS) in GNSS denied environments. In this context, the
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problem of recovering simultaneously the relative camera posi-
tion and the 3D model from a set of images (calibrated or uncali-
brated) is known as Simultaneous Location And Mapping (SLAM).
SLAM solutions are usually computed integrating data acquired
by different sensors. On the other hand, when the solution to the
problem is computed using only input images from a single or
multiple cameras, the term Visual Odometry (VO) is used (Scara-
muzza and Fraundorfer, 2011). VO approaches can be classified
in stereo VO and monocular VO. In the latter case, the solution is
recovered up to a scale factor, which has to be externally mea-
sured (e.g. using other sensors) or estimated. A common ap-
proach to overcome this problem is the integration of RGB im-
ages with data acquired by depth cameras. Time-of-flight (ToF)
cameras deliver images in which every pixel contains range in-
formation, meaning that a single image is sufficient for creating a
correctly scaled 3D model. Usually, these systems integrate also
RGB images and are known as RGB-D sensors. Several RGB-D
sensors have been launched on the market in the last years and
thanks to their high frame rate, low weight and reduced power
consumption they have been employed in several research areas,
such as robotics and machine vision (see e.g. Prusak et al., 2008;
May et al., 2006). In this sense, the Microsoft Kinect device and
analogous instruments, such as PrimeSense Carmine and Asus
Xtion ProLive, are very attractive since they integrate both active
and passive sensors. In literature, a high number of navigation
solution based on the use of RGB-D cameras can be found. See,
among others, Fankhauser et al. (2015), Oliver et al. (2012) and
Henry et al. (2012).
It is important to point out that the estimation of the camera 3D
motion is performed sequentially in SLAM. This frame-to-frame

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-991-2018 | © Authors 2018. CC BY 4.0 License.

 
991



approach inevitably leads to accumulate drift errors over time.
Therefore, coupling GNSS and cameras for outdoor navigation
applications is mutually beneficial for these sensors, the GNSS
overcoming possible signal outages and the lack of attitude infor-
mation, the cameras controlling trajectory drift errors.
This paper exploits the possibility of integrating low-cost GNSS
observations with different kinds of imaging data by means of an
extended Kalman filter, focusing on the comparison between the
use of RGB-D and RGB cameras. In particular, we compared the
solution obtained by integrating a Microsoft Kinect for XBoxOne
(second generation) or a Canon EOS M, considering these two
sensors as representatives of their categories. From one hand, the
Kinect is a low-cost RGB-D camera, meaning that it delivers an
already scaled solution. On the other hand, the Canon EOS M ac-
quires high quality images, coupled with the possibility of using
fixed focal length lenses, but guaranteeing lower weight and cost
with respect to a reflex camera. Nevertheless, the length of the
baseline between two subsequent acquisitions, i.e. the scale fac-
tor, needs to be estimated separately. This implies to design and
to implement two different versions of the extended Kalman filter
for the data integration. Furthermore, this filter represents an im-
provement with respect to that presented in Pagliari et al. (2016)
because it takes into account also the estimation of the vehicle
attitude. In fact, the GNSS antenna and the image acquisition
systems (RGB and RGB-D cameras) are not necessarily located
in the centre of the vehicle, thus making crucial the knowledge of
the attitude to correctly compute the vehicle trajectory. After im-
plementing the filters, the comparison between RGB-D and RGB
cameras in supporting low-cost GNSS receivers is performed on
an experimental level.
The paper is organized as follows. In Section 2 the experimen-
tal test configuration and the system calibration are discussed. In
Sections 3 and 4 a brief introduction to the Kinect device and the
Canon EOS M camera, including their characteristics and calibra-
tion is presented, respectively. In Section 5 the low-cost GNSS
receiver used and the goGPS software are introduced. Section 6
focuses on the proposed solution, with a detailed description of
the implemented Kalman filter, while in Section 7 the results of
the experimental test are presented and discussed. Conclusions
and recommendations are drawn in Section 8.

2. EXPERIMENTAL TEST CONFIGURATION AND
CALIBRATION

The test vehicle was realized by equipping a wooden cart with
the instruments shown in Figure 1, namely a Kinect (K), a Canon
EOS M (C) mounting an EF-M 22 mm f/2 STM lens and a u-blox
EVK-6T receiver connected to a Tallysman TW-3070 antenna
(G). Moreover, a 360◦ reflective prism (P1) and three double-
frequency Leica GNSS receivers (G1, G2, G3) were installed on
the cart and used to reconstruct a reference trajectory for the re-
sult validation. The prism was tracked by means of a Leica Nova
MS-60 Multistation (MS).
During the survey, the RGB and depth images of the Kinect were
acquired at about 0.3 s sampling rate, the RGB images of the
Canon EOS M at about 0.5 s, and the GNSS data of the u-blox
receiver at about 1 s. As for their synchronization, the GPS time
was selected as the reference one. Since the Kinect and the u-
blox were controlled by the same PC, their observations could
be synchronized through the PC internal time, which is then con-
verted into GPS time. The Canon EOS M synchronization with
the other sensors was possible thanks to the Canon GP-E2 device
that synchronizes the internal camera time with the GPS time.
A remark is that the three instruments were mounted in differ-

EOS M (C) Kinect (K)

TW-3070 
antenna (G)

G1

P1

PC

G2

G3O
xV yV

zV

Figure 1. Cart setup. The instruments mounted on-board and the
materialized vehicle reference frame V are highlighted. The

photo was taken during the calibration phase.

ent locations on the cart, namely their observations are referred
to different points, i.e. C, G and K. This translates into the fact
that each instrument follows a different trajectory when the cart
is moving. Therefore, as discussed in Section 6, the position and
the attitude of each instrument with respect to a vehicle reference
frame V are necessary. The vehicle reference frame has to be ma-
terialized, thus we assumed its origin at the barycentre O of the
top plane of the cart, with the xV and yV axes parallel to its two
main sides and the zV axis orthogonal to the plane itself (see Fig-
ure 1). Furthermore, to initialize the extended Kalman filter, the
starting position of the barycentre O and the attitude with respect
to the reference frame in which the cart trajectory were computed,
e.g. a local East-North-Up (ENU) reference frame. Actually, the
cart trajectory was estimated in a 2D local East-North (EN) refer-
ence frame, assuming that the vehicle zV axis remained parallel
to the Up direction and that we were in presence of a flat field.
All the quantities above introduced were estimated by means of
photogrammetric techniques, performing an on-field calibration.
In particular, by parking the cart at its initial state, we estimated
the position and the attitude of the Kinect and Canon EOS M cen-
tres of projection by introducing their images (taken at the initial
position) into a bundle block adjustment together with a set of
images acquired by a Nikon D800 reflex camera with a fixed fo-
cal length equal to 20 mm looking at the cart and the surrounding
environment. The photogrammetric block relies on 12 Ground
Control Points (GCPs) acquired by using the MS and referred to
the ENU reference frame, since the station points were surveyed
by double-frequency GNSS receivers too. The output of the bun-
dle block adjustment were the position and attitude of Kinect and
Canon EOS M with respect to the ENU reference frame and the
coordinates of some corners of the cart. From these coordinates
we determined the position of the barycentre O and the attitude
of the cart in the ENU reference frame. During this phase, we
measured also the position of the prism P1 and the four GNSS
antennas (G, G1, G2, G3) in the ENU frame. The former is ob-
served by means of the MS, while the latter are estimated by
15 minutes static sessions double-differenced with respect to a
near permanent station (MILA station from the SPIN GNSS net-
work). Combining the position and attitude of the instruments
in the ENU frame and the origin and attitude of the vehicle refer-
ence frame V, we determine also the position and attitude of each
instrument with respect to the latter.
Finally, the reference trajectory of the cart barycentre O and the
reference attitude were retrieved by combining the trajectory ob-
served by G1, G2, G3 and P1. This is possible since during the
calibration phase also the relative position of these instruments
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with respect to the cart reference system V were estimated.

3. MICROSOFT KINECT RGB-D DATA PROCESSING

The Microsoft Kinect device was firstly released on the market
in 2010, and since then it has appeared as a great innovation, not
only for gaming and entertainment, but also for research appli-
cations. It is composed by an RGB camera, an IR camera (co-
registered with a depth camera) and an IR projector. It is capable
of acquiring coloured and range images with a frame rate up to
30 fps. Since it allows to access at a low-cost (less than $200)
data with a complementary nature, it has been widely studied and
used for both autonomous navigation and 3D modelling purposes.
The second generation (v2) of the device, released in 2014, rep-
resents a huge improvement over the previous one because of a
higher resolution (1280 × 1090 pixels for the RGB camera and
512 × 424 pixels for the IR camera) and the possibility of ac-
quiring depth information even outdoor (with an operative range
between 0.5 m and 4 m), under the influence of sunlight radia-
tion, thanks to a different range measurement principle, i.e. Time
of Flight (ToF) instead of triangulation based on structured light
speckle pattern techniques.
The Kinect IR camera delivers different output images: (1) gray
scale images dependent on the ambient lighting, (2) active gray
scale images independent from the ambient lighting and (3) depth
images, namely images where the value of the distance between
the object and the sensor is stored into each pixel.
To use the Kinect for metric applications it is important to geo-
metrically calibrate all the imaging sensors. First of all, the in-
trinsic camera parameters (together with the radial and tangential
distortion) were estimated following the standard calibration pro-
cedure of the Matlab embedded Camera Calibrator app, by us-
ing the provided black and white checkerboard. The same image
dataset were also used for the estimation of the relative orien-
tation parameters between the IR and the RGB cameras, whose
knowledge is fundamental for integrating the data delivered by
the Kinect. Last, but not least, the systematic errors that affect the
depth measurements (for a review of ToF cameras error source
see e.g. Foix et al., 2011) were corrected and removed following
the procedure for depth calibration by Pagliari and Pinto (2015).
In our experiment the Kinect was used for acquiring both RGB
and depth images. The high frame rate of the device produces a
large amount of data, therefore the images were down-sampled
at about 1.5 s sampling rate. The down-sampling frame rate was
selected considering the trade-off between a high overlapping be-
tween subsequent frames and the presence of a sufficiently long
baseline to guarantee a good intersection between the projection
rays. Then, the images were preprocessed by applying the cali-
bration parameters explained above. Moreover, the depth images
were interpolated (sampling rate 4:1) to obtain a resolution simi-
lar to the RGB one, ensuring that all the channels of the RGB-D
images generated from the RGB and depth ones are characterized
by the same level of information. In fact, each RGB-D image is
composed by 6 channels: the first 3 channels correspond to the
RGB image, while the other 3 contains the coordinates of the
point cloud generated from the depth images. The great innate
advantage of RGB-D data is that they exploit the complemen-
tary nature of visual images and point clouds, for recovering both
camera poses and 3D modelling.
To introduce the Kinect observations into the extended Kalman
filter presented in Section 6, the RGB-D images were prepro-
cessed, in order to determine the angular variation and the dis-
placement between two subsequent epochs. The core of the algo-
rithm used to compute these quantities is the function presented

in Xiao et al. (2013) applied between each couple of subsequent
RGB-D images. In particular, the RGB channels were used for
extracting Scale Invariant Feature Transform (SIFT) keypoints
(Lowe, 2004), which were used for computing a first approxima-
tion of relative orientation parameters, using a 3-points algorithm
combined with RANSAC (Fischler and Bolles, 1987) for outliers
removal. Then, this solution was refined by using the Iterative
Closest Point (ICP) algorithm on the remaining channels (namely
from 4 to 6, corresponding to the depth generated point clouds).
Note that an RGB-D image-only trajectory can be computed in-
crementally, by sequentially adding the estimated rototranslation
to the previous step solution.

4. CANON EOS M RGB DATA PROCESSING

The Canon EOS M is a mirrorless interchangeable lens camera
(MILC). This kind of cameras are equipped with a single and
removable lens and uses a digital display system rather than an
optical viewfinder (OVF). The term “mirrorless” is used to high-
light the fact that the camera does not have an OVF linked to
a mirror-box, a movable mirror or a prism, like in conventional
Digital Single Lens Reflex camera (DSLR). Therefore, compared
to DSLR, MILCs are mechanically simpler and often smaller,
lighter and quieter due to the elimination of the moving mirror
for OVF viewing. Because of fewer moving parts the camera is
generally more durable. Nevertheless, like a DSLR, a MILC ac-
cepts any of a series of interchangeable lenses compatible with
the lens mounted of that camera, usually including also fixed fo-
cal length ones.
In our experiment we used a Canon EOS M, equipped with a
fixed focal length lens. This camera was launched on the market
in 2012 and is equipped with an APS-C sensor (22.3×14.9 mm)
with 5184 × 3456 pixels, guaranteeing an image quality com-
parable to a DSLR, but at lower weight and cost (about e500).
The Canon EOS M is able to continuously acquire images at a
sampling rate of 2 fps in JPEG format. Moreover, it is able to
synchronize the camera time with the GPS one by using a proper
external tool (Canon GP-E2). As explained in Section 1, we re-
lied on this device to guarantee the time synchronization with
respect to the GNSS data. To avoid blurred images when moving
the cart, the shutter time was set to 1/1000 s and the diaphragm
aperture to f/8. By fixing these parameters, we deactivated the
auto-focus and we manually fixed the focus to the hyperfocal dis-
tance, obtaining the maximum depth of field (from about 2 m up
to the infinity). Notice that the correct exposure is guaranteed by
automatic varying of the sensor sensibility at each shot.
The imaging sensor has to be geometrically calibrated to use the
camera for metric applications. This calibration consists in esti-
mating the intrinsic camera parameters, together with radial and
tangential distortions parameters. This is performed by the Cam-
era Calibrator app, which is embedded into the Matlab Computer
Vision System Toolbox, and by using the provided black and
white checkerboard.
To introduce the Canon EOS M observations into the extended
Kalman filter presented in Section 6, the RGB images were pre-
processed, in order to determine the angular variation and the di-
rection of the displacement between two subsequent epochs. In
fact, without using any GCP it is not possible to determine the
scale factor of the baseline between each couple of images. The
relative orientation between each subsequent couple of images is
computed by first detecting SURF keypoints (Bay et al., 2008)
and then deriving the essential matrix using the Structure from
Motion Matlab libraries embedded in the Computer Vision Sys-
tem Toolbox (Torr and Zisserman, 2000). From the estimated
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essential matrix the relative rotation and translation between the
two camera poses are then computed (Longuet-Higgins, 1981).
Note that the translation vector is given with respect to the refer-
ence system defined by the first image and up to a scale factor,
assuming its modulus unitary.

5. U-BLOX GNSS DATA PROCESSING

Among various evaluation kits currently available on the market,
u-blox ones stand out for the completeness and clarity of the doc-
umentation, as well as for the broad configuration options. For
this reason, the u-blox evaluation kit EVK-6T was used in this
work. In order to increase the quality of the signal reception, the
patch antenna ANN-MS-0-005 included in the kit was replaced
by a Tallysman TW-3070 single frequency cone antenna. The lat-
ter offers much better performances without increasing the over-
all cost too much, since the price of the antenna is of the order of
e100. The LEA-6T u-blox receiver included in the kit is a GPS
L1-only receiver providing raw code and phase data in u-blox
UBX binary format, through a COM port. The free and open-
source goGPS software (Realini and Reguzzoni, 2013; Herrera et
al., 2016) was used to record the data stream from the receiver
and to process it. goGPS is a software package designed and ini-
tially developed at Politecnico di Milano. The development is
now carried out mostly by GReD srl, with the contributions of
users from several institutions, at international level. goGPS has
applications in navigation (Realini et al., 2012), but also in other
fields such as building monitoring (Caldera et al., 2016) and tro-
posphere estimation (Barindelli et al., 2018).
To introduce the GNSS observations into the extended Kalman
filter presented in Section 6, they were preprocessed to determine
the position of the antenna at each epoch. The u-blox data pro-
cessing by goGPS consists in applying code and phase double
differences with respect to a permanent station. In our experi-
ment we used the MILA station located about 500 m far from
the experiment area. The adjustment procedure was carried out
by means of an extended Kalman filter on double-differenced L1
observations, at 1 Hz, with float phase ambiguities (Realini and
Reguzzoni, 2013). The effect of the filter dynamics is disabled
by setting the model error standard deviation to a value signifi-
cantly higher than the observation error standard deviation. This
is basically equivalent to performing a kinematic solution based
on phase-smoothed code observations. Satellite orbits and clocks
were modelled by broadcast ephemeris data, the elevation angle
cut-off was set to 15◦ and observations were weighted based on
the sine of the elevation, squared.

6. EXTENDED KALMAN FILTER FOR NAVIGATION

Six degrees of freedom describe the motion of a vehicle, e.g. the
position of its barycentre O and its attitude at the epoch ti. The
degrees of freedom are reduced to three if the motion occurs in
a plane, e.g. a flat field. In this case, the position of O can be
expressed by Cartesian coordinates in a local East-North frame
(EN) and the attitude of the vehicle by a single angle. Regarding
the dynamics of the system between two consecutive epochs, it
can be modelled assuming that the barycentre is moving at con-
stant velocity and the attitude is varying at constant angular rate.
Therefore, at discrete epochs ti (i = 1, 2, . . . ) the following vari-
ables describe the state of the system:

• xEN
O (ti) = [EO(ti), NO(ti)]

ᵀ, the position of O in the EN
frame,

• ẋEN
O (ti) =

[
ĖO(ti), ṄO(ti)

]ᵀ
, the velocity of O in the

EN frame,
• αEN

V (ti), the attitude angle of the vehicle in the EN frame
(see Figure 2),

• ωEN
V (ti), the angular rate of the vehicle in the EN frame

around the Up axis (see Figure 2).

The system dynamics is given by the following equations:

xEN
O (ti+1) = xEN

O (ti) + (ti+1 − ti) ẋ
EN
O (ti) (1)

ẋEN
O (ti+1) = ẋEN

O (ti) + εẋ(ti+1) (2)

αEN
V (ti+1) = αEN

V (ti) + (ti+1 − ti)ω
EN
V (ti) (3)

ωEN
V (ti+1) = ωEN

V (ti) + εω(ti+1) (4)

where the introduction of suitable model errors εẋ and εω allow
smooth changes in velocity and angular rate, respectively. In ma-
trix notation, the state vector is:

X(ti) =
[
xEN

O (ti), ẋEN
O (ti), αEN

V (ti), ωEN
V (ti)

]ᵀ (5)

and the system dynamics is:

X(ti+1) = T (ti, ti+1)X(ti) + ε(ti+1) (6)

where T is the non-stationary transition matrix:

T(ti, ti+1) =



1 0 ti+1 − ti 0 0 0

0 1 0 ti+1 − ti 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 ti+1 − ti

0 0 0 0 0 1


(7)

and ε is the model error vector:

ε(ti+1) =
[
0, 0, εĖ(ti+1), εṄ (ti+1), 0, εω(ti+1)

]ᵀ
.

(8)
In this work, we propose an improvement of the extended Kalman
filter for navigation to combine the GNSS and the image-based
information presented in De Gaetani et al. (2018), since we in-
clude into the state variables also the angular rate ωEN

V . More-
over, we tested the use of RGB or RGB-D cameras, thus two
versions of the improved extended Kalman filter are developed,
in order to consider the scale factor that is missing in the RGB
observations. The filter allows to introduce observations from
the different kinds of instruments with different sampling rates.
Therefore, calling tGi (i = 1, 2, . . . ) the GNSS receiver obser-
vation epochs, tKi (i = 1, 2, . . . ) the RGB-D acquisition epochs
and tCi (i = 1, 2, . . . ) the RGB ones, the union of tGi and tKi (or
tCi ) is the set of epochs ti at which the state vector is evaluated.
As already introduced in Section 2, the acquisition points of the
instruments are at different positions with respect to the barycen-
tre O of the vehicle, i.e. the point which the state variables refer
to (see Figure 2). Hence, the following vectors are introduced:

xV
GO = xV

O − xV
G =

[
xVGO, y

V
GO

]ᵀ
(9)

xV
KO = xV

O − xV
K =

[
xVKO, y

V
KO

]ᵀ
(10)

xV
CO = xV

O − xV
C =

[
xVCO, y

V
CO

]ᵀ
(11)
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Figure 2. Vehicle at epochs ti and ti+1. The observation points
C, G, K and the vehicle barycentre O are highlighted.

linking the barycentre of the vehicle O to the acquisition points
G, K and C referring to the GNSS, RGB-D and RGB devices,
respectively. These vectors are given in the vehicle reference sys-
tem V. Note that they are constant in time and are estimated
during the calibration phase described in Section 2.
Regarding the GNSS observations, sampled at the epochs tGi , the
antenna coordinates estimated by goGPS in the EN frame xEN

G

are considered as observations, instead of the actually observed
pseudo-ranges. Therefore, the GNSS observation equation is:

xEN
G

(
tGi

)
= xEN

O

(
tGi

)
+ xEN

GO

(
tGi

)
+ νx

(
tGi

)
(12)

where νx is the observation error described by the covariance
matrix of the estimated coordinates of xEN

G . The components
of the vector xEN

GO , i.e. the vector linking O and G in the EN
frame, change in time according to changes of the vehicle atti-
tude. Therefore, Eq. 12 can be rewritten as:

xEN
G

(
tGi

)
= xEN

O

(
tGi

)
−R

(
αEN
V

(
tGi

))
xV

GO+νx
(
tGi

)
(13)

where R(α) is the two-dimensional rotation matrix depending on
an attitude angle α. Note that Eq. 13 is not linear with respect to
the angle αEN

V

(
tGi
)
. Linearizing around α̃EN

V

(
tGi
)

= αEN
V (t`)

with t` = max
(
tj : tj < tGi , j = 1, 2, . . .

)
, Eq. 13 becomes:

xEN
G

(
tGi

)
− hG

(
tGi

)
= HG

(
tGi

)
X
(
tGi

)
+ νx

(
tGi

)
(14)

where hG is the known term:

hG
(
tGi

)
= −R

(
α̃EN
V

(
tGi

))xV
GO + α̃EN

V

(
tGi

) yVGO

−xVGO


(15)

and HG is the GNSS non-stationary transformation matrix:

HG
(
tGi

)
=

I 0 0 R
(
α̃EN
V

(
tGi

)) yVGO

−xVGO

 0

 . (16)

Regarding the RGB-D camera acquisitions, the displacement and
the rotation between two subsequent epochs tKi−1 and tKi in the
vehicle reference frame V defined at tKi−1 are observed. Dividing
them by the time lag ∆tKi = tKi − tKi−1 and rotating the displace-
ment by the angle αEN

V

(
tKi−1

)
, the velocity ẋEN

K and the angular
velocity ωEN

V in the EN frame are obtained, referred at the epoch
tKi . Since they are assumed as direct observations, they are in-
dicated as ẋ

EN
K and ωEN

V , respectively. Note that, since ∆tKi is
the time difference between two RGB-D acquisitions, the average

velocities and not the instantaneous ones at time tKi are actually
computed. The RGB-D observation equations can be written as:

ẋ
EN
K

(
tKi

)
= ẋEN

O

(
tKi

)
+

[
I−R

(
βEN
V

(
tKi
))]
xV

KO

∆tKi
+ νẋ

(
tKi

)
(17)

ωEN
V

(
tKi

)
= ωEN

V

(
tKi

)
+ νω

(
tKi

)
(18)

where βEN
V

(
tKi
)

= ωEN
V

(
tKi
)

∆tKi . Eq. 17 is not linear with re-
spect to the angular velocity ωEN

V

(
tKi
)

describing the change of
attitude of the vehicle. After linearization around ω̃EN

V

(
tKi
)

=

ωEN
V (t`) with t` = max

(
tj : tj < tKi , j = 1, 2, . . .

)
, Eq. 17

becomes:

ẋ
EN
K

(
tKi

)
+ hK

(
tKi

)
= ẋEN

O

(
tKi

)
+

+ ωEN
V

(
tKi

)
Ṙ
(
β̃EN
V

(
tKi

))
xV

KO + νẋ
(
tKi

)
(19)

where β̃EN]
V

(
tKi
)

= ω̃EN
V

(
tKi
)

∆tKi , Ṙ (β) = ∂R/∂β, and hK

is the known term:

hK
(
tKi

)
= ω̃EN

V

(
tKi

)
Ṙ
(
β̃EN
V

(
tKi

))
xV

KO+

+

[
I−R

(
β̃EN
V

(
tKi
))]

xV
KO

∆tKi
. (20)

Eqs. 18 and 19 can be rewritten in matrix notation as:

yK
(
tKi

)
= HK

(
tKi

)
X
(
tKi

)
+ νyK

(
tKi

)
(21)

where yK
(
tKi
)

is the observation vector given by:

yK
(
tKi

)
=

 ẋ
EN
K

(
tKi
)

+ hK
(
tKi
)

ωEN
V

(
tKi
)

 , (22)

the observation error vector νyK

(
tKi
)

is:

νyK

(
tKi

)
=

νẋ(tKi )
νω
(
tKi
)
 (23)

and the non-stationary transformation matrix HK
(
tKi
)

is:

HK
(
tKi

)
=


0 0 1 0 0 aK1

(
tKi
)

0 0 0 1 0 aK2
(
tKi
)

0 0 0 0 0 1

 (24)

with: aK1 (tKi )
aK2
(
tKi
)
 = Ṙ

(
β̃EN
V

(
tKi

))
xV

KO . (25)

Differently to the aforementioned RGB-D acquisitions, the RGB
ones suffer the lack of information on the scale of the observed
displacements between two subsequent acquisition epochs. In
this case only the direction of the motion of the point C is ob-
served, i.e. the unit vector eEN

C . The missing scale factor is noth-
ing else than the modulus of the velocity vector of C in the EN
frame. Assuming small variations of the attitude angles between
two subsequent epochs, the velocity vectors at pointO and C can
be approximated as parallel. Then, the RGB observation equa-
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tions can be written as:∥∥∥ẋEN
O

(
tCi

)∥∥∥ eEN
C

(
tCi

)
=

= ẋEN
O

(
tCi

)
+

[
I−R

(
βEN
V

(
tCi
))]
xV

CO

∆tCi
+ νẋ

(
tCi

)
(26)

ωEN
V

(
tCi

)
= ωEN

V

(
tCi

)
+ νω

(
tCi

)
. (27)

Note that Eq. 26 is not linear with respect to the variable ẋEN
O

(
tCi
)

describing the velocity of the vehicle barycentre, as well as in the
angular velocityωEN

V

(
tCi
)
. After linearization around ˜̇xEN

O

(
tCi
)

=

ẋEN
O (t`) and ω̃EN

V

(
tCi
)

= ωEN
V (t`) with t` = max

(
tj : tj < tCi ,

j = 1, 2, . . . ), Eq. 26 becomes:

hC
(
tCi

)
=
[
I−P

(
tCi

)]
ẋEN

O

(
tCi

)
+

+ ωEN
V

(
tCi

)
Ṙ
(
β̃EN
V

(
tCi

))
xV

CO + νẋ
(
tCi

)
(28)

where:

P
(
tCi

)
=

p11(tCi ) p12
(
tCi
)

p21
(
tCi
)

p22
(
tCi
)
 =

˜̇xEN

O

(
tCi
)∥∥∥˜̇xEN

O (tCi )
∥∥∥ eEN

C

(
tCi

)ᵀ
(29)

and hC is the known term:

hC
(
tCi

)
= ω̃EN

V

(
tCi

)
R
(
β̃EN
V

(
tCi

))
xV

CO+

+

[
I−R

(
β̃EN
V

(
tCi
))]

xV
CO

∆tCi
. (30)

In matrix notation, Eqs. 27 and 28 can be rewritten as:

yC
(
tCi

)
= HC

(
tCi

)
X
(
tCi

)
+ νyC

(
tCi

)
(31)

where the observation vector yC
(
tCi
)

is given by:

yC
(
tCi

)
=

[
hC
(
tCi
)

ωEN
V

(
tCi
)] , (32)

νyC

(
tCi
)

is the observation error vector:

νyC

(
tCi

)
=

[
νẋ
(
tCi
)

νω
(
tCi
)] (33)

and HC
(
tCi
)

is the non-stationary transformation matrix:

HC
(
tCi

)
=


0 0 1 − p11

(
tCi
)

−p12
(
tCi
)

0 aC1
(
tCi
)

0 0 −p21
(
tCi
)

1 − p22
(
tCi
)

0 aC2
(
tCi
)

0 0 0 0 0 1


(34)

with: aC1 (tCi )
aC2
(
tCi
)
 = Ṙ

(
β̃EN
C

(
tCi

))
xV

CO . (35)

Once the transition and transformation matrices are derived for
any acquisition time, along with the model and observation er-
ror covariance matrices, the Kalman filter can iteratively update
the state vector providing the estimated trajectory and its error

estimate (Kalman, 1960). A comment is due about the proposed
Kalman filter. Displacements and attitude variations of the vehi-
cle are directly observed by the RGB-D device and therefore an
additional and predefined dynamics, like the one introduced in
Eqs. 1, 2, 3, 4 is not strictly required. This dynamics is useful
when only GNSS observations are available or when the RGB-D
errors are larger than the expected variability of the vehicle po-
sition and attitude. It can be also used to reduce the effect of
possible outliers in the observations. On the other hands, the
RGB device is able to provide information only on the attitude
variations and the direction of motion. In this case, the barycen-
tre constant velocity dynamics plays a key role in the trajectory
estimation.

7. TEST RESULTS

The experimental test was performed by moving the cart described
in Section 2 at crawl velocity, realizing several closed trajectories
along Andrea Cascella’s Fountain (located near Piazza Leonardo
da Vinci in Milan, Italy). Applying the developed Kalman fil-
ter, the trajectory of the cart barycentre O and cart attitude were
estimated. In order to assess the performances when combining
different kinds of observations, four solutions were computed. In
particular, the following observation combinations were consid-
ered: GNSS-only, RGB-D-only, GNSS/RGB-D and GNSS/RGB.
The variances (and covariances) of the model errors and the ob-
servation noise, required by the Kalman filter, were empirically
set. This is crucial to control the integration of the data coming
from the different sensors and, consequently, the quality of the
final result. In the proposed strategy, the required variances are
evaluated exploiting the information coming from the reference
trajectory, dividing it in rectilinear and curved sections.
Regarding the standard deviation of the GNSS observations (Eq.
12), this is different for each acquisition epoch. The correspond-
ing error covariance matrix is given by the goGPS data process-
ing. However, the overall standard deviation of the u-blox tra-
jectory can be computed by comparing it with the reference one,
obtaining a value of about 20 cm. This results required to apply
a scale factor of 5 to the formal error covariance matrices esti-
mated by goGPS. The RGB-D camera noise standard deviations
of the velocity (Eq. 17) and the angular rate (Eq. 18) have been
estimated on the basis of the rectilinear stages of the trajectory.
In fact, during these stages a constant velocity and a constant
attitude are expected, hence the observation variability can be at-
tributed to the observation noise only. Consequently, they have
been set to 8 cm/s and 0.85◦/s, respectively. With the same
approach, the RGB camera angular velocity error standard devi-
ation (Eq. 27) has been set to 2◦/s. This value is larger than the
RGB-D one because of the shorter baseline between two consec-
utive frames due to an higher acquisition frame rate of the RGB
camera. Moreover, the RGB camera observes the direction of
motion with a noise standard deviation of about 1.2◦, empirically
evaluated along rectilinear stages. This corresponds to a velocity
error standard deviation of the order of 1 cm/s at cruise velocity
that is about 35 cm/s. Since the GNSS position is known with an
error of about 20 cm and the modulus of the velocity is basically
derived from the GPS information, the standard deviation of the
noise in Eq. 26 has been set to 20 cm/s.
Regarding model errors of the dynamics used in the Kalman filter,
they have been determined on the basis of the reference trajectory
and attitude. The standard deviation of the velocity and the an-
gular rate have been evaluated, differently for straight and curved
sections. According to the reference trajectory, the velocity error
standard deviation (Eq. 2) has been set to 7 cm/s, while the an-
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gular rate error standard deviation (Eq. 3) is obviously different
for the straight and the curved sections and has been set to 2◦/s
and 5◦/s, respectively.
The results of the tests are shown in Figures 3 and 4. As ex-
pected, the GNSS-only solution is not able to reconstruct the atti-
tude variation of the cart during its motion (see Figure 4) because
the acquisition of the position of a single antenna does not pro-
vide any information about it. Therefore, the attitude predictions
of the Kalman filter are are computed by minimizing the varia-
tions of both the cart barycentre velocity and angular rate.
The RGB-D-only solution is instead able to well estimate the at-
titude of the cart (see Figure 4). However, a drift error causes
an estimated trajectory getting farther away from the reference
one epoch by epoch (see Figure 3). Nevertheless, the estimated
trajectory is smooth and the Kalman filter plays only the role of
limitating strong variations between consecutive epochs.
Introducing also GNSS observations and computing the GNSS/
RGB-D solution the drift present in the RGB-D-only trajectory
is corrected (see Figure 3), at the cost of obtaining a less smooth
trajectory due to the irregularities introduced by the GNSS (that
is a low-cost device in our experiment). Moreover, this combina-
tion leads to an increment of the drift in the estimated cart attitude
(see Figure 4) that could be prevented by introducing some GCPs
or a dedicated measuring device.
Regarding the GNSS/RGB solution, the estimate of the modulus
of the velocity depends from the GNSS data. Therefore, in this
solution, the information provided by the GNSS plays a key role,
leading to an estimated trajectory closer to the GNSS-only solu-
tion than the GNSS/RGB-D one. This implies a worse cart atti-
tude estimation (see Figure 4), producing a larger drift error with
respect to the solutions containing RGB-D data. This also implies
that at some point the information on the motion provided by the
two instruments (i.e. GNSS and RGB camera) becomes slightly
inconsistent and, therefore, the alternation between GNSS and
RGB observations can produce a less smooth trajectory with a
zig-zag behaviour (see e.g. the bottom-left stage in Figure 3) of
the order of some centimetres.
Statistics of the difference between the estimated trajectories and
the reference one, in terms of Euclidean distance between points
at the same epoch, are reported in Table 1.

Figure 3. Estimated and reference cart trajectory: GNSS-only
solution (black), RGB-D-only solution (green), GNSS/RGB-D
combination (red), GNSS/RGB combination (blue), reference

(cyan). The blue star represents the starting point of the
trajectory.

Figure 4. Estimated and reference cart attitude: GNSS-only
solution (black), RGB-D-only solution (green), GNSS/RGB-D
combination (red), GNSS/RGB combination (blue), reference

(cyan).

GNSS RGB-D GNSS/RGB-D GNSS/RGB
mean [m] 0.71 0.87 0.57 0.69
std [m] 0.36 0.48 0.37 0.40
rms [m] 0.80 0.99 0.68 0.79

Table 1. Statistics of the differences between the estimated
trajectories with respect to the reference one, see also Figure 3.

8. CONCLUSIONS

In this work, different versions of a Kalman filter were developed
with the aim of estimating a vehicle trajectory and attitude by
integrating GNSS and visual data. In particular, low-cost instru-
ments were considered, such as a u-blox GNSS receiver, a Mi-
crosoft Kinect RGB-D camera and a Canon EOS M RGB camera.
The filter was tested on data acquired during a field test consisting
in a moving cart with the above mentioned devices mounted on-
board. In addition, more sophisticated and expensive instruments
were simultaneously used, in order to get the reference trajec-
tory and attitude to be compared. In particular, the focus of the
work was on the comparison between RGB-D and RGB devices.
Both of them are able to observe the changes in attitude of the
cart during its motion, but the former provides also information
about its velocity, while the latter furnishes observations just on
the direction of motion. Accordingly to this difference between
the device acquisitions, the Kalman filter was modified and dif-
ferent estimated trajectories were obtained. When RGB-D and
RGB observations are integrated to GNSS ones, the GNSS/RGB-
D solution reconstructs the cart trajectory slightly better than the
GNSS/RGB one. In terms of rms of the distances between the ref-
erence and the estimated trajectory, the RGB-D solution is about
15% better than the RGB one. However, it is worth to notice that
the RGB camera is simpler to manage and does not have con-
straints regarding the distance between the camera and the ob-
ject, as the used RGB-D camera has. This partly compensates
the slightly worse performance in the trajectory reconstruction.
Improvements could come from the integration of other devices
that directly observe the vehicle attitude and not only its vari-
ation, thus controlling the attitude drift error. Furthermore, the
generalization to a 3D motion is a fundamental step to apply this
methodology to vehicles commonly used in surveying, such as
UAS. Finally, a full integration of the proposed approach into the
goGPS free and open source software package would make it us-
able in many applications.
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