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ABSTRACT:

In this study we apply a nonlinear spectral unmixing algorithm to a nearly global lunar spectral reflectance mosaic derived from hyper-
spectral image data acquired by the Moon Mineralogy Mapper (M3) instrument. Corrections for topographic effects and for thermal
emission were performed. A set of 19 laboratory-based reflectance spectra of lunar samples published by the Lunar Soil Charac-
terization Consortium (LSCC) were used as a catalog of potential endmember spectra. For a given spectrum, the multi-population
population-based incremental learning (MPBIL) algorithm was used to determine the subset of endmembers actually contained in it.
However, as the MPBIL algorithm is computationally expensive, it cannot be applied to all pixels of the reflectance mosaic. Hence,
the reflectance mosaic was clustered into a set of 64 prototype spectra, and the MPBIL algorithm was applied to each prototype spec-
trum. Each pixel of the mosaic was assigned to the most similar prototype, and the set of endmembers previously determined for that
prototype was used for pixel-wise nonlinear spectral unmixing using the Hapke model, implemented as linear unmixing of the single-
scattering albedo spectrum. This procedure yields maps of the fractional abundances of the 19 endmembers. Based on the known modal
abundances of a variety of mineral species in the LSCC samples, a conversion from endmember abundances to mineral abundances was
performed. We present maps of the fractional abundances of plagioclase, pyroxene and olivine and compare our results with previously
published lunar mineral abundance maps.

1. INTRODUCTION

Systematic analyses of the minerals that constitute the lunar sur-
face material based on orbital multispectral and hyperspectral im-
ages of the Moon have been performed since the Clementine mis-
sion in 1994 (Nozette et al., 1994). Such image-based approaches
rely on the framework of reflectance spectroscopy.

Global lunar maps of the abundances of the elements Fe and Ti
have been constructed based on Clementine UV/VIS and Kaguya
Multiband Imager (MI) multispectral imagery, where the calibra-
tion was performed based on laboratory data derived from re-
turned lunar samples (Lucey et al., 2000, LeMouélic et al., 2000,
Otake et al., 2012). Elemental abundances of the elements Ca, Al,
Fe, Mg, Ti and O have been mapped by (Shkuratov et al., 2005)
using a regression between Clementine UV/VIS multispectral
data and low-resolution Lunar Prospector Gamma Ray Spectrom-
eter (LP GRS) elemental abundance data (Lawrence e al., 1998).
These methods rely on the absorption band near 1 µm wavelength
which is due to the presence of mafic minerals such as pyrox-
ene or olivine. An algorithm for estimating the Fe abundance
based on the properties of the also pyroxene-related absorption
band near 2 µm has been introduced by (Bhatt et al., 2012) us-
ing hyperspectral image data of the Moon Mineralogy Mapper
(M3) (Pieters et al., 2009) and SIR-2 point spectrometer (Mall et
al., 2009) instruments on the Indian spacecraft Chandrayaan-1.
A regression-based approach similar to the one of (Shkuratov et
al., 2005) which takes into account a set of spectral parameters
describing the 1-µm and 2-µm absorption bands in the M3 re-
flectance spectra has been developed for the elements Fe, Ca, Al
and Mg (Wöhler et al., 2014). That method was calibrated with
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respect to LP GRS elemental abundances. It has been extended
to the element Ti (Bhatt et al., 2015).

Although elemental abundance maps are very helpful for examin-
ing the lunar mineralogy, the detected elements cannot be unam-
biguously assigned to specific minerals. For example, clinopy-
roxene in mare regions and plagioclase in highland regions both
contain the element Ca, and orthopyroxene and olivine may both
contain Mg (Papike et al., 1991). Complementary knowledge
about the surface minerals in addition to elemental composition
can be obtained by the technique of spectral unmixing (Keshava
and Mustard, 2002). Spectral unmixing aims at reconstructing
the observed spectrum based on a set of spectra of basis materi-
als, the so-called spectral endmembers, using a linear or nonlin-
ear mixing model, where a nonlinear mixing model is required
for intimate mixtures of different constituents such as the lunar
regolith (Keshava and Mustard, 2002). A commonly applied
approach to nonlinear spectral unmixing is based on the Hapke
model (Hapke, 1984, Hapke, 2002), which allows for a transfor-
mation of the nonlinear unmixing of the spectral reflectance into
a linear unmixing of the single-scattering albedo spectrum (Mus-
tard and Pieters, 1989). A difficult problem in spectral unmixing
is the selection of an appropriate set of endmembers for the spec-
trum under study from a large catalogue of potential endmem-
bers. For a limited set of six potential endmembers, (Dobigeon
and Tourneret, 2009) used a reversible jump Markov chain Monte
Carlo algorithm. Another approach is to impose a sparseness
constraint on the unmixing result, such that solutions in which
only a few endmembers have non-zero abundances are preferred
(Iordache et al., 2010, 2014). Alternatively, a sparse set of end-
members can be obtained by subsequently removing individual
endmembers from an initially large set (Iordache et al., 2011). A

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 
2017 International Symposium on Planetary Remote Sensing and Mapping, 13–16 August 2017, Hong Kong

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W1-7-2017 | © Authors 2017. CC BY 4.0 License. 7



genetic algorithm based endmember selection scheme has been
proposed by (Rommel et al., 2017), which yields the combination
of endmembers that minimizes a fitness function depending on
the root-mean-square difference between the observed and the re-
constructed single-scattering albedo spectrum and the deviations
between several spectral parameters derived from the observed
and reconstructed reflectance spectrum, respectively.

Maps of the distribution of lunar key minerals have been con-
structed by (Lucey, 2004) based on Clementine UV/VIS spectral
reflectance data, relying on a database that contains about 85000
spectra of mixtures of varying mineral and elemental composi-
tion, regolith grain size and degree of spaceweathering, which
were computed using the Hapke model. Observed Clementine
spectra were compared by (Lucey, 2004) with the precomputed
model spectra in order to infer the mineral composition, where
only immature soils that have not undergone strong spaceweath-
ering processes were considered. A similar algorithm has been
applied to a global Kaguya MI multispectral mosaic by (Lemelin
et al., 2016).

In this paper we utilize a version of the framework of (Rom-
mel et al., 2017) in which the genetic algorithm is replaced by
the multi-population population-based incremental learning algo-
rithm (Baluja, 1994, Folly and Venayagamoorthy, 2013). Based
on the obtained spectral unmixing results, nearly global maps of
the fractional abundances of key lunar minerals are constructed.

2. ENDMEMBER SELECTION FOR SPECTRAL
UNMIXING

2.1 Population-based incremental learning (PBIL)

The method of population-based incremental learning (PBIL)
(Baluja, 1994) is conceptionally closely related to the genetic
algorithm (GA) (Marsland, 2009). In this study we follow the
approach of (Baluja, 1994) which is outlined in this paragraph.
In contrast to the GA, the binary population is replaced in the
PBIL algorithm by an array of probabilities having a length that
is equal to the length of the catalogue of potential endmembers.
Each position is assigned the probability that the corresponding
endmember is contained in the observed spectrum. At the early
stages in the optimization procedure of a GA, the population is
very diverse and the individuals cover a large area in the search
space. Correspondingly, the PBIL probability vector shows the
highest diversity if all array positions have a value of 0.5. To-
wards the end of the evolutionary process, the individuals of the
GA resemble each other closely. This is due to the fact that the
fittest individuals have procreated and shaped the populations of
the next generations. Likewise, the PBIL probability vector has
to represent a prototype of a fit individual, i.e., the probabilities
of the array entries have converged towards 1 or 0. In contrast to
the GA, where operations like mating and mutation are imposed
on the population, PBIL updates the probability vector directly.

According to (Baluja, 1994), the general approach is to generate
an initial population by using a uniformly distributed probability
vector at the beginning of the optimization procedure. Subse-
quently, a loop is entered which terminates if a specified number
of iterations has been reached. In each iteration cycle a popula-
tion of individuals is created, and the best and worst individuals
are determined. After evaluating the generated population, the
values of the probability vector are shifted towards representing
the fittest individual in that generation. Hence, the probability pi

of the i-th entry is updated based on the best individual according
to

pi ← (1− µ)pi + µwi (1)

with µ as the learning rate and wi as the probability value of the
fittest individual. In order to exploit also knowledge about the bad
individuals, we have slightly adapted the original PBIL algorithm
by using Equation 1 with a negative learning rate in order to up-
date the probability vector away from the worst individual if the
worst individual has a different value at position i than the fittest
individual. Since the generated population is discarded after ev-
ery probability vector update, elite individuals can in principle be
introduced by copying the best individuals of the current genera-
tion into the population of the next generation, but this approach
was not applied due to its tendency to drive the algorithm towards
a local optimum.

2.2 Multi-population PBIL (MPBIL)

In order to improve the performance of the standard PBIL, the
influence of using multiple populations in the learning procedure
has been explored in (Folly and Venayagamoorthy, 2013). They
link the tendency of PBIL to converge towards local optima to a
loss of diversity. In this paragraph the main aspects of the work
of (Folly and Venayagamoorthy, 2013) are summarized.

The standard PBIL procedure relies on a single probability vector
for which an optimal solution has to be found in a search problem.
To increase diversity within the solution space, a second proba-
bility vector is introduced. Both probability vectors are initial-
ized with uniform values of 0.5, and two populations are created
using the respective probability vector. To make this approach
comparable to the standard PBIL procedure, the population sizes
n1 and n2 of the newly created populations is set to the identi-
cal values n1 = n2 = npop/2 with npop as the total number of
individuals. All following steps are performed for both probabil-
ity vectors separately. As the learning process proceeds, one of
the two probability vectors will yield better results than the other.
To reward the better performing probability vector, the size of
its population is increased, while the population size of the other
probability vector is decreased. The best individuals of both pop-
ulations compete for the number of individuals the corresponding
probability vector is allowed to generate in the next iteration. The
minimum and maximum number of individuals a population is al-
lowed to have is restricted to 0.4 npop and 0.6 npop, respectively.
Eventually, the probability vectors are mutated, using a “forget-
ting factor” to shift them towards the neutral state with pi = 0.5.
The optimization is terminated once a predefined number of iter-
ation cycles has been completed.

2.3 MPBIL-based spectral unmixing

For each set of endmembers proposed by the MPBIL, linear
unmixing of the spectrum of Hapke’s single-scattering albedo
(Hapke, 2002) is performed as proposed by (Mustard and Pieters,
1989), corresponding to nonlinear unmixing of the reflectance
spectrum. In the MPBIL-based optimization procedure, the fit-
ness function introduced by (Rommel et al., 2017) is employed. It
corresponds to a weighted sum of the mean squared difference be-
tween the observed and the reconstructed single-scattering albedo
spectrum and the squared differences between spectral parame-
ters describing the absorption bands around 1 µm and 2 µm of
the observed and the reconstructed reflectance spectrum.
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3. CONSTRUCTION OF NEARLY GLOBAL LUNAR
MINERAL ABUNDANCE MAPS

To construct a global M3 spectral reflectance mosaic, we started
from the M3 level-1B spectral radiance data set (download from
the Planetary Data System (PDS) at https://pds-imaging.
jpl.nasa.gov/volumes/m3.html), which we resampled to a
resolution of 20 pixels per degree, corresponding to about 1.5 km
per pixel at the lunar equator. The M3 hyperspectral image data
cover the wavelength range of 0.42–3.0 µm by 85 spectral bands,
where the image resolution in global mode corresponds to 140 m
per pixel (Pieters et al., 2009). The method of (Wöhler et al.,
2014) was used to estimate the temperature of the lunar surface
and subtract the thermal emission component from the spectral
radiance. The solar illumination direction and the viewing direc-
tion are available on the PDS together with the spectral radiance
data. The nearly global topographic map GLD100 (Scholten et
al., 2012) was used to determine the surface normal vector for
each pixel of the mosaic, which allows for computing the pixel-
wise solar incidence angle and the emission angle. The small-
est details reliably recovered in the GLD100 have extensions of
about 1.5 km (Scholten et al., 2012), which fits with the resolu-
tion of the resampled M3 mosaic. All spectral radiance measure-
ments that are available for a specific pixel were used to deter-
mine the pixel-specific single-scattering albedo according to the
Hapke model (Hapke, 1984, Hapke, 2002), where all other pa-
rameters of the Hapke model were chosen according to the first
global lunar solution of (Warell, 2004). The spectral reflectances
were then normalised to the standard illumination and viewing
geometry of 30◦ incidence angle and 0◦ emission angle (Pieters,
1999) based on the Hapke model. The result of these operations
is a nearly global M3 reflectance mosaic of 20 pixels per degree
resolution that has been corrected for the effects of thermal emis-
sion, topography and changing illumination and viewing geom-
etry during image acquisition. This mosaic is the basis for the
spectral unmixing analyses in this paper.

Although the MPBIL algorithm is computationally less expen-
sive than the GA, it is not possible to apply spectral unmixing to
all pixels of the nearly global M3 mosaic. Hence, the mosaic was
clustered into 64 spectral classes in an unsupervised manner us-
ing a self-organizing map (SOM) (Kohonen, 2001). As features
used for SOM clustering the pixel-specific abundances of the el-
ements Fe, Ca, Mg and Ti were used, which were computed for
the complete mosaic based on the regression-based algorithm of
(Wöhler et al., 2014, Bhatt et al., 2015). To each of the 64 cluster
prototype spectra the MPBIL-based spectral unmixing algorithm
with a population size of npop = 20 was applied, yielding 64
cluster-specific sets of endmembers. As a catalogue of potential
endmembers for spectral unmixing, the set of 19 laboratory spec-
tra of lunar mare and highland samples provided by the Lunar
Soil Characterization Consortium (LSCC) (Taylor et al., 2001,
Taylor et al., 2010) was used. Only the 20–45 µm grain size
fraction was taken into account. This data set is well suited for
spectral unmixing on large scales because it consists of soil sam-
ple spectra exhibiting similar spaceweathering effects as remotely
sensed spectra of the lunar soil (Taylor et al., 2001).

Each pixel of the mosaic was assigned to the prototype having the
smallest Euclidean distance in the space spanned by the elemental
abundances of Fe, Ca, Mg and Ti used for clustering. With the set
of endmembers previously determined for the assigned prototype,
pixel-wise linear unmixing of the single-scattering albedo spec-
trum (Mustard and Pieters, 1989) was performed. The obtained

endmember fractions were normalized to a sum of 1. The LSCC
compositional laboratory analyses state the modal abundances of
a variety of mineral species for all 19 samples used as spectral
endmembers (Taylor et al., 2001, Taylor et al., 2010). These data
allow for a conversion from endmember fractions into mineral
fractions. Here the agglutinitic glass component was excluded
from the mineral fractions under the assumption that the agglu-
tinitic glass has the same mineral composition as the non-glassy
component of the sample. It is noteworthy that the obtained min-
eral fractions cannot be directly interpreted as mass fractions be-
cause the fractional endmember abundances obtained by spectral
unmixing are not equal to the endmember mass fractions.

4. RESULTS

Nearly global maps of the minerals plagioclase, pyroxene and
olivine are shown in Figures 1–3. They were obtained using the
MPBIL algorithm with a population size of npop = 20.

The plagioclase abundance map (Figure 1) reveals rather uniform
values slightly below 90% throughout the lunar highlands and
around 35%–40% in the maria. The large South Pole Aitken
(SPA) basin situated on the southern lunar hemisphere around
180◦ longitude exhibits intermediate plagioclase fractions of
about 60% outside the basaltic mare patches of SPA. Our map
is similar to the plagioclase abundance map of (Lucey, 2004),
with the main difference that in that work similarly low plagio-
clase abundances for maria and SPA are derived. The plagio-
clase map of (Lemelin et al., 2016) shows plagioclase abundance
variations of nearly 20% between farside and nearside highlands,
which neither appear in our map nor in the map of (Lucey, 2004).
Unfortunately, the plagioclase abundance map of (Lemelin et al.,
2016) is scaled in a way that no exact abundance values can be
extracted for the maria.

The pyroxene abundance map (Figure 2) shows fractions around
27% in the nearside and farside maria, with extended local max-
ima reaching 35%–40% in northwestern Oceanus Procellarum,
northeastern Mare Imbrium and northern and northwestern Mare
Serenitatis. The pyroxene content in SPA outside the basaltic
patches corresponds to 15%–18%. Our pyroxene abundance map
is similar to a sum of the clinopyroxene and orthopyroxene maps
of (Lucey, 2004), with the main difference that similarly high to-
tal pyroxene abundances are inferred for the nearside maria and
SPA by (Lucey, 2004). Qualitatively, our pyroxene map is also
similar to the sum of low-Ca pyroxene and clinopyroxene derived
by (Lemelin et al., 2016), but the summed pyroxene fractions of
(Lemelin et al., 2016) in the nearside maria correspond to 60%
and more. In contrast, the laboratory analyses of (Taylor et al.,
2001) of lunar mare samples have shown that the total pyroxene
content of these samples is always less than 34% and in many
cases below 20%.

The olivine abundance map (Figure 3) shows relatively high frac-
tions around 6.5% in western Oceanus Procellarum, western
Mare Imbrium and parts of Mare Serenitatis, Mare Tranquilli-
tatis, Mare Crisium, Mare Australe and small parts of SPA. The
olivine abundances in the other maria are slightly lower (5%–6%)
and show variations between 4% and 4.5% in the highlands. Sev-
eral of the areas in Oceanus Procellarum indicated as olivine-rich
in our map have also been found to have a high olivine content
in (Varatharajan et al., 2014, Staid et al., 2016). The high-olivine
basalts of western Oceanus Procellarum and western Mare Im-
brium have also been mapped by (Lucey, 2004), however, with
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olivine abundances of 40%–50%. The olivine content of the
other maria hardly differs from that of the highlands in the map
of (Lucey, 2004). The olivine abundance map of (Lemelin et
al., 2016) shows the highest olivine abundances of 15%–20%
in western Oceanus Procellarum, western Mare Imbrium, Mare
Serenitatis and Mare Crisium, while all other maria (except a few
small patches) and the highlands have olivine fractions below 3%.
The olivine content of SPA is near zero in the map of (Lemelin et
al., 2016).

5. SUMMARY AND CONCLUSION

In this paper we have described an approach to endmember se-
lection for spectral unxmixing that relies on multi-population
population-based incremental learning (MPBIL). This frame-
work has been applied to a nearly global M3 mosaic of 20 pix-
els per degree resolution. The mosaic has been divided into 64
clusters, and the MPBIL-based spectral unmixing framework has
been applied to each of the cluster prototypes. For each individ-
ual pixel of the mosaic, spectral unmxing is performed using the
set of endmembers determined for the cluster prototype which is
most similar to the pixel under consideration. As a catalog of po-
tential spectral endmembers, laboratory spectra of the 19 LSCC
mare and highland samples (Taylor et al., 2001, Taylor et al.,
2010) have been used. Based on the known fractional abundances
of key minerals in these samples, the endmember abundances
obtained by spectral unmixing were converted to mineral abun-
dances. We have presented abundance maps of the minerals pla-
gioclase, pyroxene and olivine. Our maps are qualitatively con-
sistent with previously published mineral maps that were inferred
from Clementine and Kaguya multispectral image data (Lucey,
2004, Lemelin et al., 2016), but there are differences regarding
regional structures as well as the absolute mineral abundance val-
ues. Future work will involve a detailed analysis of the similari-
ties and discrepancies between our mineral maps and previously
published mineral abundance data sets.
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Figure 1. Map of the fractional abundance of plagioclase (in percent). Black pixels denote missing data.
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Figure 2. Map of the fractional abundance of pyroxene (in percent). Black pixels denote missing data.
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Figure 3. Map of the fractional abundance of olivine (in percent). Black pixels denote missing data.
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