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ABSTRACT: 

There are many factors affecting dam deformation, and the time series of deformation data is directly modeled without considering 
the seasonality and periodicity of each influencing factor, the Ensemble Empirical Mode Decomposition (EEMD) and the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) is proposed for prediction in this paper. Firstly, the time series of 
deformation data is decomposed by EEMD, which weakens its volatility to some extent, and decomposes various factors affecting 
dam deformation, so as to obtain a series of Intrinsic Mode Function (IMF) with different frequencies; secondly, according to the 
seasonal characteristics and periodic characteristics of each IMF, the SARIMA model was established respectively for rolling 
prediction; thirdly, the final forecast results can be obtained by superimposing the forecast results of each IMF. It is verified by 
experiments and compared with Gray Model, Kalman Filter Model and SARIMA model that EEMD-SARIMA model has higher 
prediction accuracy, and it has better fitting degree, which means that it is an effective method for dam deformation prediction. 

INTRODUCTION 

Dam will be affected by many factors during the process of 
construction and use. Under the joint action of various factors, 
the series of deformation data observed during the process of 
construction and use of dam tend to be highly volatile. It is of 
great significance for dam safety to grasp dam deformation law 
and make accurate forecasts in time(JIANG .et al,2006). At 
present, the prediction methods commonly used in dam 
prediction research include time series method, grey 
theory, neural network, regression analysis and wavelet 
analysis. For dam deformation data with strong volatility, 
various methods have certain limitations(WEN .et al.2000). 
The accuracy of time series method and grey theory is lower 
for the data with high volatility; neural network has strong 
dependence on the selection of the influence factors, and it is 
prone to over-fitting; however, regression analysis only 
analyzes from the perspective of data, lacking physical 
significance and objectivity; wavelet analysis has strong 
dependence on the selection of basis function, and it lacks of 
adaptability(RONG .et al.2018). The key of prediction is the 
fitting of deformation trend. Only by accurately fitting the 
deformation trend of settlement 1 data can the prediction 
accuracy be fundamentally improved. The main influencing 
factors of dam deformation include aging, temperature, water 
pressure, etc.(LIU .et al.2009). These factors often have 
obvious periodicity and seasonality, which makes deformation 
data have certain periodicity and seasonality. However, the 
periodicity and seasonality of various factors inevitably have 
slight differences. If we can distinguish the influencing factors, 
it is a reasonable method to establish a reasonable model for the 
periodicity and seasonality of single or a small number of 
influencing factors. Based on this, this paper establishes a 
model based on EEMD and SARIMA. Because EEMD 
decomposition has adaptability and decomposed each IMF 
have certain physical meaning(PAN .et al.2018), EEMD is used 

to decompose the original observation data of the horizontal 
displacement of dam crest, and separate the influencing factors, 
so as to weaken the volatility to a certain extent, then, 
SARIMA model is established to better grasp the periodic and 
seasonal influences and fit the trend of the dam deformation, so 
as to improve the prediction accuracy. 

1. MODEL INTRODUCTION

1.1  EEMD 

EEMD is an improved model of Empirical Mode 
Decomposition (EMD)(ZHAO .et al.2015). Huang believed 
that any original signal is composed of several overlaps of 
eigenmode functions(WANG .et al.2010). In essence, EMD 
stabilizes the signal to obtain a series of IMF with gradually 
stable frequency and a margin B. However, when the time scale 
of the signal has a jump change, IMF will contain different 
time scale characteristic components, and EMD itself is prone 
to modal aliasing. In view of these situations, Huang, Wu 
proposed EEMD(Wu Z H .et al.2009). By adding white noise 
in the signal to be decomposed, EEMD utilizes the uniform 
distribution of the white noise spectrum to make the original 
signal spread over the white noise background with uniform 
distribution throughout the time-frequency space. Signals of 
different time scales will be automatically distributed on the 
appropriate reference scale, so that the signal has continuity on 
different scales, so as to achieve the purpose of suppressing 
mode aliasing. Because the mean value of white noise is zero, 
after adding white noise multiple times to obtain an average 
value, the additional noise will be eliminated, and the result is 
the signal itself. The decomposition steps of EEMD have been 
studied in great detail by predecessors, so this paper will not go 
into details. 

When performing EEMD, the added white noise amplitude of 
normal distribution is  and the number of repetitions n needs
to be determined through multiple experiments. Chen 
Zhong(CHEN .et al.2013)pointed out that  is usually takes

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-1091-2020 | © Authors 2020. CC BY 4.0 License.

 
1091



0.01~0.5, and the repetition number n is generally 100~200. 
Through repeated experiments, the author selects =0.15, 
n =100. 

 

1.2  SARIMA 

SARIMA is an improved Model of Autoregressive Integrated 
Moving Average Model(ARIMA)(CHEN .et al.2018). ARIMA 
model is also written as ARIMA(p,d,q) (p is the autoregressive 
term, d is the number of differential, and q is the moving 
average term). It is obtained by applying the dth order 
differential of ARMA model. Through such operation, a 
non-stationary time series is transformed into a stationary time 
series, and then (p,q) parameters are determined by observing 
the truncation and trailing characteristics of correlation 
functions and analyzing autocorrelation and partial correlation, 
so as to determine the model parameters and conduct modeling 
of time series. However, when there are obvious cyclical trends 
and seasonal changes in the time series, the results obtained are 
often not ideal if directly analyzing it by ARIMA . At this time, 
the seasonal product model SARIMA(p,d,q)(P,D,Q)(p,d,q is 
the same as the above representatives, P is the seasonal 
autoregressive order, Q is the seasonal sliding average order, 
and D is the order of the seasonal difference)is appropriately 
introduced, so as to get a better analysis of the result. The time 
series affecting the dam settlement displacement value is often 
accompanied by periodicity and seasonality. Therefore, the 
author chooses to use SARIMA to conduct experimental 
analysis. 
 
Modeling steps of SARIMA: 
 
Step 1  Establish model ARMA(p,q)  for the time series tY  
of equidistant sampling: 
 

         )(/)( BBY ptqt            (1) 

 
Among them, q  is the lag operator, )(Bq  is the polynomial 

of sliding average coefficient of order q , t  is the white 

noise, and )(Bp  is the polynomial of order p . 
 
Step 2  When the original time series tY  is unstable, carry out 
d-order differential processing according to the following 
formula: 
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Among them, u is the differential operator, d  is the 
differential order, and   is the differential symbol. 
 
Step 3  After the d order differential, the unstable time series 

tY becomes a stationary time series. After the correlation and 
partial correlation analysis and observing its trailing and 
truncating properties, ARIMA(p,d,q) modeling can be carried 
out for the post-processing time series. The general form of the 

model is as follows: 
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Among them, is the differential symbol, dd B)1(  . 
 
Step 4  If seasonal factors exist in the original time series, 
SARIMA with a period of c  is used to extract its seasonal 
periodicity, and ARIMA model is used to extract its short-term 
correlation(FAN .et al.2009). The two are combined to 
establish the SARIMA model. The general form is as follows: 
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Among them, D is the seasonal differential order, C is the 
seasonal period, dCD

C B )1(  , )( C
m B is the seasonal m-order 

sliding average polynomial, and )( C
n B is an autoregressive 

polynomial of n-order of seasonality. 
 
1.3  Establish EEMD-SARIMA Model 

Due to the complexity of the dam project and the uncertainty of 
the external environment, as well as all kinds of uncertain 
factors exist in the process of observation, the volatility of the 
time series of dam observations tend to be stronger, and the 
original data are decomposed by EEMD, the frequencies of 
different IMF is obtained, and the more suitable parameters of 
the IMFs with different frequencies are selected to establish the 
SARIMA model, which can better fit the IMF of each order 
and is more practical. Therefore, EEMD-SARIMA model is 
adopted to analyze settlement data. The modeling steps are as 
follows: 

Step 1  Perform EEMD decomposition on the original 
observation data to obtain a series of IMF with different 
frequencies; 
 
Step 2  Parry out unit root test for each IMF order, and 
perform differential treatment on unstable IMF; 
 
Step 3  Preliminarily determine the model through correlation 
analysis and partial correlation analysis of each IMF order; 
 
Step 4  Adjustment model to be optimal by Akichi 
Information Criterion (AIC ) and Schwartz Criterion (SC); 
 
Step 5  Predict the IMF values of each order using the tested 
model; 
 
Step 6  Overlaps the IMF forecast results of each order to 
obtain the final result. 
 
The basic flow chart of the model is as follows: 
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Figure.1  EEMD-SARIMA model flow chart 
 

EXPERIMENTAL ANALYSIS 

2.1  Data Analysis 

This paper selects the horizontal displacement monitoring 
quantity of a monitoring point of Xiaolangdi Dam from 2006 to 
2009(LU .et al.2012) and Fengman Dam from 1985 to 
1989(JIANG .et al.2009) as the original data of this experiment. 
Since the sampling interval of the original observation data is 
extremely uneven, the author first interpolates the original data 

to obtain the time resolution which is the settlement data of one 
day, and analyzes whether it satisfies the experimental 
conditions. Correlation analysis and significance test were 
carried out on the data of each dam over the years by Statistic 
Package for Social Science (SPSS). (Due to the limited number 
of data, correlation analysis is only performed on the year in 
which the data is complete) . 
 
As shown in the following table: 

 Correlation 1985 1986 1987 1988 1989 

Pearson correlation 1 0.943** 0.933** 0.273** 0.470** 1985 

Significance(double-tailed)  0.000 0.000 0.000 0.000 

Pearson correlation 0.943** 1 0.928** 0.310** 0.305** 1986 

Significance(double-tailed) 0.000  0.000 0.000 0.000 

Pearson correlation 0.933** 0.928** 1 0.544** 0.512** 1987 

Significance(double-tailed) 0.000 0.000  0.000 0.000 

Pearson correlation 0.273** 0.310** 0.544** 1 0.660** 1988 

Significance(double-tailed) 0.000 0.000 0.000  0.000 

Pearson correlation 0.470** 0.305** 0.512** 0.660** 1 1989 

Significance(double-tailed) 0.000 0.000 0.000 0.000  

**Indicates a significant correlation at level 0.01(double-tailed) 
Tab.1  Correlation analysis of horizontal displacement observations of Fengman dam from 1985 to 1989 

According to the above table, the correlation coefficient of the 
observation data of Fengman Dam between 1985, 1986, 1987 
and over the year is more than 0.9, and the significance is less 
than 0.05; and the correlation coefficient of the observation 
data of Fengman Dam between 1988,1989 and over the year is 
more than 0.3, and the significance is less than 0.05. As the 
number of samples selected in this paper is large and the 
average number is more than 300, and the increase in the 
number of samples increases the difference among samples, 
which leads to the reduction of correlation coefficient. 
However, through the significance test, it is proved that there is 

significant correlation among the observation data over the 
years, that is to say there is significant periodicity and 
seasonality in the observation data. In summary, the settlement 
observation data of Fengman dam is applicable for this 
experiment(CAO .et al.2018). 
 
Correlation analysis of the observation data of Xiaolangdi dam 
shows that the correlation coefficient of 2007 and 2008 is 0.922, 
and the significance is 0 and less than 0.05. Therefore, the 
observation data of Xiaolangdi dam is also applicable for this 
experiment. 
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The observation data of the two dams over the years and the 
upstream water level and temperature are shown in the figure 
below: 

 

Figure.2  Observed horizontal displacement of the dam crest 
of Fengman dam from 1985 to 1989 

 

Figure.3  Observed horizontal displacement of the dam crest 
of Xiaolangdi dam from 2007 to 2008 

 

Figure.4  Water level change upstream of the two dams 

 
Figure.5  Temperature change at the dam site of two the dams 
 
It can be seen from figure 4 and figure 5 that the two dams due 
to the different geographical position (the Fengman Dam is 
located in Jilin City, Jilin Province, and the Xiaolangdi Dam is 
located in Luoyang City, Henan Province), resulting in 
different climate differences between the two dam sites. The 
temperature of the dam site and the difference of the upstream 
water level cause different directions and sizes of the 
displacement components generated by the influencing factors, 
and the weights of the influencing factors also change over 
time,but for a certain period of the weight can be considered to 
be relatively stable(HE .et al.2003), and under the joint action 
of various factors, it leads to the change of the displacement of 
dam crest. Due to the differences in the influencing factors of 
the two dams, it is considered that there are seasonal 
differences in the horizontal displacement of the dam crests. 
Therefore, the author selects these two group of data for 
experiments,and believes that the two group of data are 
representative. 
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Figure.6  IMF diagram of the horizontal displacement observation of the Xiaolangdi dam crest 

2.2  Prediction Experiment 

Since the deformation value of the dam is small in one day, the 
observation data of the two dams are resampled to obtain the 
observation data with a time resolution of one week, and then 
EEMD decomposition is carried out respectively (The IMF of 
the observed displacement values of Xiaolangdi dam crest is 
shown in figure 6). The prediction experiments of IMF training 
SARIMA model are also carried out. The previous 215 data 
were used as training samples. The 10th, 15th, and 20th phases 
were selected as the prediction step size, and the precipitation 
data of the 60th phase of the 216th to 275th phases of the IMF 
were predicted by rolling (Taking 10 phases as the prediction 
step, and the data of 216-225 phases are forecasted in the first 
215 phases, and the data of 226-235 phases are forecasted by 
11-225 phases, and so on). After that, the prediction results of 
the IMF’s of each order are superimposed to obtain The final 
forecast. 
 
By introducing precision indexes, such as Mean Absolute Error 
(MAE), Mean Relative Error (MRE), Root Mean Square Error 
(RMSE), and by comparing with the prediction results using 
only the SARIMA model, the prediction results are analyzed 
and the model is evaluated. The mathematical expressions of the 
three evaluation indexes are as follows: 
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Among them, n is the number of prediction phase, iX is the 

predicted value of phase i , and


iX is the observed value of 

phase i . 
 
2.3  Analysis of Prediction Results 

The prediction experiment was conducted on the observation 
data of the two dams, and the accuracy comparison of the 
prediction results was shown in the following table: 

     MAE（mm）      RMSE（mm）      MRE 
Step-size 

EEMD-SARIMA SARIMA EEMD-SARIMA SARIMA EEMD-SARIMA SARIMA 

10 4.77 6.65 6.25 14.77 8.24% 18.03% 

15 6.88 12.94 8.43 15.73 12.76% 19.71% 

20 8.18 19.88 9.57 21.80 16.03% 29.49% 

AVG 6.61 13.15 8.08 17.43 12.34% 22.41% 

Tab.2  Xiaolangdi dam precision comparison 

     MAE（mm）      RMSE（mm）      MRE 
Step-size 

EEMD-SARIMA SARIMA EEMD-SARIMA SARIMA EEMD-SARIMA SARIMA 

10 0.34 0.59 0.49 0.61 7.10% 9.49% 
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15 0.42 0.91 0.56 0.91 9.22% 15.03% 

20 0.48 2.12 0.63 1.34 10.86% 17.73% 

AVG 0.41 1.20 0.56 0.95 9.07% 14.08% 

Tab.3  Fengman dam precision comparison 

It can be seen from table 2 and table 3 that the prediction 
accuracy of EEMD-SARIMA model is higher than that of 
SARIMA model under three prediction steps. This is because 
after the decomposition of EEMD, the factors affecting the dam 
are decomposed to a certain extent, which weakens the 
volatility of the data. After the EEMD decomposition of the 
time series of observation data, each IMF component has a 
certain physical meaning, rather than the superposition of all 
influencing factors,  the influential factors of each IMF 
component is reduced, making the periodicity and seasonality 
of each IMF easier to grasp. Through the establishment of more 
specific to each IMF component model, can better reflect the 
deformation trend and deformation law, so as to better fit the 
settlement data to obtain higher precision prediction values, and 
the model is more in line with practical significance. 
 
According to the above table, for the EEMD-SARIAM model, 
when the predicted step size is 10 phases, the predicted MRE 
values of the two dams are 8.24% and 7.10% respectively, and 

the mean value is 7.67%. When the predicted step size is 15 
phases, the predicted MRE values of the two dams 12.76% and 
9.23% respectively, and the mean value is 10.99%. When the 
predicted step size is 20 phases, the predicted MRE values of 
the two dams 16.03% and 10.86% respectively, and the mean 
value is 13.45%. With the increase of prediction step size, the 
prediction accuracy gradually decreases, indicating that the 
EEMD-SARIMA model is better for short-term prediction and 
less effective for medium- and long-term prediction. The MRE 
value of all predicted step sizes is 11.6%, indicating that the 
prediction effect is good, and  the EEMD-SARIMA model can 
be used as a predictive model for dam deformation. For the 
SARIMA model, when the predicted step size is 20 phases, the 
MRE of the predicted values of the two dams are 29.49% and 
17.73% respectively, and the mean value is 23.61%, and from 
the prediction process, the reason the prediction accuracy is 
low is that the trend of deformation can not be well grasped, 
resulting in a large deviation between the predicted data and the 
actual observed data, as shown in the following figure: 

 

Figure.7  Forecast of the two dams 256-265 
 

In the above two cases, the trend of the original observation 
data of the prediction results of the SARIMA model is 
obviously different. Further correlation analysis of the 
observation data shows that the correlation coefficients are 
0.7015 and 0.6882 respectively, which are basically predictive 
failures. The prediction results of the EEMD-SARIMA model 
are basically consistent with the trend of the original 
observation data,  and the correlation analysis results show 
that the correlation coefficients are 0.9726 and 0.9919 
respectively. Therefore, compared with the SARIMA model, 

the EEMD-SARIMA model can better fit the deformation trend 
of the horizontal displacement of the dam crest, which has 
strong applicability and stability. Further comparison of the 
prediction effects of the EEMD-SARIMA model. Kalman Filter 
Model and Grey Model are used to predict the data adopted in 
this paper (Observation data in the first 215 phases are used as 
training samples, and rolling prediction of data in the 216-275 
phases is made with 10 phases as prediction step size). The 
prediction results are shown in figure 8: 

 
Figure.8  Comparison of prediction results 
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As can be seen from the figure, compared with other models, 
EEMD-SARIMA model can better fit the change trend of data. 
Further analysis of the prediction accuracy shows that, for 
Fengman Dam, the RMSE, MAE, and MRE of Kalman Filter 
are 1.12mm, 0.91mm, and 13.97% respectively; while the 
accuracy indexes of EEMD-SARIMA model are 0.34mm, 
0.49mm and 7.1% respectively. In contrast, the prediction 
accuracy of the model proposed in this paper is better; and the 
trend of the prediction results of the Gray Model is obviously 
different from the original trend. For Xiaolangdi Dam, the 
RMSE, MAE, and MRE of Kalman Filter are 30.12mm, 
25.28mm, and 20.64% respectively; while the accuracy indexes 
of EEMD-SARIMA model are 4.77mm, 6.25mm and 8.24% 
respectively; and the trend of the prediction results of the Gray 
Model is obviously different from the original trend. In 
conclusion, compared with SARIMA model, Kalman Filter and 
Gray Model, EEMD-SARIMA model proposed in this paper 
has higher prediction accuracy and better fitting for 
deformation trend. 
 
CONCLUSIONS 

In this paper, the observation data of the horizontal 
displacement of the dam crest of Xiaolangdi Dam and Fengman 
Dam are analyzed and the prediction experiment is carried out. 
From the above analysis process, the author draws the 
following conclusions: 
 
1) The time series of horizontal displacement of the crest has 
strong seasonal characteristics. Although the prediction value 
can be obtained when only using the SARIMA model for 
prediction, there are many factors affecting the deformation of 
the dam, and the seasonal characteristics exist difference of 
various factors, the prediction accuracy is not good. The 
EEMD-SARIMA model is used to decompose the observations 
first, so that the various influencing factors are separated, and 
the influence of the differences between the factors is reduced, 
thereby improving the prediction accuracy. 
 
2) The EEMD-SARIMA model weakens the volatility of the 
data to a certain extent in the prediction of dam deformation, it 
has strong stability, good applicability and certain physical 
significance. Compared with Kalman Filter and Grey Model, 
the prediction accuracy of EEMD-SARIMA model is better, 
and the results show that this model is an effective method for 
dam deformation prediction. 
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