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ABSTRACT: 

Visual Odometry (VO) is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo 

images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely 

influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB) features by 

considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, 

this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC) and Random Sample 

Consensus (RANSAC) algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right 

synchronous images and the Brute Force (BF) matcher is used to find the correspondences between the two images for the Space 

Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a 

predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC 

and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some 

cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion 

parameters (Interior Orientation and Exterior Orientation).  The proposed approach has been tested on a real-world vehicle dataset 

and the result benefits from its high robustness. 

   Corresponding author 

1. INTRODUCTION

Autonomous navigation is quite significant for many robotic 

applications such as planetary exploration and auto drive. For 

these robotic applications, Visual Odometry is the critical 

method for relative locating, especially in GPS-denied 

environments. VO estimates the ego-motion of robot using a 

single or stereo cameras, which is more accurate than the 

conventional wheel odometry according to Maimone et al. 

(2007a). 

VO is a specific application of Structure From Motion (SFM), 

which contains the camera pose estimation and 3D scene point 

reconstruction according to Scaramuzza et al. (2011). 

Simultaneously, VO differs from the SLAM (Simultaneous 

Localization And Mapping), which contains the mapping 

process and loop closure (Engel et al., 2015; Pire et al., 2015). 

In the last few decades, VO has been divided into two kinds of 

method, monocular and stereo cameras. For monocular VO, the 

main issue is solving the scale ambiguity problem. Some 

researchers set the translation scale between the two consecutive 

frames to a predefined value. Ke and Kanade (2003) virtually 

rotate the camera to the bottom-view pose, which eliminates the 

ambiguity between the rotation and translation and improves the 

motion estimation process. On the other side, some researchers 

assume that the environment around the monocular camera is 

flat ground and the monocular camera is equipped on a fixed 

height with fixed depression angle, like the situation in Bajpai 

et al. (2016a). According to Bajpai et al. (2016a), the advantage 

of monocular VO method is smaller computational cost 

compared to the stereo VO, which is quite important for those 

real-time embedded applications. 

For large robotic platforms with strong computational ability 

like automatic drive platforms and future planetary exploration 

robots, the stereo cameras perform superior to the monocular 

one. Because of the certain baseline between the left and right 

camera, the ambiguity scale problem does not exist in stereo 

VO. And the Stereo VO can estimate the 6-Degree of Freedom 

(DOF) ego-motion no matter what kinds of environment the 

system works in. Currently, there are two kinds of stereo VO 

methods, 3D-3D method and 3D-2D method.  

In both kinds of stereo VO method, feature detection and 

matching great influence both the accuracy and speed issues. In 

feature point matching field, there are many feature point 

detectors and descriptors having been presented in last twenty 

years. Scale-Invariant Feature Transform (SIFT) invented by 

Lowe (1999) is the most famous one because of its excellent 

detecting accuracy and robustness. Bay et al. (2006) presents 

the Speeded Up Robust Feature (SURF), which is an improved 

version of SIFT. It uses Haar wavelet to approximate the 

gradient method in SIFT, using integral image technology at the 

same time to calculate fast. In most cases, its performance can 

reach the same level precision compared to SIFT, with 3-7 

times faster. For those cases with very fast speed issue, Oriented 

FAST and Rotated BRIEF (ORB) is employed by Rublee et al. 

(2011). 
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3D-3D method treats the stereo cameras as the point cloud 

generator, which make use the stereo cameras to generate 3D 

point cloud and estimates the rotation and translation between 

two consecutive frames using 3D point cloud registration 

method like Iterative Closest Point (ICP) algorithm in 

Balazadegan et al. (2016a). ICP algorithm can only converge to 

the local minimum, which differs from VO propose. Therefore, 

we must obtain a good initial value for the VO motion 

estimation parameters according to Hong et al. (2015a). 

 

On the other side, the aim of the 3D-2D VO method is to solve 

the Perspective-n-Point (PnP) problem. According to 

Scaramuzza et al. (2011), 3D-2D method is more accurate than 

the 3D-3D method, therefore 3D-2D method has received 

attention in both Photogrammetry like McGlove et al. (2004a) 

and Computer Vision like Hartley and Zisserman (2000a). The 

least feature points needed in PnP problem are 3, which called 

P3P problem. Gao et al. (2003a) presents a solution to the 

3point algorithm for P3P problem. For n>3 points, some more 

accurate but slower methods based on iteration exist presented 

by Quan and Lan (1999a) and Ansar and Daniilidis (2003a).   

 

In 3D-2D method, the outlier elimination is quite important 

because the precision of feature matching impacts highly the 

result of motion estimation. Kitt et al. (2010) presented an 

outlier rejection technique combined with the RANSAC 

(Random Sample Consensus). Talukder et al. (2004) initially 

estimate the motion by all the matching points, then eliminate 

outliers using the initial motion parameters, with the iterative 

least mean-square error estimation at last. Fanfani et al. (2016a) 

combines the tracking and matching process with the key frame 

selection, i.e. based on motion structure analysis to improve the 

system robustness. There are some researches presenting their 

robust method in specific scenes (Musleh et al., 2012a; Min et 

al., 2016a) or using other sensors (He et al., 2015a). Musleh et 

al. (2012a) presented an inliers selection scheme in urban 

situations that only the feature points on the ground will be 

chosen to estimate the motion. He et al. (2015a) fused an 

inertial sensor to estimate the rotation of the robot, which can 

compare to the measurement of VO and eliminate outliers or 

feature points on dynamic objects. 

 

2. PROPOSED METHOD 

2.1 Overview of the Proposed Method 

In this work, the VO method we choose is 3D-2D method 

because of its precision. Firstly, the feature points are detected 

by the chosen feature detector both in the left and right image. 

The feature point detector is SURF and the descriptor 

employing ORB, considering the accuracy and speed issue as a 

trade-off. After getting the correspondences between the two 

images, BF matcher is performed for the initial mismatches 

elimination. Then the EDC and RANSAC algorithms are 

carried out to eliminate mismatches whose distances are beyond 

a predefined threshold (the average of all feature points). 

Similarly, when the left image of the next time matches the 

feature points with the current left image, the EDC and 

RANSAC are iteratively performed. The depth information of 

the feature points is obtained by the Space Intersection or the 

Triangulation after the first matching process. Finally, we 

employ the EPnP method provide by Moreno-Noguer et al. 

(2007) to solve the PnP problem, which is non-iterative and 

lower computational complexity but almost accurate compared 

to the iterative ones, with the RANSAC algorithm. 

 

In generally, we employ three times outlier elimination scheme. 

The RANSAC algorithms in the first and second time eliminate 

outliers which offset the epipolar line beyond 1 pixel. The EDC 

scheme drops the other outliers which are close to the epipolar 

line but far Euclidean Distance calculated by the feature 

descriptor. The third time RANSAC algorithm estimate the 

motion parameters, which differs from the effect of the first and 

the second time RANSAC. The procedure is shown in Figure 1. 
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Figure 1. Overview of the proposed method 

 

 

2.2 Euclidean Distance Constraint 

To compare the correspondence degree of each pair tie points, 

the Euclidean Distance between every pair matched points is 

calculated, defined in Equation (1): 
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Where:     n = dimensions of the ORB descriptor 

                 xi
left = ith dimension of the descriptor of the tie point 

in the left image 
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right = ith dimension of the descriptor of the tie point 

in the right image 

 

When all EDs of the tie points have been calculated by the 

Equation (1), computing the average value of all ED following 

the Equation (2): 
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Where:    EDa = the average value of all ED  

m = the number of the tie points 

 

In this work, we consider all the correspondence points whose 

ED is beyond 
aED as the outliers. There is an example shown 

in Figure 2. 
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Figure 2. the process of EDC calculation 

 

2.3 RANSAC Algorithm 

There are two main impacts of RANSAC algorithm in our work, 

assisting the EDC to eliminate the outliers and removing the 

effect of the possible remaining outliers in the PnP process. 

RANSAC algorithm has been proven that it is an effective tool 

to extract the optimal subset from a huge data set with some 

errors. Firstly, three points have been chosen randomly for the 

initial ego-motion parameters estimation and all tie points 

calculate the reprojection error according to the ego-motion 

parameters. If the reprojection error of the tie point is under the 

threshold, which in this work is 3 pixels, it will be seen as an 

inlier. When the inliers are beyond 90% of all the tie points, the 

model will be accepted and all inliers recalculate the ego-

motion parameters using EPnP method. The process is shown in 

Figure 3. 
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Figure 3. RANSAC process 

 

 

3. EXPERIMENT AND RESULT 

3.1 Experiment Data 

In this section, we evaluate the proposed method compared to 

the VO method only with RANSAC algorithm. We use the 

publicly available KITTI Benchmark Suite provided by Geiger 

et al. (2013a), which includes stereo image sequences on an 

autonomous vehicle platform. 

 

The grayscale stereo cameras equipped on the platform are 

Point Grey Flea 2(FL2-14S3M-C) with a baseline of 53cm and 

1226×370 pixels. All KITTI cameras were synchronized at 

10Hz and carefully calibrated.  

 

For the position ground truth, KITTI provides RTK GPS/IMU 

ground truth with open sky localization errors about 5cm.  

 

In order to evaluate the methods from the perspective of both 

robustness and precision, we use Tracking Success Proportion 

(TSP) and Average Distance Error(ADE), calculated as follow 

Equations (3) ~ (4): 
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Where:        N = the number of image frames 

xi,yi = ith frame position evaluated by the algorithm 

        xi
GPS,yi

GPS = ground truth at the ith frame. 

 

= s

total

n
TSP

n
                                  (4) 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 
2017 International Symposium on Planetary Remote Sensing and Mapping, 13–16 August 2017, Hong Kong

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W1-219-2017 | © Authors 2017. CC BY 4.0 License.

 
221



 

Where:       ns = the number of successful frames 

                   ntotal = the number of all frames 

 

The experiment we using is the synchronized dataset 

"2011_10_03_drive_0027", whose duration is about 445 s and 

the whole trajectory length is about 3.5km.  

 

In the experiment, the average speed is about 7m/s, the 

maximum speed is under 10m/s, so we consider the VO result 

as failure if the translation between two consecutive frames 

beyond 1.5m (about 15m/s). 

 

3.2 Result and Discussion 

We first present the typical matching result between first frame 

left image and second frame left image using the proposed 

method and RANSAC based outlier elimination in Figure 4a. 

and Figure 4b., respectively. 

 

 
 

Figure 4a. The matching result by the proposed method 

 

 
 

Figure 4b. The matching result by the RANSAC only method 

 

From Figure 4a. and Figure 4b. we can see clearly that the 

matching result presented by the proposed method exists rare 

outliers and shows better correspondence compared to the 

RANSAN based outlier elimination method. 

 

Then we present the whole results obtained by the proposed 

method and RANSAC based Visual Odometry (RVO) in the 

Table 1: 

 

 Proposed method RVO 

Number of fail frames 12 24 

TSP 99.7% 99.4% 

Table 1. TSP result for "2011_10_03_drive_0027" 

 

We can see the result from the Table 1 that the robustness of 

VO benefits from the employment of EDC. For total 4540 

frames, the number of fail tracking frames is decreased by 50% 

compared with the RANSAC only method, from 24 to 12. 

 

The whole trajectory of data set "2011_10_03_drive_0027" is 

shown in Figure 5, presented by the GPS ground truth, RVO 

and the proposed method. The GPS ground truth is described by 

the blue solid line. Red dot dash line and green dot dash line 

represent the ROV method and proposed method, respectively. 

 

 
 

Figure 5. The trajectory result of "2011_10_03_drive_0027". 

 

 
 

Figure 6. The distance error from frame 1 to frame 4540. 

 

 Proposed method RVO 

AED/m 35.2392 59.3825 

Table 2. The AED result of the proposed method and RVO 

 

In our experiment, when kth frame is proven a fail tracking 

frame, we just reserve the result for raw data recording. But take 

the next k+1th frame into account, we calculate its rotation and 

translation from the k-1th frame to maintain the precision of VO 

method. 
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From Figure 5 and Table 2 we can see clearly that the proposed 

method performs superior to the RVO both in rotation and 

translation. The AED of proposed method is 35.2392m, 

reducing by 40% error compared to the RVO method. Besides, 

the distance error of the proposed method is slighter than the 

RVO at almost frames, which displays notably at the Figure 6. 

 

4. CONCLUSION 

This paper presents a novel robust method for 3D-2D VO 

method. The EDC and RANSAC algorithm are employed in the 

proposed method, the former dealing with outlier elimination 

primarily and the latter removing the effect of the remaining 

outliers.  

 

For evaluating our method, we employ the KITTI dataset, 

which can obtain from the Internet. From the experiment result 

using the synchronized dataset "2011_10_03_drive_0027" we 

can see that the fail tracking rate reduce from 0.6% to 0.3%, 

which means the improvement of robustness, benefiting from 

the proposed method. The precision of the trajectory improves 

from 59m to 35m due to the EDC at the mismatch elimination 

process. Our quantitative analysis shows that our robust method 

is superior to the RANSAC only method by 40%~50%. 
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