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ABSTRACT: 

Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many 

fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover 

localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature 

detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based 

matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution 

evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to 

perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, 

are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less 

sensitive to changes of image taken at adjacent locations. 

* Corresponding author. 

1. INTRODUCTION

Feature detection and matching are key techniques in computer 

vision and robotics, and have been successfully implemented in 

many fields such as object recognition, 3D reconstruction, 

image retrieval, and camera localization, etc. Tens of features 

feature detectors and matching methods have been developed 

and used in different applications. It is valuable and important 

to evaluate and compare of the detectors and matching methods 

under different environmental conditions, so that to provide 

reference for design and development of application systems in 

the future. 

Many investigations and comparisons of detectors and 

descriptors have been presented. Schmid et al.(2000) 

categorized the evaluating methods based on ground-truth 

verification, visual inspection, localization accuracy, theoretical 

analysis and specific tasks, and introduced two evaluation 

criteria including repeatability rate and information content for 

comparing feature detectors. Mikolajczyk and Schmid (2005) 

compared affine regions detectors while Mikolajczyk et al. 

(2003) reported an evaluation of local descriptors. Rodehorst 

and Koschan (2006) compared the SUSAN-2D operator, the 

Plessey detector and Förstner operator, and the performance of 

the detectors were compared under three criteria including 

detection rate, repeatability rate and localization accuracy. In 

general, previous comparisons were either application oriented 

or limited in experimentation or in the number of detectors and 

descriptors compared. Apollonio et al. (2014) verified the 

efficiency of different feature-based methods in different 

situations (scale variation, camera rotation, and affine 

transformation). Jazayeri and Fraser (2010) assessed the 

performance of the interest operators within an eight-image 

network on the basis of accuracy of interest-point localization, 

detection rate and speed. Gil et al. (2010) evaluated the 

repeatability of the detectors, as well as the invariance and 

distinctiveness of the descriptors, under different perceptual 

conditions using sequences of images representing planar 

objects as well as 3D scenes. Mukherjee et al. (2015) made a 

comprehensive review of a large number of popular feature 

detectors developed in the last three decades, and conducted 

exhaustive experiments on several datasets for each 

combination of detectors and descriptors to provide a ranking 

that can also be weighted to suit specific applications.  

It’s worthy to note that most evaluation and comparison results 

are based on standardized reference images; different 

transformations of a single image, such as viewpoint change, 

illumination variation, and scale change are simulated to 

measure the stability of feature detectors.  

As far as we know from published literatures, there is no 

performance comparison of feature detectors and matching 

methods for planetary mapping and rover localization using 

rover stereo images. 

In this research, we present a comprehensive evaluation and 

comparison of six feature operators, including Moravec, 

Förstner, Harris, FAST, SIFT and SURF, aiming for optimal 

implementation of feature-based matching in planetary surface 

environment. To facilitate quantitative analysis, a series of 

evaluation criteria, including distribution evenness of matched 

points, coverage of detected points, and feature matching 

accuracy, are developed in the research. 

2. INTEREST POINT DETECTORS

In this section the feature detectors including Moravec, Harris, 

Förstner, SIFT and SURF are introduced, and they have been 

implemented and applied in our experiments. 
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2.1 Moravec 

Moravec detector (Moravec, 1980) is one of the earliest corner 

detection algorithms; for each pixel it compares a patch 

centered on that pixel with 8 local patches which are simply 

shifted by a small amount (typically 1 pixel in each of the eight 

possible directions) from the current patch. It computes the sum 

of squared differences (SSD) in four directions and takes the 

smallest value as the measure of corner strength. Therefore it 

detects point where there are large intensity variations in every 

direction. It’s well noted that the operator is not isotropic. 

Hence the response on the operator is not isotropic. 

 

2.2 Förstner detector 

Förstner detector (Förstner and Guelch, 1987) uses the auto-

correlation function to classify the pixels into categories 

(interest points, edges or region); the detection and localization 

stages are separated into the selection of windows (in which 

features are known to reside) and feature location within 

selected windows. Further local statistics allow estimating the 

thresholds for the classification automatically. To compute the 

location of a corner with subpixel accuracy, the Förstner 

algorithm seeks for the point closest to all the tangent lines of 

the corner in a given window based on a least-square solution. 

 

2.3 Harris  detector 

Harris detector(Harris and Stephens, 1988) computes a matrix 

related to the autocorrelation function of the image which is 

similar to Moravec. The Harris corner detector differs from the 

Moravec detector in how to determine the cornerness value. 

Rather than looking at the sum of squared differences it makes 

use of partial derivatives, a Gaussian weighting function, and 

the Eigenvalues of a matrix representation of the equation. It is 

significantly more expensive computationally as compared to 

the Moravec corner detector. 

 

2.4 FAST  detector 

The FAST (Features from Accelerated Segment Test) feature 

detector (Edward et al, 2010) is based on accelerated segment 

test. Firstly a feature is detected at pixel p by examining a circle 

of 16 pixels surrounding p. The pixel on the circle is considered 

‘bright’ if its intensity is above the intensity of p by at least 

threshold t, and ‘dark’ if the intensity value is below its 

intensity of p by at least threshold t. The algorithm is further 

accelerated by using ID3 (Iterative Dichotomiser 3) algorithm 

to classify a candidate pixel as corner or non-corner. As small 

sets of positive corners are produced after segmentation, to 

further refine the results, the corner response function V which 

measures cornerness of detected corners is used, and non-

maximal suppression is applied to remove corners that have an 

adjacent corner with higher V. 

 

 

Figure 1.  Fast detector 
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2.5 SIFT  detector 

The previous corner detectors examine an image at only a single 

scale. Lowe (1999) proposed a Scale Invariant Feature 

Transform (SIFT) detector/descriptor scheme. SIFT keypoints 

are invariant with respect to scale, translation and orientation in 

image scale space. The scale-space of an image is first produced 

from the convolution of the input image with a Difference of 

Gaussian (DOG) detector. Maxima and minima of this scale-

space function are determined by comparing each pixel in the 

pyramid to its neighbors. Keypoints are taken as maxima and 

minima of the difference of Gaussian function that occur at 

multiple scales. Then the interpolation of nearby data is done 

using the quadratic Taylor expansion of the DOG scale-space 

function. The keypoints with low contrast are discarded based 

on the second-order Taylor expansion, such that poorly 

determined locations and high edge responses are eliminated. 

As a key step in achieving invariance to rotation, the main 

orientation for each feature is assigned based on local image 

gradient directions. A descriptor vector of 128 dimensions is 

then computed for each keypoint such that the descriptor is 

highly distinctive and partially invariant to the remaining 

variations. 

 

2.6 SURF  detector 

SURF (Speeded Up Robust Features)( Bay et al., 2006) is a 

high-performance scale and rotation-invariant interest point 

detector inspired by SIFT. The standard version of SURF is 

claimed by its authors to be several times faster than SIFT and 

more robust against different image transformations. SURF 

relies on integral images for image convolutions. It is based on 

sums of 2D Haar wavelet responses and employs box filters 

using integral images, as opposed to the more computationally 

demanding Gaussian filters employed by SIFT. A fast Hessian 

matrix-based measure for the detector and a distribution-based 

descriptor is used. It describes a distribution of Haar wavelet 

responses within the interest point neighborhood, and only 64 

dimensions are used reducing the time for feature computation 

and matching. The indexing step is based on the sign of the 

Laplacian, which increases the matching speed and the 

robustness of the descriptor. 

 

The Hessian matrix at scale  is defined as follows: 
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where Ixx represents second order Gaussian smoothed image 

derivatives. Bay et al. (2006) used simple box filters to 

approximate convolution with the Gaussian second order 

derivatives. So box filters can be computed in constant time 

using the integral image. The approximate determinant of 

Hessian matrix then is 

 
2[ ( , , )] (0.912 )xx yy xyDet H x y D D D    (3)  

 

Finally, 3×3×3 –neighborhood non-maximum suppression and 

sub-pixel refinement are then applied. 

 

 

3. EVALUATION CRITERIA 

A common evaluation technique is to measure the repeatability 

rate which is the number of repeated points between two images 

considering the total number of extracted points. Keypoints 
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which are not detected in both images can corrupt the 

repeatability measure. As a consequence, only points which lie 

in the common scene parts are used to compute the repeatability. 

The repeatability rate is defined by 

 

1 2min( , )

CorrectN
r

n n
  (4)  

 

where CorrectN represents the number of matched points, 1n , 

2n are the number of points detected in stereo images 

respectively. 

 

Meanwhile, the percentage of matched inliers is defined by  

 

inliers
precision

CorrectN
  (5)  

Furthermore, to facilitate quantitative analysis, a series of 

evaluation criteria, including distribution evenness of matched 

points, coverage of detected points, and feature matching 

accuracy, are developed in the research. The matching accuracy 

is of importance since it measures 3D point accuracy. The 

coverage of detected points is related to localization accuracy, 

thus it is a secondary consideration for planetary application. 

 

The matching accuracy measures whether the corresponding 

point is accurately located at a specific location (ground truth) 

based on the image attitude and 3D information. As shown in 

Figure 2, given a pair of stereo images and 3D point P, point 

ip and jp are homologous points after image matching, jp  is 

calculated value after iteration, then the matching accuracy is 

the sum of matched point and projected value. Taking the 

feature points in the right image as base points, calculate the 

discrepancies between their homologous points (from image 

matching) and the projected positions of the 3D points in the 

left image to depict the inconsistencies between the matched 

points and measured points.  

 
1 1|| ||i i

j jp p     (6)  

 

The projected coordinates is computed as follows: 

 

Step 1. Based on the initial height value Z0 and left feature point 

(xl,yl),the approximate value of ground coordinate (X1,Y1) can be 

determined using collinearity equation. 
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Step 2. According to ground coordinate (X1,Y1), the 

corresponding height can be interpolated from the existed DEM. 

 

Step 3. Repeat steps 1 to 2 until the termination condition is met, 

i.e., the change of the coordinate (Xi+1, Yi+1, Zi+1) between two 

successive iterations is less than a threshold. 

 

Step 4. Calculate the projected point p(xr,yr) of ground 

coordinate (X, Y, Z) . 
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Figure 2.  Evaluation method of matching accuracy  

 

Evenness is an important factor to evaluate performance and 

quality of detectors, it is related to localization accuracy. Given 

an image of M*N, the image is divided into evenly spaced K 

grids, and the number of matched point in each grid can be 

calculated in terms of the coordinates of points and grid range, 

the evenness U is determined as 
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K is the total number of grids, 
kN  is the number of points 

located within the kth grid. 

Coverage reflects the distribution of matched points within the 

overlap area between pairs. Firstly the convex hull of a point set 

is calculated, and the overlapping area of stereo images is 

computed, the ratio of convex hull area and overlapping area is 

obtained. In computational geometry, a number of algorithms 

are known for computing the convex hull for a finite set of 

points. In this paper the convex hull is determined using PCL 

(point cloud library). Furthermore, it’s noted that the 

overlapping area is determined by a rectangular area. 

 

The error of localization must be the most useful criterion in 

motion estimation of rover, so the relationships of different 

detectors and descriptors with the localization error are also 

evaluated. The specific steps for rover localization are: 

 

Step 1. Give predefined EOPs (Exterior Orientation Parameters) 

to the first frame as initial EOPs of the image sequence. 

 

Step 2.  Calculate the three dimensional coordinates c based on 

the matched points and EOPs by space intersection. 

 

Step 3. Repeat Step 2 to obtain the coordinates 2

XYZP of 

corresponding point in the second frame  

 

Step 4. The rotation and translation parameters R, T can be 

determined using the model 

 
2 1

XYZ XYZP R P T    (9)  

 

Step 5. Calculate the EOPs of the second frame based on the 

initial EOPs and R, T. 

 

Step 6. Repeat the steps above to calculate the EOPs of the 

sequence images, the localization error is determined by 

calculating the difference between predefined rover location P1 

and solved location P2. 
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4. EXPERIMENTAL RESLUTS  

The performances of feature detection and matching are 

affected by different geometric factors, including image 

rotations, scale change, illumination variation, change of view 

point and camera noise. Due to the complexity of explicit 

formula derivation, simulated images are used to compare the 

performance of feature detectors. The simulated images are 

generated from digital projection with a virtual stereo camera 

by using the existing Digital Elevation Model (DEM) and 

Digital Orthophoto Map (DOM) of an area of Martian surface. 

The DEM and DOM were produced from HiRISE (High 

Resolution Imaging Science Experiment) stereo images are 

available at Mars Orbital Data Explorer website of Planetary 

Data System Geosciences Node (http://ode.rsl.wustl.edu/ 

mars/pagehelp/quickstartguide/index.html?hirise_dtm.htm). The 

size of the maps is 7186m  16392m. The resolutions of DOM 

and DEM are 0.25 m and 1 m respectively, and the vertical 

accuracy of the DEM is tens of centimeters. Given the interior 

and exterior orientation parameters, pixel size, image size and 

lighting parameters for the virtual stereo camera, the 

corresponding simulated images can be generated using back 

projection techniques base on the rigorous sensor model, i.e., 

the collinearity equations. In order for the simulated images to 

have enough details, the resolution of DEM and DOM is 

considered as 0.002m in the simulation computation. 

 

  
Figure 3.  DEM (left) and DOM (right) (ID: 

DTEEC_010573_1755_010639_1755_U01.IMG, 

PSP_010573_1755_RED_A_01_ORTHO.JP2)  

generated from of HiRISE stereo images 

 

In order to establish different parameters of the geometric 

configuration affects matching results, a “normal case” stereo 

camera is used, the image size of stereo camera is 1024×1024 

pixels and the focal length is 1189 pixels, the coordinates of the 

principal point in the fiducial axis system is set as (511.5, 

511.5). The baseline and pitch angle are set to 0.3 m and −20° 

respectively. Assuming that the stereo camera is installed 1.5 m 

above the ground on a rover, the principal optical axis from a 

stereo camera having the intended pitch angle will intersect the 

flat ground at a distance of 4.9 m, which is an ordinary setting 

used in field experiments. The distortion parameters are 

assumed to be equal to zero, while the exterior orientation 

parameters (φ, ω, κ, Xs, Ys, Zs) of different photographs are 

defined differently in terms of the location. A ground reference 

coordinate system is defined such that the Y axis points in the 

traverse direction, the Z axis points downward (perpendicular to 

the plane Z = 0), and the X axis forms the right-hand coordinate 

system. 

 

Furthermore，due to the given DOM is of some fixed sun 

altitude, the sun altitude and sun orientation parameters are 

introduced to reflect illumination variation of different image in 

the simulation experiments. To simplify the implementation, the 

OpenGL phong model is applied to generate image texture and 

gray value. Phong model uses three parameters: ambient, 

diffuse and specular. Ambient reflects light that comes from all 

directions equally and is scattered in all directions equally by 

the polygons in the scene, diffuse means the light comes from a 

particular point source and hits surfaces with an intensity that 

depends on whether they face towards the light or away from it, 

and specular lighting is what produces the shiny highlights. The 

sun altitude and sun orientation parameters can be transferred 

into the corresponding phong model parameters. The sun 

altitude are set to 30°, 45°, 60° and  90° respectively, while the 

sun azimuth are set to 90° and 270°. 

 

Based on the given average height Z0 and pixel coordinate, the 

ground coordinates (X,Y,Z) can be obtained taking formulas and 

the procedure in section 4 as reference, then the gray value of 

pixel can be interpolated on the basis of known (X,Y) and 

modified DOM, finally the simulate images can be completed 

after point-by-point computation. In addition, if the ground 

coordinates don’t converge during iteration, the grey value is set 

as zero. Figure 4 shows four simulated images of different 

parameters. 

  

  

Figure 4.  Samples of simulated images 

 

The experimental results on different descriptors are shown in 

Table 1 under the condition of preserving 1000 feature points. 

The results show that the performance of SIFT detector is 

superior to others. This may be explained by the characteristics 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 
2017 International Symposium on Planetary Remote Sensing and Mapping, 13–16 August 2017, Hong Kong

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W1-149-2017 | © Authors 2017. CC BY 4.0 License.

 
152



 

of stereo visual odometry, because there are small scale and 

rotation changes deformations among two consecutive frames. 

It is worth to note that there are no noises added to the 

simulated images, meanwhile other elements affecting the EOPs 

are not considered, so the localization error is up to 0.02%. 

Further, to compare the performances of different descriptors 

under different parameter setting, Figure 5 shows the results of 

repeatability rate, precision, accuracy, evenness and coverage 

after normalization if the max value of the criterion is higher 

than 1. In these figures, different colors represent different 

experiment settings. 

Table 1. List of detectors which provide best result in each criterion

Evaluation criteria Detector Best value Sun altitude Sun azimuth Distance of waypoints 

Repeatability rate Fast 0.625 30° 270° 0.2 m 

Precision SIFT 0.999 60° 270° 0.2 m 

Accuracy Moravec 0.135 30° 270° 0.2 m 

Evenness SIFT 0.312 90° 270° 1.0 m 

Coverage Moravec 0.660 45° 90° 0.5 m 

Localization SIFT 0.0002 30° 270° 0.2 m 

 
 

 

(a) Repeatability rate results 

 

(b) Precision results 

 

(c) Accuracy results 

 

 

 

 

(d) Evenness results 

 

(e) Coverage results 
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(f) Localization accuracy results

Figure 5.  Experimental results 

5. CONCLUSIONS

An evaluation and comparison of interest point detectors for 

rover mapping and localization has been presented. Typical 

measures used in photogrammetric applications, such as 

repeatability rate and precision are adopted; moreover, three 

criterions including distribution evenness of matched points, 

coverage of detected points, and feature matching accuracy are 

proposed. 

From our experimental results, the SIFT shows an overall good 

performance among those detectors. Compared with other 

evaluation papers, we performed a quantitative analysis of the 

point detectors for rover images based on the simulated images 

and exterior orientation parameters.  Generally, the detectors 

with scale invariance are more stable than simple corner 

detectors, so they have less failure rate on motion estimation 

and high matching accuracy. In the experiment, each operator 

has its fixed set of parameters for the entire image. An adaptive 

parameter selection strategy could give better results in point 

selection and distribution.  

The actual performance of detectors will depend on on the real 

world conditions. The comparative results in this research are 

indicative of the relative performance, while the exact measures 

of the performance may be different in real world applications. 

Nevertheless, the comparison results can be useful as reference 

in design and development of rover localization and mapping 

systems in the future, particularly they are valuable in design of 

rover navigation and mapping system in China’s first Mars 

rover mission, which is planned to be launched in 2020.  
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