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ABSTRACT: The main factors affecting the error of Doppler velocity measurement mainly come from the 

measurement errors of GNSS data, influence of different motion states on GNSS velocity measurement and the noise of different 

receiver types. To improve the precision of GNSS velocity estimation, an algorithm of adaptive robust Kalman filter based on the 

PDOP was put forward. PDOP value as well as the number of satellite in each epoch are used as a criterion in the velocity processing. 

While the PDOP value is greater than the threshold value, which means the observation accuracy is low, then the robust Kalman filter 

based on IGG – III scheme is introduced. While the PDOP value is between the threshold values, which means the observation 

precision is normal, adaptive factor could be determined normally, and the single-factor three-stage adaptive model is applied for 

Kalman filtering. If the above two conditions are not consistent, it indicates that the prediction accuracy of the local epoch satellite is 

high, and Kalman filtering can be directly used. Through the experiment of shipborne GNSS velocity measurement, it was proved 

that comparing with conventional least square, the algorithm based on the adaptive robust Kalman filtering can improve the accuracy 

and stability of the GNSS velocity determination. 

 

1. INTRODUCTION 

Velocity based on the position difference, Doppler, 

carrier-phase derived Doppler are the three common ways of 

the velocity estimation.position difference mainly using precise 

coordinates of GNSS with adjacent epoch, the original Doppler 

calculated the instantaneous GNSS velocity, which related to 

the type of receiver, and the out Doppler is derived by carrier 

phase observations in adjacent epoch with high precision, but 

which need to eliminate the influence of the cycle 

slip(Zheng ,Tang, 2015). Kalman filtering is the most 

commonly used in GNSS position and velocity estimation 

(Wang, Liang, 2018; Li et al. 2018). In theory, as the grown in 

quantity of observation data, more accurate valuation could be 
obtained by the state of the Kalman filter. But sometimes the 

noise of GNSS dynamic motion may not be able to accurately 

model or is not a normal distribution, so the accuracy of the 

results of using Kalman filter for dynamic calculating may be 

affected, which lead to larger error between actual state and the 

state. At the same time, the filtering divergence phenomenon 

happens (Gao S et al. 2011). 

In order to solve the above problem, scholars have successively 

put forward the adaptive Kalman filter algorithm and apply it in 

dynamic navigation and positioning. A new adaptive 

differential filtering theory was established (Yang et al. 2001; 

Yang et al. 2001), which applies the principle of differential 

resistance estimation to control abnormal observations, and 

introduces the adaptive factor to control the effect of the error 

in dynamic model. Four kinds of error learning statistics were 

successively constructed, namely, state mismatch statistics 

(Yang et al. 2001; Yang et al. 2001), prediction residual 

statistics (Yang ,Gao,2006), the variance component ratio 

statistics based on observation information and dynamic model 

prediction information (Yang,Xu,2003), and the mismatch 

statistics based prediction velocity model and calculation 

velocity (Cui ,Yang,2006).Four kinds of adaptive factors were 

established, namely three-segment function model (Yang et 

al.2001), two-segment function model (Yang et al. 2001), 

exponential function model (Yang ,Gao,2005) and weight 

function model (Ren et al. 2005). When multi-factor becomes 

single factor, multi-factor adaptive filtering is single factor 

adaptive filtering. While only the position parameter factor and 

velocity factor are included in the multi-factor, the multi-factor 

adaptive filter becomes the classification factor adaptive filter.  

Adaptive robust Kalman filtering can effectively restrain the 

influence of the error in abnormal observation and error in 

dynamic model. Based on this, an adaptive Kalman filtering 
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algorithm for out Doppler velocity based on single point station 

was put forward. the method select the resistance model and 

adaptive model based on the PDOP value and the number of 

the satellite in each epoch, using IGGIII estimation scheme to 

control the effect of abnormal observations, at the same time, 

using the single-factor three-stage adaptive model to adjust the 

proportion between the covariance matrix of the predicted 

value and the covariance matrix of state vector. In order to test 

the accuracy of the algorithm, through a set of shipborne 

GNSS/INS dynamic test data, the accuracy of the velocity 

filtering method and the least squares velocity measurement in 

this paper were compared and analyzed. 

 

2.1 Principle of GPS single point velocity measurement 
GNSS 

Pseudo-range difference is a widely used differential 

positioning technology. Its principle is to set up a reference 

station on a known coordinate point, calculate the true distance 

between the reference station and the satellite through the 

known coordinate, and then make a difference between the 

calculated true distance and the observed pseudo-distance to 

obtain pseudo-distance correction and send it to the user for 

correction. 

Pseudo-range observation equation (XU et al. 2016): 
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(1) 
Deriving the pseud-orange observation equation: 
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The out Doppler is relative to the original Doppler, which is 

the Doppler value derived from the pseudo range, carrier phase 

and Doppler relationship provided in the observation file. 

At the moment it , the pseud orange observation equation 

between the station r and the satellite s  is differentiated (XU 

et al. 2016): 
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In the formula,   is the carrier wavelength; iD t（ ） is out 

Doppler observation, each “.” term is the time variability of 

each corresponding variable; the ( )s
r iR t is the geometric distance 

between the it  time satellite and the receiver. 

( ) ( )trop i ion it t 、  is the tropospheric and ionospheric in 

carrier phase observation at the it  time. The rel it（ ） is the 

effect of the relativistic effect in the it time, ( )p it  means 

other observed noise.  

Out Doppler observations using the adjacent epoch differential 

structure can effectively eliminate the ambiguity parameters. 

Using the basic principle of the difference between the epochs 

before and after the phase, the out Doppler can be expressed as 

( He, 2015). 

1
1

( ) ( )
( )i i

i

t t
D t

t

 
 




 


               (4) 

In the formula,  1( ) ( )i it t  、  is the phase observation 

values of the previous epoch time and the last epoch time 

t t  , and t  means for the sampling interval. 

 

2.2 Kalman filtering 

Kalman filtering is divided into the following two processes 

(Yang ,Gao, 2006) 

(1) Time upate: 

 

,k 1 , 1 1
ˆ ˆ

k k k kX X AU             （5） 

, 1 , 1 1 , 1 1
T
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(2) Measurement update 
 

  1
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T T

k k k k k k k k kK P H H P H R

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  , 1k k k k kP I K H P             （9） 

 

kK is the filter gain matrix; , 1k kP  is the covariance matrix of 

the state vector in 1kt  time  

The state quantity includes the position, velocity, acceleration 

component of the user's motion state, and the clock difference 

and clock drift of the user's clock error. 

 

[ ]T
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While sX  denote the vector of the receiver displacement, 

velocity and acceleration, respectively, TX means the vector 

of the receiver clock and receiver clock drift. 

According to the basic principle of the current statistical model, 

the state can be expressed as (Yang ,Gao,2006): 
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the Observation equation construction are given by 
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While ,n n   are the observed precision code and out 

Doppler observations from a satellite to the receiver, kH  is 

Observation matrix, kX  is State quantity kZ is the 

measurement noise. 
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From the above filters, we can see that in addition to 

establishing the state model and observation model of the 

system, the following problems need to be solved in solving 

user state (Yang et al. 2001): setting of initial state X and error 

covariance matrix P, setting of process noise variance matrix Q, 

setting of observation noise variance matrix R. Regarding the 

setting of X, the least square method is used to provide the 

initial state quantity.  

The process noise w of linear discrete stochastic systems obeys 

the Gauss-Markon process, and the initial value of Q is 

determined by the lower value (Tu, 2014). 
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(22) 

Where  is the sampling rate, I is a 3 3  identity 

matrix, , ,a dt fpd pd pd  are the power density of the 

acceleration, receiver clock noises and noises of Clock drift. 

respectively. Normally, apd  can be set as a few cm s−5/2, 

and dtpd is set to white noise with a very large value 

(100ms−1/2). (Yang et al. 2001). 

Observed noise variance matrix: 
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The variance matrix of pseudo-distance observations and out 

Doppler: 

 

1 2 3

2 2 2 2 2( )
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2 2,p D   Is also a n n  diagonal matrix. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-1005-2020 | © Authors 2020. CC BY 4.0 License.

 
1007



 

2.3 Adaptive robust Kalman filtering 

Corresponding to the standard Kalman filter model, the 

rewritten gain matrix and the PDOP (Phillips et al. 1984) is as 

follows: 

 
1( )T T

k k k k xk k kK H P H P H P                 (26) 
T

xxQ H H                        (27) 

2 2 2( )x y zPDOP                       (28) 

 

where kP  is robust equivalence weights， xkP  denotes the 

adaptive equivalence weights . 

Focusing on the gain matrix, an adaptive robust Kalman model 

based on PDOP(Position Dilution of Precision) and the number 

was proposed. Case1: When the PDOP is greater than the 

threshold value, it is considered that the observation accuracy is 

low, and the IGG-III robust model is used for Kalman filter 

smoothing. Case 2: When the PDOP is between the threshold 

value, it is considered that the measurement accuracy is normal, 

and the adaptive factor can be determined normally. Then the 

single-factor three-stage adaptive model is used to adjust the 

adaptive equivalence weights. Case 3: If neither of the above 

cases is met, standard Kalman filtering is used. The selection of 

threshold for Robust equivalence weights and adaptive 

equivalence weights are both based on the experience: 

In this paper we set case1: 
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(1) IGG-III robust model: 

The IGGIII scheme (Galili et al. 1987) is the most widely used, 

and it divides the weight of measured values into three cases.  

 the expression is ： 
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Where 0k  is the security point; 
1k  is the elimination point; 

ip is the weight matrix of the observation; iv is the 

normalized residual of the i observation; iP  is the weight after 

the i observation is reduced. It can be seen from the above 

formula that the IGGIII scheme divides the residual value into 

three parts. When obeying the normal distribution, the weight 

of the observed value remains unchanged; if the observed value 

exceeds a certain range, the weighting process is performed; if 

individual observations appear obviously abnormal, the weight 

is 0 at this time. Therefore, the IGGIII program has the best 

resistance. 

(2) Single-factor three-stage adaptive model: 

adaptive equivalence weights xkP Can be expressed as: 
 

xk xkP P                     (32) 

 
where   is adaptive factor, 

The three-stage adaptive factor is constructed by referring to 

the IGGIII equivalent weight (Yang et al. 2001; Yang et al. 

2006 ), which set the prediction residual value as a statistic, and 

the three-stage adaptive factor can be constructed as: 
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Where 0 1,c c  are also constants . Generally both can be set 

to 1.0~1.5 or 3.0~8.5 
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3 Algorithm flow chart 

Figure 1. algorithm flow chart 

4. VALIDATION AND DISCUSSION

4.1 static test 

A set of GNSS receivers typed Propak6 was used to collect one 

hour of static data. The observation period was from April 30, 

2015, 9:00-10:00, the sampling rate was 1 Hz, and the satellite 

elevation angle was 15 degrees. The least square method and 

the adaptive robust Kalman method are used respectively to 

solve the carrier phase derived doppler velocity, If static 

observations were taken to calculate, the true value of the filter 

algorithm and the Least Squares method should be zero, and 

the solution of the calculated speed value could be considered 

the true error of speed algorithm. 

Schm1: Least Squares( L-S) 

Schm2: adaptive robust Kalman method (ARKF) 

Figure 2. the velocity in U direction measured by L-S and 

ARKF  

Figure 3. the total velocity measured by L-S and ARKF 

We can seen from the Fig.2 and Fig.3 that the true error of  the 

ARKF methods is better than 1.00m/s in the U direction, and 

the  RMS of the total speed is also better than 1.00cm/s. The 

least squares method is inferior to the ARKF methods in both 

the U direction and the total velocity. And there is an obvious 

systematic deviation of about 2.00 cm/s in the direction of U in 

the settlement velocity of LS method, and the oscillation is 

severe. 

V(m/s) max min mean RMS 

L-S 0.0364 0 0.0091 0.0108 

ARKF 0.0136 0 -0.0020 0.0047 

Table.1 Statistics of Velocity based on the L-S and ARKF 

Tab. 1 shows the statistical results of the comparison between 

the total velocity calculated by L-S and ARKF methods. It can 

be clearly seen from the table that there is a big difference 

between the them: the maximum and average speed calculated 

by LS method are 3.64 cm/s and 0.91 cm/s respectively, while 

ARKF is 1.36cm/s and -0.20 cm/s, and the residual of LS error 

is up to 1cm/s, while ARKF is 0.4cm/s, which can verify that 

the ARKF method has better accuracy than L-S and has better 

denoising effect. 

4.2 kinematic test 

In order to verify the feasibility and accuracy of the ARKF 
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algorithm, data of continuous acquisition for 1.5 hours was 

performed on May 31, 2017, using a shipborne GNSS-INS 

(HYDRINS) integrated navigation system in the Yangtze River. 

The type of kinemaic GNSS receiver is NovAtel GPSCard, the 

sampling frequency is 1Hz, the sampling frequency of the 

HYDRINS is 200HZ, and a NovAtel GPSCard receiver is 

placed on the shore as a base station which sampling frequency 

is also 1HZ for simultaneous sampling(as shown in Fig. 4).  

 

Since the tight combination mode of Internial Explorer (IE) 

software solves the velocity with an accuracy better than 

0.2cm/s, the IE velocity is used as the reference true value.  

It can be seen from Fig. 5, that the trends of velocity in the E 

and N directions calculated by LS and ARKF method are 

substantially the same. The speed of the first 2500 epochs in 

E-direction is -2 m/s, and the velocity of the last 2500 epoch in 

E-direction is 2m/s, the N direction involves two acceleration 

and deceleration movements accompanied by a change in 

direction, which is also in line with the trajectory on the 

experimental map. In the U direction, the speed of the LS 

solution has obvious noise when the ship is making a turning 

motion, while the ARKF methods is relatively stable and with 

no obvious noise.
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Figure.5 The shipborne velocity in E/N/U three-direction calculated by the LS and ARKF methods.

Figure 4. Topographic map of survey area
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Figure.6 the figure of the velocity in E/N/U three-direction 

between tight combination of Internial Explorer (IE) with the 

L-S and ARKF methods.

As can be seen from Fig 6, the ARKF method has a relatively 

good denoising effect and changes steadily with the speed 

difference. However, the overall velocity calculated by LS 

method is relatively high in noise, with the mutual difference of 

the E and N direction up to 2.5cm/s, while the ARKF method is 

within 1cm/s. The LS solution in U direction has the worst 

effect, with the noise up to 5cm/s, while ARKF is stable within 

2.5cm. 

Max Min Mean RMS 

VE 0.0581 0.0000 0.0063 0.0088 

VN 0.0600 0.0000 0.0740 0.0098 

L-s

(m/s) 

VU 0.1039 0.0000 0.0085 0.0118 

VE 0.0465 0.0000 0.0047 0.0067 

VN 0.0404 0.0000 0.0055 0.0074 

ARKF 

(m/s) 

VU 0.0256 0.0000 0.0067 0.0088 

Table 2. Statistics of the cross-difference between the LS, 

ARKF and the IE velocity 

We can know from the Tab.2, that the error mean of 

cross-differences between the velocity calculated by LS and IE 

in N, E and U directions were 0.63 cm/s,0.74 cm/s and 0.85 

cm/s, respectively, while the ARKF was 0.47cm/s, 0.55cm/s 

and 0.67cm/s, respectively. The RMS of the cross-differences 

in E,N and U directions for LS method were 0.88cm/s、

0.98cm/s、1.18cm/s, while the ARKF  method was 0.67cm/s、

0.74cm/s、0.88cm/s. It was proved that the out Doppler velocity 

estimation by the ARKF method can also measure better when 

the ship is maneuvering. In view of the fact that the precision of 

the dynamic condition is lower than the static fact, it can be 

considered that the observation error of carrier phase accuracy 

in dynamic condition is lower than the static condition, and the 

observation environment is more complicated. The influence of 

the ionosphere and troposphere is more significant in the 

differential process, which is also consistent with the GNSS 

observation. 

CONCLUSION 

In this paper ,the processing results of static and dynamic data 

was analyzed which shows that compared with the solution of 

least squares, the ARKF method has higher accuracy and 

smoother, and the reliability of both plane and elevation 

directions is improved. From the analysis of the processing 

results of the shipborne GNSS/INS combined navigation 

dynamic observation data, with the GNSS/INS tight 

combination velocity by IE as the reference value, it can be 

seen that when the moving target state changes, the adaptive 

robust Kalman filter solution result is superior to the least 

squares solution result. The velocity deviation and the 

fluctuation amplitude is smaller, the velocity of points are more 

continuous, and the transition is more natural. The abnormal 

disturbance of the carrier observation can be controlled more 

effectively, and the precision of the filtering is improved which 

means that the method has a certain research value for solving 

problems such as observation abnormality and state 

abnormality. Therefore, the method can be applied to dynamic 

navigation and velocity measurement.  
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