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ABSTRACT: 
 
Single-school and multi-school district divisions are the two main ways to balance educational resources for enrollment in primary 
and secondary schools. A hybrid heuristic algorithm (M-ILS-SA) for school district division is proposed based on the combination 
of a Multi-Start Iterative Local Search (M-ILS) algorithm and a Simulated Annealing (SA) algorithm. According to the principle of 
“school grouping first and student assigning second”, a K-Medoids model is first used to implement school grouping. Then, the 
initial solution for each run of ILS that starts is generated by the region growth algorithm. After completing the neighborhood search, 
the SA algorithm is finally used to choose the optimal solution from the historically generated school districts identified by ILS. The 
experimental results show that the proposed M-ILS-SA algorithm can effectively reduce the total elapsed time and the number of 
over-enrolled students in each school district, and ensure spatial continuity in both single-school and multi-school district divisions. 
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1. INTRODUCTION 

Single-school district division and multi-school district division 
are the two main methods of controlling enrollment in primary 
and secondary schools. Single-school district division is a 
special case of the multi-school district division problem, in 
which the number of school districts is equal to the number of 
schools. The problem of school district division is closely 
related to the spatial layout of schools, the allocation of 
educational resources, and transportation. 
 
A linear programming model is usually used to solve the 
problem of school district division. A general mathematical 
model in the school district was established by (Koenigsberg, 
1968) to examine student integration policies. An experimental 
study using linear programming was proposed by (Mckeown, 
Workman, 1976) to design attendance. Based on the prediction 
of the urban census, a linear programming model was used by 
(Jennergren, Obel, 1980) to divide school districts. Some 
researchers have also adopted a linear programming model to 
avoid overcrowding in the district (Franklin, Koenigsberg, 1973, 
Schoepflea, Churchb, 1991, Taylor et al., 1999). However, the 
linear programming model is very complicated in terms of 
computing, and its results of school district division cannot 
satisfy the requirement of spatial continuity. 
 
Since the problem of school district divisions is a typical zoning 
problem, a clustering tree was established by (Guo, 2008, Guo, 
Jin, 2011) based on the related improved algorithm of 
agglomerative hierarchical clustering analysis. By extending 
Automatic Zoning Procedure (AZP), the search process was 
prevented from falling into a local optimum (Openshaw, 1977, 
Kim et al., 2016). A service area division problem similar to the 
school district problem was described by (Ko et al., 2015), 

which they designed a neighborhood search operator to 
iteratively improve the service partition in the simulated 
annealing algorithm framework. However, if only one 
neighborhood search operator is used, it is easy for the search 
process to fall into a local optimum. 
 
At present, the Simulated Annealing (SA) algorithm has been 
used for partition optimization and has shown good global 
optimization performance (Ricca, Simeonea, 2008, Rincón-
García et al., 2013, Rincón-García et al., 2017, Assad, Deep, 
2018). In this contribution, we design a hybrid heuristic 
algorithm (M-ILS-SA) based on SA, which mainly includes 
school grouping, initial solution construction, neighborhood 
search operator optimization, and SA algorithm modeling and 
solving. The designed algorithm is applied to the problems of 
single-school and multi-school district divisions, and shows it 
can solve the main defect of the existing algorithms for school 
district division that the partitions cannot guarantee spatial 
continuity and it is easy to fall into a local optimum. 
 

2. DESCRIPTION OF THE SCHOOL DISTRICT 
DIVISION PROBLEM 

The school district division problem is described as follows: 
Divide set N into k areas, which are denoted by the set R = {r1, 
r2, ..., rk}, and achieve the shortest student enrollment distance 
based on the following specific constraints (Kong et al., 2017): 
 

 krrrN  21      (1) 

 

   yxyxyx rrRrrrr  ,,,       (2) 
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    xr  spatial continuity, Rrx       (6) 

 
where  N = all spatial units 

x, y = spatial unit 
 px = the number of student enrollment within x 
 qx = the number of school enrollment within x 
 A, B = two constants 
 
In this paper, we use the linear distance between two points as 
the basis of distance calculation. According to the probability 
assigned to the high-quality school, the distance from the 
student to the nearest school and the high-quality school can be 
weighted to calculate the enrollment distance. That is, the total 
student enrollment distance of a unit i in a district k can be 
defined as Dik: 
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where  i =  a spatial unit 

pi = the number of student enrolment in i 
 j = a school 
 qj = the number of school enrollment within j 
 dij = distance from i to j 
 k = a district 
 Hk = the set of high-quality schools in k 
 Sk = the set of schools in k 
 Nk = the set of spatial units in k 
 

3. HYBRID HEURISTIC ALGORITHM 

In this paper, we propose a hybrid heuristic (M-ILS-SA) 
algorithm to solve the problem of school district division. The 
proposed M-ILS-SA algorithm is a combination of the Multi-
Start Iterative Local Search (M-ILS) algorithm and the SA 
algorithm. The principle of the M-ILS-SA algorithm is to 
construct multiple different initial solutions, to record all the 
discovered partitions after a neighborhood search operation, to 
implement globally optimize, and to solve the partition scheme 
by constructing a SA model. 
 
3.1 School Grouping Model 

The number of schools is a fixed value. In this paper, according 
to the principle of the K-Medoids model (Lai, Fu, 2011, Sheng, 
2006), we construct a K-Medoids model based on the schools' 
point layer of ArcGIS, in which the schools are grouped under 
certain constraint conditions with spatial aggregation as 
objective (Kong et al., 2017). 
 
In the K-Medoids model, K center points are randomly 
generated first and grouping results are obtained according to 
the K-Medoids algorithm. Then, we determine whether the 
grouping results satisfy the constraint conditions, and find m 
grouping results that satisfy the constraint conditions. Finally, 

the final grouping results are obtained by the shortest total 
distance from each school to the central school in the group as 
the objective condition. 
 
3.2 Constructing Initial Solution 

Based on the results of the school grouping, the seed region 
growing algorithm is used to construct an initial solution. The 
steps are as follows: 
 

1. Set the partition number of the spatial unit, where a 
school is located as the school group number and as an 
initial seed point. 
2. Construct adjacent unpartitioned units according to 
the current seed point. Get the list of the unpartitioned 
units adjacent to each partition. 
3. Randomly select a unit from the list of unpartitioned 
units, and assess whether the unit violates the partition 
restriction conditions. If it does not violate this condition, 
the unit will be added to the objective partition and the 
current partition updated. Otherwise, the unit will not be 
added. 
4. Repeat step 3 until we go through the whole list of 
unpartitioned units adjacent to each partition obtained by 
step 2. 
5. After completing step 4, use the boundary unit of a 
current partition as a new seed point to continue steps 2‒4 
until all unpartitioned units that can be added are added 
into their corresponding objective partitions. 
6. Make the following judgments for unpartitioned units 
that do not meet the conditions: (1) If the partition 
numbers of all adjacent units of a unpartitioned unit are the 
same, the unpartitioned units will be added into that 
numbering objective partitions. (2) If there are different 
partition numbers for the adjacent units of an unpartitioned 
unit, assume that the unpartitioned units will be added into 
different partitions, and determine whether the number of 
school enrollment is greater than or equal to the number of 
student enrollment. If all the conditions are satisfied or all 
the conditions are not satisfied, the unpartitioned units will 
be randomly added into their adjacent partitions. If only 
partial conditions are satisfied, the unpartitioned units will 
be randomly added into the partitions that satisfy the 
conditions. 

 
Since each step has only one unit that satisfies the conditions 
and be added into one partition when constructing an initial 
solution by the existing M-ILS-SPP algorithm (Kong et al., 
2017), we attempt to add all the adjacent unpartitioned units 
that satisfy the conditions into their corresponding objective 
partitions in step 3. The purpose of this step is to improve the 
efficiency of constructing an initial solution and save running 
time. Additionally, a random selection method used in this step 
is to obtain different initial partition schemes under multiple 
repetitions, and thus different initial partition schemes can be 
provided for the M-ILS algorithm. 
 
The initial partition scheme obtained by the above steps has 
spatial continuity, but some partitions do not satisfy the 
constraints. This problem can be solved by using the following 
neighborhood search operators. 
 
3.3 Neighborhood Search Operator 

Neighborhood search operators are used to adjust the partitions 
if the initial partition scheme does not satisfy the constraint 
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conditions. The following four neighborhood search operators 
presented in the M-ILS-SPP algorithm are used: 
 

1. 1-0 move: moving a boundary unit of the partition to 
be improved to the adjacent partition, involving the 
changes of two partitions. 
2. 1-1 move: the partition to be improved moves into a 
neighboring unit while removing a boundary unit, 
involving the changes of two or three partitions. 
3. 2-1 move: the partition to be improved moves into 
one neighboring unit, while removing two boundary units, 
involving the changes of two or three partitions. 
4. 1-1-1 move: moving three boundary units at the same 
time, involving multiple partitions. 

 
Especially for single-school district division, based on a 1-0 
move, the following two improved neighborhood search 
operators for four partitions and eight partitions, (1-0)4 move 
and (1-0)8 move, respectively, are designed to expand the search 
scope and improve the search speed: 
 

1.  (1-0)4 move: randomly select four partitions to be 
improved, and select one boundary unit from them, 
respectively, and move the selected boundary unit into an 
adjacent partition. 
2. (1-0)8 move: randomly select eight partitions to be 
improved, select one boundary unit from them, 
respectively, and move the selected boundary unit into an 
adjacent partition. 

 
Whether multi-school district division or single-school district 
division, random selection of neighborhood search operator is 
adopted in the neighborhood search process and only one 
search operator is chosen randomly in each search process. For 
multi-school district division, the search operator is randomly 
chosen from 1-0 move, 1-1 move, 2-1 move, and 1-1-1 move. 
For single-school district division, using the 2-1 move is not 
appropriate because it is difficult to find two units that can 
move simultaneously in a partition due to a large number of 
school districts and a small number of units. Therefore, the 
search operator is randomly chosen from 1-0 move, 1-1 move, 
1-1-1 move, (1-0)4 move, and (1-0)8 move in single-school 
district division. 
 
In the neighborhood search procedure, an objective value 
evaluation function to determine whether to accept the 
neighborhood solution is used as follows (Kong et al., 2017): 
 
    SSSS OODDSSF   ,                      (8) 

 
where  S = current solution 
 S' = neighborhood search solution 
 DS = current total student enrollment distance 
 DS' = total student enrollment distance after 
neighborhood search 
 α= a coefficient 
 OS = the total number of current over-enrolled 
students 
 OS' = the total number of over-enrolled students after 
neighborhood search 
 
When F(S, S') > 0, the neighborhood solution is accepted. The 
purpose of using this evaluation function is to reduce the 
student enrollment distance and the number of over-enrolled 

students at a cost of a smaller increase of student enrollment 
distance. 
 
3.4 SA Algorithm 

The SA algorithm proposed by (Kirkpatrick et al., 1983) has 
become one of the most popular heuristic methods to solve the 
combinatorial optimization problem. The SA algorithm 
simulates the physical annealing process, which starts from a 
given initial high temperature, a Metropolis sampling strategy 
with probabilistic jump characteristics is used to randomly 
search in the solution space, and a global optimal solution is 
obtained by a repeated sampling process with decreasing 
temperature. The advantage of the SA algorithm is to avoid 
falling into a local optimum (Liu et al., 2015). In this paper, we 
use the number of current student enrollment in each partition 
as the initial temperature T0, and use the number of school 
enrollment in each partition as the termination temperature Tf. 
The optimization problem is described as follows: 
 
   ii ODiF                                  (9) 

 
where  i = current status 
 Di = total student enrollment distance from each unit 
in a partition to the nearest school 
 Oi = the number of over-enrolled students 
 α= a coefficient 
 
After the SA optimization is completed, an optimal objective 
function is introduced in the SA model to obtain the optimal 
partition results. The optimal objective function is as follows 
(Kong et al., 2017): 
 
  DCMMinimizeF                    (10) 
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where  M = a sufficiently large integer 
 C = the number of over-enrollment in the partition 
scheme 
 D = the total student enrollment distance 

i =  a spatial unit 
 k = a district 
 Dik = the total student enrollment distance of i in k 
 
3.5 Procedure of School District Division 

Multi-school districts and single-school districts are divided 
according to the principle of “school grouping first and student 
assigning second”. The basic procedures of the two school 
district division are the same: the K-Medoids model is used first 
to group the schools, and then the proposed M-ILS-SA 
algorithm is used for partitioning. The main procedures for 
multi-school district division are as follows: 
 

1. School grouping. The K-Medoids model is 
constructed for grouping schools based on the schools’ 
point layer of ArcGIS. The grouping process ensures that 
each school point has spatial clustering. The difference 
between the number of school enrollment and the average 
number of school enrollment in each group cannot exceed 
the specified limit, and there is at least one high-quality 
school in each group. 
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2. Construction of initial solution. Use the spatial unit 
where the school is located as the initial seed area, and 
construct the initial solution by using the seed region 
growing algorithm. The obtained initial solution may not 
satisfy the constraint conditions, but at least guarantee the 
spatial continuity of the partitions. This process is carried 
out in the framework of the M-ILS algorithm framework 
and can get M initial partition schemes. 
3. Design of neighborhood search operators. Several 
neighbor search operators, such as 1-0 move, 1-1 move, 2-
1 move, and 1-1-1 move, are designed to adjust each initial 
partition if it does not satisfy the constraint conditions. 
4. Optimization of partition. Use the SA model to further 
optimize the partition results of the neighborhood search, 
and to find more partition schemes that satisfy the 
constraints from the global perspective, so as to determine 
the optimal partition scheme. 

 
Compared with the procedures of multi-school district division, 
there are two differences in the procedures of single-school 
district division. One is in the school grouping step: there is no 
need to group schools and each school is a group. The other is 
in the step of design of neighborhood search operators, which 
the neighborhood search operators are replaced by 1-0 move, 1-
1 move, 2-1 move, 1-1-1 move, (1-0)4

 move and (1-0)8 move. 
The basic flowchart of single-school and multi-school district 
divisions is shown in Figure 1. 
 

 
Figure 1. The basic flowchart of school district division 

 
4. EXPERIMENT AND RESULT ANALYSIS 

4.1 Study Area 

In this paper, we select Liunan District of Liuzhou City, China, 
as a study area and conduct multi-school district division and 
single-school district division for public primary schools in the 
study area. The study area includes 447 administrative villages 
or community spatial units, where 42 units have primary 
schools. The total number of student enrollment is 44,690. The 
total number of school enrollment is 47,895. Based on the 
school size and class size, 18 schools are set as high-quality 
schools and their total enrollment is 30,090. The study area and 
the distribution of the schools are shown in Figure 2a. 
According to the actual conditions, the map of original school 
district division is shown in Figure 2b. 
 
4.2 Multi-School District Division Experiment 

Multi-school district division in the study area simulates four to 
eight partitions. In school grouping, for keeping the number of 
school enrollment in each group within a certain scale, the 

number of enrollment is between 60% and 140% of the average 
number of school enrollment and there is at least one high-
quality school in each group. The parameters in the proposed 
M-ILS-SA algorithm for multi-school district division in this 
experiment are set as follows: multi-start number M = 10, 
neighborhood search iteration number N = 10, SA global 
optimization iteration I = 10, α=5 in the objective function. The 
results of school grouping, initial solution, the partitions 
improved by neighborhood search operators, and optimized 
partitions by the SA algorithm are shown in Figure 3. In detail, 
Figure 3a shows the results of school grouping: the school units 
with the same color are in the same group. Figure 3b shows the 
results of the initial partition scheme constructed by the results 
of school grouping, where one color is one partition. Figure 3c 
shows the results of the neighborhood search process, where the 
improved areas of the scheme are marked by four red rectangles. 
Figure 3d shows the optimal partition scheme from the 10 
different partition schemes after running the SA model, which is 
the same as the one shown in Figure 3c because it is the optimal 
partition scheme. 
 

 
 

 
Figure 2. Study area map (a) and original school district map (b) 

 
4.3 Single-School District Division Experiment 

Single-school district division is a special case of multi-school 
district division. The number of school districts for single-
school district division is 42 because the entire study area 
contains 42 schools, and then each school is a group in the 
school grouping. In this experiment, the parameters in the 
proposed M-ILS-SA algorithm for single-school district 
division are set as follows: multi-start number M=10, 
neighborhood search iteration number N=160, SA global 
optimization iteration I = 80, α= 5 in the objective function. The 
number of school districts in single-school district division is 
relatively large because if the number of iterations is too small, 
the neighborhood search process and the SA optimization 
process will be limited, and the search will not find a better 
solution. Therefore, in this experiment, the number of 
neighborhood search iterations and the SA global optimization 
iterations are set larger than in the above multi-school district 
division experiment. 

K-Medoids model 

Seed region growth algorithm 

Neighborhood search operator 

SA model 

Optimal partition scheme 

M-ILS-SA 
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Figure 3. The results of multi-school district division: School 
grouping map (a), initial partition scheme map (b), map of the 
partitions improved by neighborhood search operators (c) and 

final optimal partition scheme map (d) 

 
In the neighborhood search, if the four neighborhood search 
operators adopted in the multi-school district division are still to 
be used, then it is difficult to obtain a better solution under the 
current number of iterations. Moreover, if the number of search 
iterations is increased, the search time will become too long. 
Therefore, in this single-school district division experiment, we 
design two search operators, (1-0)4 move and (1-0)8 move, used 
for the improvement of four partitions and eight partitions, 
which can speed up the search and save time. Take the partition 
results obtained in the first run as an example. The results of 
school grouping, initial solution, the partitions improved by 

neighborhood search operators, and optimized partitions by the 
SA algorithm are shown in Figure 4. In detail, Figure 4a shows 
the results of school grouping. Figure 4b shows the results of 
the initial partition scheme constructed by the results of school 
grouping, where one color is one partition. Figure 4c shows the 
results of the neighborhood search process, where the improved 
areas of the scheme are marked by several red rectangles. Figure 
4d shows the obtained partition scheme after running the SA 
model, where the optimized areas of the scheme are marked by 
three red rectangles. Since the neighborhood search process 
does not obtain a partition scheme that satisfies the constraints, 
a further optimization process by the SA algorithm is performed. 
 

 
 

 
 

 
 

 
Figure 4. The results of single-school district division: School 
grouping map (a), initial partition scheme map (b), map of the 
partitions improved by neighborhood search operators (c) and 

final optimal partition scheme map (d) 
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4.4 Comparison and Result Analysis 

In order to improve the optimal performance for the partitioning, 
we used four random search mechanisms in the proposed M-
ILS-SA algorithm. The first is random selection of the units 
satisfying the conditions to join the objective partition to 
achieve regional growth in the initial solution. The second is 
random selection of a region to be improved in the 
neighborhood search. The third is random construction of 
neighborhood solution of neighborhood search operators. The 
fourth is random selection of a high temperature region for 
optimization in the SA model. For the partition schemes of the 
study area, the proposed M-ILS-SA algorithm is run 10 times to 
construct different initial solutions, and then the partition 
optimization is carried out. The diversity mechanism can 
effectively avoid falling into the local optimum problem. 
 
Figures 3c and 4c show that the neighborhood search process 
does not improve the individual partitions, but optimizes the 
partitions at a global level. This avoids the case where no 
partitions will be optimized after individual partitions are 
locally optimized. This is due to the diversity of initial solutions 
and the random search process that we use to achieve various 
results—the optimization process not only considers whether 
the partition to be improved is improved, but also considers 
whether the constructed neighborhood solution satisfies the 
constraints of the total student enrollment distance and the 
number of over-enrolled that can enable Equation (8) to 
evaluate the optimization process from a global perspective. 
Moreover, Figures 3 and 4 show that the partitioning schemes 
obtained by the proposed M-ILS-SA algorithm maintain spatial 
continuity. 
 
A comparison between the proposed M-ILS-SA algorithm and 
the existing M-ILS-SPP algorithm is made under the same 
conditions. The comparison results of multi-school district 
division and single-school district division are shown in Tables 
1 and 2, respectively, where DQ is district quantity, O-E is the 
total number of over-enrolled students in each partition, D is the 
total student enrollment distance of each unit in a partition to 
the nearest school, and T is the sum of the duration of the initial 
solution process, the neighborhood search process, and the SA 
model running process. 
 

DQ M-ILS-SPP M-ILS-SA 
 O-E D(km) T(s) O-E D(km) T(s) 
4 0 111109.05 504.1 0 111122.50 26.1 
5 0 93917.14 500.2 0 93872.95 28.8 
6 0 87251.61 472.1 0 87880.64 49.4 
7 0 87595.70 604.6 0 86680.10 40.2 
8 0 79129.41 576.6 0 80094.40 48.2 
Table 1. Comparison results of multi-school district division 

between M-ILS-SPP and M-ILS-SA 
 

DQ M-ILS-SPP M-ILS-SA 
 O-E D(km) T(s) O-E D(km) T(s) 
42 967 25064.52 1421.6 120 25099.85 320.6 
Table 2. Comparison results of single-school district division 

between M-ILS-SPP and M-ILS-SA 
 
From Tables 1 and 2, the total student enrollment distance of 
the M-ILS-SPP algorithm and the proposed M-ILS-SA 
algorithm is not much different because the partition schemes 
obtained by the two algorithms have spatial continuity and 

follow the nearby enrollment policy. However, we can also see 
two differences between the two algorithms: 
 

1. Tables 1‒2 show that the total elapsed time of the 
proposed M-ILS-SA algorithm is shorter than that obtained 
by the M-ILS-SPP algorithm. In the construction of an 
initial solution, the M-ILS-SPP algorithm only adds one 
unit that satisfies the conditions at each step, and thus it 
takes a long time. By contrast, in the proposed M-ILS-SA 
algorithm, we attempt to add all the adjacent unpartitioned 
units that satisfy the conditions into their corresponding 
objective partitions, and thus it accelerates the growth rate 
and saves a lot of time. 
2. Table 2 shows that the number of over-enrolled 
students of the proposed M-ILS-SA algorithm is obviously 
less than that obtained by the M-ILS-SPP algorithm in 
single-school district division. 

 
For single-school district division, we add the number of over-
enrolled students and the total student enrollment distance in 
the original school districts to show their comparisons with the 
ones of the M-ILS-SPP algorithm and the proposed M-ILS-SA 
algorithm, as shown in Figure 5, where the blue bar, red bar, 
and green bar represent the M-ILS-SPP algorithm, the proposed 
M-ILS-SA algorithm, and the original school districts, 
respectively. The number of over-enrolled students and the total 
student enrollment distance in the original school districts are 
statistics from the map of the original school district division 
shown in Figure 2b. The results of the proposed M-ILS-SA 
algorithm are less than the ones in the original school districts, 
and the proposed M-ILS-SA algorithm has good convergence. 
 

 
 

 
Figure 5. Comparisons of the number of over-enrolled students 

(a) and the total student enrollment distance (b) 

 
Compared with the M-ILS-SPP algorithm, the proposed M-ILS-
SA algorithm can greatly reduce the number of over-enrolled 
students in single-school district division, as shown in Figure 5a. 
The proposed M-ILS-SA algorithm uses the neighborhood 
search operators to perform a local search for partition 
improvement, and then combines the SA algorithm to perform 
global optimization again. The combination of the two 
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optimization algorithms enables the proposed M-ILS-SA 
algorithm to find the optimal solution to a greater extent. 
However, the M-ILS-SPP algorithm only uses the 
neighborhood search operators for partition improvement in the 
optimization process, and thus the two algorithms exhibit 
difference when the number of school districts is 42. 
 

5. CONCLUSIONS 

In this paper, an M-ILS-SA algorithm is proposed to solve the 
school district division problem. The proposed M-ILS-SA 
algorithm works in the framework of the M-ILS algorithm, and 
includes the construction of the initial solution, the design of 
neighborhood search operators, and global optimization and 
solution using the SA algorithm. Four random search 
mechanisms are used to achieve the diversity of the proposed 
M-ILS-SA algorithm, and the SA algorithm is introduced into 
the proposed M-ILS-SA algorithm for carrying out global 
optimization and solving the optimal partition scheme. An 
experiment shows that the proposed M-ILS-SA algorithm is 
suitable for both single-school and multi-school district division 
and has good searching ability and convergence. The following 
conclusions are reached: 
 

1. In the construction of the initial solution, adding all 
the adjacent unpartitioned units satisfying the conditions 
into their corresponding objective partitions can improve 
the efficiency of the initial solution construction and save 
time. 
2. In the neighborhood search process of single-school 
district division, the two improved neighborhood search 
operators (1-0)4 and (1-0)8 are effective at speeding up the 
search process. 
3. The SA algorithm is introduced to improve the 
partition schemes from a global perspective and can 
effectively avoid the local optimum limitation of the local 
search algorithm. 
4. Multiple partition schemes can be provided by using 
four random search mechanisms to achieve the diversity of 
the proposed M-ILS-SA algorithm. 
5. All the partition schemes obtained by the proposed 
M-ILS-SA algorithm satisfy the constraints of spatial 
continuity. 

 
Indeed, some practical issues, such as transportation, should be 
considered in the school district division problem. In this paper, 
we use spatial linear distance rather than road network distance 
as spatial distance. Therefore, future research will consider 
these practical issues to deal with the school district division 
problem. 
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