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ABSTRACT: 

Impact craters are among the most noticeable geo-morphological features on the planetary surface and yield significant information on 

terrain evolution and the history of the solar system. Thus, the recognition of lunar impact craters is an important branch of modern 

planetary studies. To address problems associated with the insufficient and inaccurate detection of lunar impact craters, this paper 

extends the strategy that integrates multi-source data and proposes a Bayesian Network (BN) framework for the automatic recognition 

of impact craters that is based on CCD stereo camera images and associated Digital Elevation Model (DEM) data. The method uses 

the SVM model to fit the probability distribution of the impact craters in the feature space. SVM model, whose output is used as the 

intermediate posterior probability, is embedded in the Bayesian network as a node, and the final posterior probability is obtained by 

integration under the Bayesian network. We validated our proposed framework with both CCD stereo camera images acquired by the 

Chang’e-2 satellite and DEM data acquired by Lunar Reconnaissance Orbiter (LRO). Experimental results demonstrate that the 

proposed framework can provide a very high level of accuracy in the recognition phase. Moreover, the results showed a significant 

improvement in the detection rate, particularly for the detection of sub-kilometer craters, compared with previous approaches. 

1. INTRODUCTION

It is well known that lunar exploration and planetary science 

research has crucial practical and strategic significance. At the 

beginning of the 21st century, leading countries and 

organizations in the aerospace industry initiated a new round of 

lunar exploration projects with the goal of returning to the moon 

(Ouyang et al. 2002). NASA's Lunar Reconnaissance Orbiter 

(LRO) and Lunar Crater Observation and Sensing Satellite 

(LCROSS) pushed the moon exploration research into a new 

climax. The coverage area and data resolution of China’s 

“Chang’E-1” and “Chang’E-2” satellites have been improved 

(Li et al. 2010), and these satellites have provided reliable data 

for studies of the spatial differences and distributions of linear 

and circular structures that are associated with impact craters 

(Montopoli et al. 2011a, Montopoli et al. 2011b, Hu et al. 2014 

and Hu et al. 2013). The “Chang’E-1” and “Chang’E-2” 

satellites have played a prominent role in these studies because 

they provide relatively fine-resolution multispectral and LIDAR 

data . 

The complex topography and geomorphology of the moon’s 

surface has been studied by determining the distribution and 

characteristics of linear and circular structures (Chen et al. 2010, 

Chabot et al. 2000, Morota et al. 2003, Urbach et al. 2009 and 

Hawke et al. 2004). Impact craters are the most typical geo-

morphological unit and the most basic geo-morphological 

features of the moon, and their morphological characteristics and 

spatial distribution have been examined in recent studies. The 

presently proposed extraction method of impact craters from 

images can be classified into two categories, morphological 

fitting and machine learning. Both approaches have their own 

advantages. The former has better recognition effect when the 

terrain is relatively simple and the edges are clear, whereas the 

result of the latter is closely related to the learning samples and 

decision parameters. The method based on morphological fitting 

mainly uses the geometric shape of the impact craters on the 

image, whose edge is generally round or oval, and automatically 
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identify the impact craters through the pattern recognition. The 

image (Magee et al. 2003, Kim et al. 2003 and Bruzzone et al. 

2004) on Mars is processed by the circular Hough transform to 

identify the impact craters automatically. An elliptical detection 

method based on generalized Hough transform (GHT) (Leroy et 

al. 2001) is proposed to identify the asteroid impact craters. 

Using the simple black background and white round crater 

template with different sizes, the fast Fourier transform (FFT) 

method (Bandeira et al. 2007) was used to calculate the 

correlation between the template and the processed binary map, 

and then the impact craters were determined according to the 

correlation. Many research scholars also introduce the idea of 

machine learning into the automatic identification of craters, and 

construct the model classifier to detect the impact craters. As for 

automatic mapping of planetary surface, the SVM-based method 

(Stepinski et al. 2007 ) is used to classify the craters on the 

surface of Mars, the detection rate of which can reach 91%. A 

variety of supervised learning methods (Wetzler et al. 2005) 

were used to identify the impact craters of Mars, and the SVM-

based method was verified to be superior to the method based on 

boundary extraction, such as Hough transform. Sparse boosting 

algorithm (Wang et al. 2015) was constructed to detect the 

impact craters in the high resolution planetary image. A modified 

boosting approach (Jin et al. 2014) was developed to detect small 

size craters on Mars. 

In terms of detecting craters by combining images with DEM 

data, the template matching and elliptic fitting method (Kim et 

al. 2003) were used to extract the impact craters on lunar surface 

based on imagery and DEM data. A novel framework 

(Degirmenci et al. 2010), in which craters were extracted from 

Mars Digital Image Model and crosschecked by using Mars 

Digital Elevation Model, was developed by fusing data obtained 

from Mars Global Surveyor. Kang et al. 2015 utilized 

conditional matching to extract craters from the CCD image, 

incorrect extraction of which was removed based on the DEM 

data. However, DEM is only used as an auxiliary data to support 
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image analysis in the study of co-extraction of craters on the 

basis of image and DEM data. 

 

Bayesian network (Koller et al. 2009) is a directed acyclic graph 

model which is used to express the probabilistic dependencies 

among variables. Multi-source information can be organized as 

the node of graph structure and processed effectively according 

to their relationship. Each node is able to play a role in the 

reasoning process because the result is calculated in terms of all 

nodes. The methods based on Bayesian maximum likelihood 

were proposed (Walter 2004 and Bartels et al. 2006). However, 

Bayesian Maximum likelihood classifier assumes that the 

classes have Gaussian probability distribution functions, which 

may not be suitable when spectral and elevation data are 

combined (Cao et al. 2012) Moreover, it is extremely difficult 

for a particular data to define a proper distribution model. To 

avoid improper Gaussian assumption, possible probability 

distribution estimation methods are investigated, one of which is 

the powerful SVM algorithm (Cao et al. 2012). It is a 

distribution-free approach, which requires no specific 

probabilistic assumption of data distribution. Hence, SVM 

model in this paper was embedded in Bayesian network, which 

is used to identify the craters automatically by fusing the CCD 

image and DEM data.  

 

Based on an analysis of characteristics of CCD images and DEM 

data, we extend the strategy that integrates multi-source data and 

present a Bayesian Network framework, which combined CCD 

images with DEM data, for the automatic recognition of impact 

craters. Fig.1 shows the flow chart of automatic extraction of 

impact crater. The structure of the paper is organized as follow. 

Section 2 describes the feature extraction of impact craters. We 

first extract Histogram of Oriented Gradient (HOG) with CCD 

images, which describes the local shape information of impact 

crater in the optical image and calculate morphological factors 

mainly including slope and aspect using DEM data and then the 

multi-scale frequency histograms based on the calculated 

morphological factors are established with spatial pyramid 

theory, which represents the morphology of impact crater in the 

three dimensional space. In section 3, Support Vector Machine 

(SVM)-based probability estimator is adopted to compute data 

probabilistic distribution. In this stage, three SVM classifiers are 

trained using HOG, Histogram of Multi-scale Slope (HMS) and 

Histogram of Multi-scale Aspect (HMA) respectively and 

performed for the initial detection, and then a Bayesian network-

based framework is constructed to combine the initial detection 

result for the final decision. Section 4 show experimental studies 

for verifying the proposed framework. This paper concludes 

with a discussion of future research consideration in section 5. 

 

2. FEATURE EXTRACTION OF IMPACT CRATERS 

2.1 Image Feature Extraction 

The pattern of the craters on the lunar surface has a certain 

regularity on images, the edges of which are mostly round or 

oval from the simple bowl-type craters to the complex craters 

with a central peak. However, the illumination conditions in 

different areas of the lunar surface are inconsistent. In order to 

overcome the influence of the environment, the feature extracted 

from images needs to be insensitive to light.  

 

The HOG feature is proposed by Dalal (Dalal et al. 2005) to 

describe the gradient intensity of the local region of the image 

and the gradient direction distribution. HOG feature has good 

robustness and is almost not affected by the gray scale, the 

 
Figure 1 The flow chart of automatic extraction of impact crater by fusing CCD image and DEM data under the Bayesian network 

framework 

 

 

 
Figure 2 The flow chart of HOG feature extraction 
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illumination change and the noise since it is calculated on the 

local region of the image. The information of the object can be 

better represented by the HOG feature if it has a specific pattern 

and even some local subtle changes. The shape information of 

the impact craters on images can be well described by the HOG 

feature due to the fact that the craters are similar to the circle or 

oval. Thus, the HOG feature is well suited as a feature of the 

craters of the lunar surface. 

 

Figure 2 indicates the flow chart of HOG feature extraction, that 

is to say an image is divided into several cells and the 

neighboring cell cannot overlap (figure 2(b)). Gradient direction 

in each cell is counted to establish the histogram which is used 

as feature descriptor of the cell, in other words, all gradient 

directions are divided into 9 bins as the horizontal axis of the 

histogram and the gradient value corresponding to the angular 

range is added as the vertical axis of the histogram. Nevertheless, 

the range of the gradient is relatively large since the illumination 

condition varies. Therefore, adjacent 2x2 cells are merged into a 

block, as shown in figure 2(c), the feature descriptor of which 

the descriptors of all the cells in a block are concatenated as. And 

then the descriptor of each block is normalized to better adapt to 

changes in light and shadows, which is of significance for 

enhancing the detection rate. Meanwhile, there is some overlap 

between adjacent blocks so that the spatial information can be 

integrated into the feature vector effectively, which is beneficial 

to detection results. The descriptors of all the blocks in an image 

are concatenated together as the final feature vector used to 

describe the current image. Figure 2(d) provides the HOG 

feature map of each cell in the current image. 

 

Figure 3 compares the HOG feature map of the impact craters 

and non-impact craters. It can be concluded that the HOG feature 

describes the contour information of the impact craters on the 

image effectively, while the HOG feature map of non-impact 

craters is not regular. 

 

2.2 Morphological Feature Extracted from DEM Data 

HOG is a descriptor that can describe the edge information of an 

object in an image effectively. By calculating the histogram of 

the gradient direction of the local region, the HOG feature can 

not only well express the edge information of the impact craters 

on the two-dimensional image, but is also insensitive to the 

change of the illumination. However, the HOG feature map of 

other structures on the moon’s surface, such as hill (figure 4(a) 

and (b)), may be similar to that of the craters (figure 4(c) and (d)). 

Thus, the representation of the feature vector is limited if the 

craters are described only from a single perspective, such as the 

edge information of the impact craters. With the improvement of 

the spatial resolution of DEM data, quite a few researchers have 

begun to analyze the shape of the impact craters in three-

dimensional space (as shown in figure 4 (e) and (f)) and use 

morphological information to identify and extract craters 

automatically. 

 

DEM contains a large number of important factors which 

describe the terrain of the crater, such as slope, aspect, etc. These 

morphological factors which represent the terrain structure and 

spatial form of the craters in the three-dimensional space are 

quantitative data that are what image-based analysis method fail 

to provide. Kim et al. 2005 and Michael et al. 2003 applied slope 

measurements to the identification of the craters, where they 

considered the area with a high slope change to be the edge of 

the crater, which successfully identified 75% of the craters with 

a diameter greater than 10 km. Bue et al. 2007 not only 

considered slope information, but also added texture analysis 

and profile curvature analysis to detect the craters. Simpson et al. 

2008 utilized high resolution HRSC stereo imagery to construct 

3D crater model and recognized the craters automatically by 

terrain profile analysis. Di et al. 2014 used a new scaled Haar-

like feature combined with Haar-like and LBP features to train 

the cascade classifier for crater detection on the basis of Mars 

DEM. The Flooded method, the Object-Oriented method and the 

Flooded Object-Oriented method (Wan et al. 2012) were 

implemented for automatic extraction of the impact craters based 

on based on the DEM data originating from Change’E-1 CCD 

stereo camera. 

 

     

(a)impact crater (b)hill 

   

(c) HOG feature map of 

impact crater 
(d) HOG feature map of hill 

   

(e) corresponding DEM 

of impact crater 
(f) corresponding DEM of hill 

Figure 4 Comparison of impact craters and hill 

 

    

(a)impact crater 
(b)HOG feature map of 

impact crater 

   

(c)non-impact crater 
(d) HOG feature map of 

non-impact crater 

Figure 3 HOG feature map of impact crater and non-impact 

crater 
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In order to represent the 3D shape of the craters, Histogram of 

Multi-scale Slope (HMS) and Histogram of Multi-scale Aspect 

(HMA) are constructed, which introduce the spatial information 

into the feature vector based on the spatial pyramid matching 

theory (Grauman et al. 2005). Figure 5 demonstrates the flow 

chart of extracting HMA of the craters based on the DEM data. 

We firstly calculate the slope probability histogram at the 

original spatial scale of the DEM data, where all the slope 

directions are divided into 8 bins as the horizontal axis of the 

histogram and the slope value corresponding to the slope is 

added as the vertical axis of the histogram. Then, The length and 

width of DEM data are divided into 
l2   units respectively, 

which means we can get 
l4  patches of the same size DEM data, 

where l   represents the thl   layer of the pyramid (in this 

paper, 2,1l ). The histogram of the slope probability of each 

patch is then counted respectively and concatenated as the 

feature of the thl  layer. Finally, the histogram of all layers of 

the DEM data is concatenated together as a feature vector that 

describes the 3D shape of the craters. Likewise, HMS can be also 

established. 

 

The DEM, in this paper, is divided by the regular grid of various 

scales, and the slope or aspect histogram model of each patch in 

each scale is counted and arranged in a certain order to construct 

the probability model containing the spatial information. These 

spatial relationships between the local region is extremely 

crucial to improve the performance of the feature vector, which 

not only describe the 3D shape of the craters, but also represent 

the spatial layout well. As seen from figure 5(c), the size of the 

feature vector increases with decrease in the spatial scale, and 

the multi-scale feature vector describes the morphological 

changes of the craters in the three-dimensional space from coarse 

to fine and well establishes the spatial relationship of the local 

region. 

 

3. BAYESIAN NETWORK-BASED FRAMEWORK FOR 

AUTOMATIC DETECTION  

3.1 Probabilistic Distribution Estimated by SVM 

In view of the fact that collecting training samples of impact 

craters is difficult and the size of HOG, HMA and HMS is high, 

SVM-based method was used to estimate probabilistic 

distribution of feature space in this paper since it performs well 

for classifying high-dimensional data with limited training 

samples (Cao et al. 2012). 

 

SVM (Cortes et al. 1995) is a two-class model introduced 

initially by both Cortes and Vapnik in 1995 and its key idea is to 

transform the non-linearly separable features to a higher 

dimensional space by using the kernel function and then 

construct the optimal hyperplane, which should be as far away 

from the data of both classes as possible, with the structural risk 

minimization. Let data set be )},(),...,,(),,{(
21 n

yyyD
n21

xxx , 

where )1( ni 
i

x  denotes the feature vector of the samples, 

)1( niy
i

  ( }1,1{
i

y  in this paper) is the class label of 
i

x , 

let hyperplane function be bf T  xωx)(  . The decision 

hyperplane can be found by solving the following constrained 

optimization problem  
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We need a Lagrange multiplier 
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  for each of the constraints. 

Thus, the new objective function is  
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Figure 5 Schematic diagram of HMA constructed based on spatial pyramid theory 
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Given that all constraints are met, minimizing 
2

2

1
ω   is 

equivalent to minimizing )(ω .For the details, please reference 

to (Andrew et al. 2000). 

 

As shown in figure 6, the full line in the middle is the large-

margin decision hyperplane which is equal to the distance 

between the two dotted line on which the support vectors are. In 

fact, Lagrange multiplier   of all the non-support vectors ,i.e. 

1 bT
xω  shown in figure 6, are zero (Andrew et al. 2000), 

that is to say, the optimal decision hyperplane is determined only 

by the support vectors, i.e. 1 bT
xω  shown in figure 6. For 

describing and approximating the probability distribution of the 

craters efficiently due to the limited training data, we enhanced 

the performance of the trained SVM model by selecting the 

optimal sample set, inspired by MI-SVM (Andrews et al. 2016). 

The detailed process is as follows: 

①Let test data be 
A

 , which is selected randomly in the whole 

samples and constant during iterations. The remaining samples, 

which do not belong to 
A

   in the whole samples, are 

categorized into two groups, one of which is used as the initial 

training data marked as 
B

  for SVM model and the other of 

which is considered as training sample library marked as 
C

 . 

②Each sample in 
C

  is classified by the SVM model trained 

by 
B

   and the distance between the current hyperplane and 

each sample is calculated. Then, the training data 
B

   are 

updated according to the following rules. i) The sample in 
C

  

is added to 
B

  if it is classified wrongly. ii) As for an unknown 

sample, the bigger the distance between the sample and the 

hyperplane, the bigger the confidence of the classification result. 

Hence, the samples in 
C

   are selected and added to 
B

  

according to the distance between the hyperplane and the 

samples when there is no false classification. Subsequently, the 

SVM model can be updated based on the new training data 
B

  

(as shown in figured 7). The test data 
A

  is classified by the 

new SVM model and its detection rate is recorded. 

③Repeat step② until the fluctuation of the detection rate is less 

than the threshold  . 

 

In figure 7, the blue point with a black box is the sample that is 

classified wrongly by the current decision hyperplane, and the 

black full line is the current decision hyperplane while the black 

dotted line denotes the new optimal decision hyperplane 

optimized by iteration. 

 

The class information acquired from SVM model can be 

transformed into intermediate posterior probability by 

calculating the distance between the unknown sample and the 

hyperplane after the optimal hyperplane is trained. The output of 

standard SVM model, that is to say the distance between the 

unknown sample and the optimal hyperplane, is processed and 

transformed into the posterior probability by using sigmoid-

fitting method (Platt 2000) as follow. 

 

 

 
))(exp(1

1
))(|1(

baf
fyP

i




i

i

x
x  (5) 

 

 

Where ba,   denotes the parameters which need to be 

solved,  

)(
i

xf   represents the output of standard SVM 

model where 
i

x  is used as the input.  

Sigmoid-fitting method not only preserves the sparseness of 

SVM model, but also estimates the posterior probability well. 

 

3.2 Class Posterior Probability Calculated under The 

Framework of Bayesian Network 

Bayesian network (Koller et al. 2009) is a directed acyclic graph 

model, where the node denotes the random variable and the 

directed edge represents the probabilistic dependencies among 

variables. Inspired by Kononenko et al. 1991 and Tao et al.2010, 

we divide the features of the craters extracted in section 2 into 

three group, i.e. HOG, HMA and HMS, the probability 

distribution of which can be represented by SVM model 

respectively, and then the SVM model, whose output is 

considered as the intermediate posterior probability of the node, 

is embedded as a node into the Bayesian network. Finally, the 

Bayesian network combines the intermediate posterior 

probability for the final decision. 

 

In the proposed framework, the class node is the parent of all 

feature nodes, whose joint probability distribution 

),,...,,(
21

cP
n

  can be defined as  
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i
in

cPcPcP
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Figure 6 Schematic diagram of SVM model 

 

 
Figure 7 Hyperplane optimization based on the optimal sample 

set 
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Where 
n

 ,...,,
21

denotes the feature node 

c denotes the class node 

n is the number of the feature node, 3n  in this 

paper. 

 

For each unknown sample, the posterior probability matrix 
ij

p  

( ni ,...,2,1  , kj ,...,2,1  ,in this paper 2k  , i.e. crater and 

non-crater) consists of the intermediate posterior probability 

obtained in section 3.1 These posterior probabilities are used as 

the input of the Bayesian network, and then the joint probability 

is calculated by Eq. (6), and finally the posterior probability of 

the class node is obtained. The unknown sample is classified to 

the class that holds the highest posterior probability. 

 

4. EXPERIMENTATION AND ANALYSIS 

To verify the proposed framework, we used CCD images 

acquired from Chang' E II satellite of Chinese lunar exploration 

project and DEM data acquired from LRO mission of the United 

States as experimental data and performed both qualitative and 

quantitative evaluations on four scenes. Scene I-III covered areas 

between 38°W and 54°W latitude and 43°N and 55°S longitude, 

and scene IV covered areas between 23°E and 26°E latitude and 

39°N and 41°S longitude. Chang' E II satellite is equipped with 

a three-line array CCD stereo camera, which can record two 

images of each small area from the front and rear view, and the 

image used in this paper is the Ortho-photo image of the whole 

moon, the spatial resolution of which is about 50m. The spatial 

resolution of the DEM data is 1024 pixel/degree. The 

experimental data is shown in figure 8. The DEM data are 

rendered as grey-scale images (as seen in figure 8(b)(e)(h)(k)), 

and the red box illustrated in figure 8(c)(f)(i)(l) is the results of 

visual extraction for the evaluation. 

 

For quantitative evaluation, the extraction results of the 

experimental data are presented in table 1 and 2. “Manual 

extraction” refers to impact craters that were obtained by visual 

identification, “automatic extraction” refers to impact craters 

that were obtained using the algorithm, “false extraction” refers 

to non-impact craters that were extracted by the algorithm, and 

“missing extraction” refers to impact craters that were not 

extracted by the algorithm. 

 

4.1 The Influence of DEM Data on Identification 

To enhance the accuracy of the extracted craters, we combined 

the image with the DEM data for the automatic extraction of the 

impact craters under the proposed framework in this paper. A 

  
(a)Detection results without 

integrating DEM data 

(scene IV) 

(b)Detection results with 

integrating DEM data  

(scene IV) 
Figure 9 The influence of DEM data on identification 

 

 

  
(a) Previous method (scene I) (b) Our method (scene I) 

  
(c) Previous method (scene II) (d) Our method (scene II) 

  
(e) Previous method (scene 

III) 
(f) Our method (scene III) 

  
(g) Previous method (scene 

IV) 
(h) Our method (scene IV) 

Figure 10 Result comparison between different methods 

The green box in the figure 10 is the result of the impact craters 

extracted for the corresponding method. 

 

 
(a) CCD image 

(scene I) 

(b) DEM data 

(scene I) 

(c) Manual 

detection (scene I) 

 
(d) CCD image 

(scene II) 

(e) DEM data 

(scene II) 

(f) Manual 

detection (scene II) 

 
(g) CCD image 

(scene III) 

(h) DEM data 

(scene III) 

(i) Manual detection 

(scene III) 

 
(j) CCD image 

(scene IV) 

(k) DEM data 

(scene IV) 

(l) Manual detection 

(scene IV) 

Figure 8 Experimental data 
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comparative experiment on the scene IV was implemented to 

evaluate the performance of the method. As shown in section 2.2, 

the HOG feature of some structure, such as hill, in scene IV is 

similar to that of the craters, which is arduous to distinguish the 

craters from the non-craters only using the images. Hence, the 

3D shape of the craters was integrated into the automatic 

identification under the Bayesian network framework. The green 

box in figure 9 is the results of automatic extraction and the false 

extraction is where the red arrow points to (as shown in figure 

9(a)). The results of the comparison are presented in table 1. We 

can conclude that it is of utmost importance fusing the DEM data 

in order to improve the performance of the automatic extraction. 

 

4.2 Comparison with Previous Method 

To further evaluate the performance and the robustness of the 

proposed framework, the previous method (Kang et al. 2015) 

was compared to the proposed framework in this paper on the 

scene I-IV. Table 2 lists the comparative results. As shown in 

figure 10, the previous method is mainly applied to the extraction 

of large craters, and less prone to the extraction in error, whereas 

the proposed framework in this paper can provide a much higher 

level of accuracy in the recognition phase, particularly for the 

identification of small size and blurred edge craters. However, 

the local edge information in the optical images and the 3D shape 

in the DEM data are extracted for the automatic detection of the 

craters, which is difficult to identify the linear structure (as 

depicted in Figure 10 (b)). Consequently, quite a few false 

extractions may occur. 

 

5. CONCLUSIONS 

This study extends the strategy that integrates multi-source data 

and proposes a Bayesian Network framework for automatic 

detection of impact craters on the basis of CCD image and DEM 

data. In order to improve the accuracy of the crater extraction, 

HMA and HMS were constructed on the basis of DEM data of 

LRO to represent the morphology of impact crater in the three 

dimensional space, combined with HOG feature extracted to 

describe the local shape information of impact crater in the 

optical image under the Bayesian network framework to 

distinguish craters from non-craters. Experimental results 

demonstrate that the framework presented in this paper can 

achieve good performance in the recognition phase. Moreover, 

the results showed a significant improvement in the detection 

rate, particularly for the detection of sub-kilometer craters, 

compared with previous methods. Future research can focus on 

the improvement of the efficiency of detection by finding crater 

candidates. Furthermore, some of the impact craters might be 

removed in error due to the quality of DEM data. This will be 

investigated in future research. 
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