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ABSTRACT:

The performance and stability of Adaptive Neuro-Fuzzy Inference System (ANFIS) depend on its network structure and preset
parameter selection, and Particle Swarm Optimization-ANFIS (PSO-ANFIS) easily falls into the local optimum and is imprecise. A
novel ANFIS algorithm tuned by Chaotic Particle Swarm Optimization (CPSO-ANFIS) is proposed to solve these problems. A
chaotic ergodic algorithm is first used to improve the PSO and obtain a CPSO algorithm, and then the CPSO is used to optimize the
parameters of ANFIS to avoid falling into the local optimum and improve the performance of ANFIS. Based on the deformation data
from the Xiaolangdi Dam in China, three neural network algorithms, ANFIS, PSO-ANFIS, and CPSO-ANFIS, are used to establish
the dam deformation prediction models after data preparation and selection of influencing factors for the dam deformation. The
results are compared using evaluation indicators that show that CPSO-ANFIS is more accurate and stable than ANFIS and PSO-
ANFIS both in predictive ability and in predicted results.

* Corresponding author

1. INTRODUCTION

Dams are hydraulic constructions with the function of
controlling water flow for the development and utilization of
river water resources. Monitoring dam safety to predict dam
deformation is important for ensuring dam safety. Dam
deformation prediction models based on the neural network
algorithm have been widely used and rapidly developed, in
which the approximation capability of artificial neural network
(ANN) models have been used to fit the complex function
relationship between the monitoring effect of dam deformation
and related influential factors, to predict the function and effect
of the factors on the deformation. Compared with traditional
models, although the fitting prediction accuracy and
performance have been improved, the neural network has low
generalization ability and easily falls to the local minimum.

In order to solve these problems, optimized combination models,
such as the optimized combination model of the Adaptive
Neuro-Fuzzy Inference System (ANFIS) (Wu et al., 2017) and
the Particle Swarm Optimization (PSO) algorithm (Gu et al.,
2016), were introduced. ANFIS has been widely used in
landslide spatial modeling, estimation of elastic constant of
rocks, and prediction of swell potential of clay soils (Chen et al.,
2017, Tatar et al., 2016, Singh et al., 2012, Yilmaz, Kaynar,
2011, Liu et al., 2015). However, ANFIS is still prone to falling
into the local minimum and selecting the preset parameters is
difficult. The PSO algorithm and its improved algorithm are
widely used in classification, electric power system-related
issues, and job-shop scheduling problems (Xue et al., 2014,
Jordehi et al., 2015, Nouiri et al., 2018). However, the PSO
algorithm still easily falls into the local optimum and has poor
accuracy.

Several reports showed that the optimized combination model
can be applied to solve practical problems and can work well.
The Particle Swarm Optimization-ANFIS (PSO-ANFIS)
algorithm was used by (Zahmatkesh et al., 2017) to predict the
physical properties of rocks, and effectively improved the
estimation accuracy. An adaptive ANFIS and different meta-
heuristic algorithms were combined by (Razavi et al., 2018)to
map the ship flood disaster in Yarrow, Fars, and the results
showed that the model based on PSO-ANFIS was the most
practical. ANFIS and its improved algorithm were employed by
(Rezakazemi et al., 2017) to evaluate the performance of
hydrogen-selective mixed matrix membranes (MMMs) in
various operational conditions. Although the PSO algorithm
improves upon the convergence rate of the optimized
combination model, such as PSO-ANFIS, the optimized
combination model still easily falls into the local optimum and
has poor accuracy due to the defects in the PSO algorithm itself.

In order to overcome the defects of the PSO algorithm or the
optimized combination of the ANFIS and PSO algorithms,
chaos theory can be used to improve PSO performance. The
application of chaotic sequences instead of random sequences in
PSO is a powerful strategy to diversify the population of
particles and improve the PSO performance in preventing
premature convergence to the local minimum (Gao, Liu, 2016,
Liu et al., 2005, Coelho, Mariani, 2009, Rad et al., 2015, Hu et
al., 2013, Hong, 2009). In this contribution, we first propose a
novel chaotic PSO (CPSO) algorithm that uses a chaotic ergodic
algorithm to improve PSO. We then use the proposed CPSO
algorithm to optimize the ANFIS parameters. A novel CPSO-
tuned ANFIS (CPSO-ANFIS) algorithm is proposed and
applied to a dam deformation prediction example.
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2. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

ANFIS applies adaptive fuzzy reasoning. ANFIS operates by
constructing a fuzzy inference system based on a given set of
input and output data. It determines the fuzzy membership
function and fuzzy rules of the dataset by learning a large
amount of input data. The algorithm combines least squares and
error inversion to adjust the parameters of the membership
function and finally determines the fuzzy rules. ANFIS
essentially maps from fuzzy sets to constant sets or linear sets.

In order to create an ANFIS model, we needed to adjust two
parameter sets, premise and consequent parameters. To
determine the above parameters, we needed both a forward pass
and a backward pass in the hybrid training algorithm. For the
forward pass of this hybrid algorithm, the least squares
approach was applied to optimize the consequent parameters on
layer 4, by considering fixed parameters set in layer 1. Once the
optimal parameters for the corresponding parameters were
found, the output of the ANFIS was calculated in the backward
pass, whereas the errors were back propagated and the premise
parameters were modified by using the back propagation
method while the set parameters of layer 4 were fixed
(Zahmatkesh et al., 2017).

Due to the large number of ANFIS parameters, large
computational complexity, and complicated calculation process,
an efficient search method for finding global optimal parameters
is important for the selection of ANFIS parameters. Relevant
studies (Rezakazemi et al., 2017) have shown that, in most
cases, PSO-ANN-based hybrid methods provide more reliable
and accurate predictive capabilities than least-squares methods
and standard back-propagation algorithms, so PSO and
Improved PSO can be introduced into ANFIS to optimize the
algorithm.

3. CHAOTIC PARTICLE SWARM OPTIMIZATION
ALGORITHM

3.1 Particle Swarm Optimization

Assume that in a D-dimensional search space, there are m
particles that make up a particle swarm, where the position of
the ith particle in the D-dimensional search space is expressed
as a vector xi = (xi1, xi2,…, xiD)T and the velocity is expressed as
vi = (vi1, vi2,…, viD)T , i = 1, 2,…, m. The optimal position that
the ith particle has searched so far is Pi, called the individual
extremum. The individual optimal fitness value is Pibest. The
best position searched by the entire particle swarm so far is Pg,
which is called global extremum. The global optimal fitness
value is Pgbest. Each particle is iterated according to Equations (1)
and (2), updating its own speed and position (Nouiri et al.,
2018):

   1
1 1 2 2

n n n n n n n n
id id id id gd idv wv c r p x c r p x      (1)

1 1n n n
id id idx x v   (2)

where v k
id = the velocity of the dth dimension in the kth

iteration of particle
x k

id = the position of the dth dimension in the kth
iteration of particle

d = the dth variable in the D-dimensional search space
c1, c2 = non-negative acceleration constants
r1, r2 = random numbers between [0, 1]

n = the number of iterations
w = a non-negative number

3.2 Chaotic Particle Swarm Optimization Algorithm

In the PSO implementation process, PSO cannot ensure the
particles are evenly distributed in the entire solution space when
the solution space is too large, and the algorithm is prone to
falling into a local optimum. In contrast, chaos (Hao et al., 2017)
is a random state of motion obtained by a deterministic equation.
The traversal characteristics of chaotic motion enable chaotic
variables to traverse all states in a certain range according to
their “law” without repetition. Therefore, in this paper, we
introduce chaos traversal into the PSO algorithm and propose a
novel chaotic particle swarm optimization (CPSO) algorithm so
that the PSO algorithm can jump out of the local optimum for
improved performance. The chaotic optimization steps of CPSO
are as follows:

1. Chaotic search for the selected particles, and ensure
that the range of particles is [0, 1].
2. Obtain the chaotic variable.
3. Transform chaotic variables into the allowable
solution space of optimization problem.
4. Perform iterated search with chaotic variables.

The following Equations (3) and (4) are used in Step 2 and Step
4, respectively:

 1 1 , 0,1k k k kx x x x       (3)

where λ= he control parameter valued between 0 and 4

'
, , ( 1, 2 , ..., )i k i i ix o s x i n   (4)

where si = the value range of the ith independent variable
oi = the ith variable value endpoint

3.3 CPSO Tuned ANFIS Algorithm

The proposed CPSO-ANFIS integrates the chaotic particle
swarm optimization algorithm into ANFIS. With the help of the
efficient global search capability of the CPSO algorithm, the
relevant parameters of ANFIS are optimized. In CPSO-ANFIS,
each particle in the particle swarm represents a possible solution
and the goal is to obtain a minimum fitness value. When CPSO-
ANFIS is running, the training data are input first, and the fuzzy
C-means clustering algorithm is selected to determine the
antecedent membership function based on Sugeno's reasoning.
After constructing the neural network, the particle swarm is
generated according to CPSO and the particles in the particle
group are sequentially assigned to the relevant parameters of the
membership function of ANFIS, which is the optimization of
the prior parameters. Then, we used the least squares method to
determine the consequent parameters. When the program
continued to run, the corresponding performance index of those
parameters was obtained, which was passed back to the particle
swarm as the fitness value of each particle. Finally, if meeting
the stop criteria, the particle swarm algorithm jumps out after
several iterations, which means the ANFIS parameters have
been optimized. Otherwise, iterations continue.

The optimization procedures for ANFIS parameters using CPSO
are as follows, where the root mean squared error (RMSE n

i ) is
selected as the performance index in this study:
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1. Randomly initialize particle swarms in the sample
space.
2. Assign the position vector X n

id to the premise
parameter of the membership function.
3. Calculate the firing strength of each fuzzy rule.
4. Normalize the fitness of each rule.
5. Randomly generate the subsequent parameters p, q,
and r in the first iteration.
6. Calculate the actual output Y using the ANFIS
algorithm.
7. Based on actual output and target output, use the least
squares method to identify and update the conclusion
parameters p, q, and r.
8. Calculate RMSE n

i of the actual output and the target
output as the performance index.
9. Compare RMSE n

i with Pibest. If RMSE n
i < Pibest then

Pibest = RMSEn
i , Pi = Xn

d .
10. Compare Pgbest with Pibest. If Pibest < Pgbest, then Pgbest =
Pibest ,Pg = Pi.
11. Update the velocity and position of the particles, and
return to Step 2 to execute the next iteration. When all
particles complete iteration, execute the next Step l.
12. Select 20% of the optimal particles (i.e., the top 20%
of Pgbest particles) as data for the chaotic search and convert
them to the range of [0, 1]. Then obtain the chaotic
variables based on the logistic map.
13. Transform chaotic variables into the allowable
solution space of the optimization problem.
14. Execute Steps 2–11 to implement the iterative search
of chaotic variables.
15. If Pgbest remains unchanged after multiple searches or
reaches a maximum number of iterations, the search
terminates. Continue to Step 16.
16. To maintain the diversity of the particles, the
remaining 80% of the particles are randomly generated in
the dynamic contraction region.
17. Randomly generate the remaining 80% of the
particles and to execute Steps 2–11 .
18. If Pgbest remains unchanged or reaches a maximum
number of iterations after multiple searches, end search.
19. Generate and obtain the optimal Pgbest, the smallest
RMSE value, and the optimal parameter set of the
optimization procedures.

The following dynamic contraction equations are used in Step
16:

min, min, max, min,max{ , ( )}, 0 1j j gj j jm x x r x x r      (5)

max, m in, m ax, m in,m in{ , ( )}, 0 1j j gj j jx x x r x x r      (6)

where xgj = the value of the current Pg in the jth dimension
xmin,j = the minimum
xmax,j = the maximum

Accordingly, the main implementation steps of CPSO-ANFIS
are as follows:

1. Data collection and standardization. Due to the
different dimensions, the input influence factor values need
to be normalized. After normalization, the range of all the
data are in the range of [–1, 1].
2. Divide the original data into a training subset and a
test subset.
3. Create an initial Fuzzy Inference System (FIS) using
the fuzzy C-means (FCM) cluster. The clustering method
divides the data into sub-regions. Each sub-region

corresponds to a fuzzy rule. According to the structural
characteristics of each sub-region, the method learns and
extracts the membership functions of the linguistic
variables in each piece of fuzzy rules. Then the firing
strength is calculated.
4. Optimize ANFIS parameters by CPSO, as described
in the above Steps 1–19.
5. Results output. The output of the results is displayed
with mean-square error (MSE), root-mean-square error
(RMSE), average error (Error Mean), standard deviation
(Error Std), and correlation analysis index (R2) as
indicators.

The following normalized equation is used in Step 1:

max

max min

ˆ 2 1
x x

x
x x


  


(7)

where x̂ = the normalized sample data
x = the original sample data
xmax = the maximum values of the influence factor
xmin = the minimum values of the influence factor

4. DAM DEFORMATION PREDICTION

4.1 Data and Influential Factors

In this paper, we aimed to perform horizontal displacement
monitoring, which is one type of deformation monitoring.
Combined with the characteristics and actual conditions of the
Xiaolangdi Dam, the horizontal displacement monitoring along
the water flow direction uses the collimation line method and
the horizontal displacement monitoring along the axis direction
of the dam uses the distance measurement method. In order to
verify the performance of the proposed CPSO-ANFIS algorithm,
the horizontal displacement of the Y-axis of a survey point of
the dam crest was used as a research example. The deformation
amount is shown in Table 1, where Cyc is the number of
observations and Dis means a corresponding displacement.

Cyc Dis Cyc Dis Cy
c Dis Cy

c Dis

1 1.56 14 –1.138 27 0.785 40 1.99
2 0.869 15 0.245 28 0.54 41 1.873
3 1.683 16 1.187 29 0.044 42 1.382
4 2.536 17 0.83 30 –0.915 43 0.468
5 0.412 18 1.388 31 –1.439 44 0.785
6 –0.859 19 1.666 32 –1.924 45 –1.11
7 –0.185 20 1.873 33 –1.461 46 –1.656
8 –0.842 21 1.644 34 –1.333 47 –1.032
9 –0.932 22 1.36 35 –0.948 48 –0.748
10 –1.132 23 0.903 36 –0.859 49 –0.67
11 –1.339 24 1.315 37 0.261 50 1.705
12 –1.478 25 0.975 38 1.07 51 1.984
13 –1.216 26 1.326 39 1.839
Table 1. The displacement of a certain point along the Y-axis at

the top of the dam (dm)
The original observational factors are shown in the following
Table 2, where Cyc is the number of observations, t is the
interval days of observations, H is the water level of the observe
day, T0 is the temperature of the observe day, and T5 is the
temperature five days ahead of the observation day.

Cyc t H T0 T5

1 0 240.9 18.8 18.1
2 15 237.45 19 17.8
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3 18 243.26 19.4 18.6
4 15 234.24 19.6 19.1
5 14 238.5 20 19.8
6 35 237.2 21.8 18.8
7 22 243.2 23 19
8 28 240.96 24.4 19.4
9 40 239.3 25.3 19.6
10 17 240.45 25.5 20
11 15 240.2 25.6 21.8
12 17 240.1 25 23
13 14 240.06 24.5 24.4
14 16 239.85 24 25.3
15 14 241.1 23.2 25.5
16 19 242.03 22.3 25.6
17 21 239.7 21.6 25
18 25 239.36 20.2 24.5
19 13 238.16 19.3 24
20 11 239.16 19 23.2
21 24 239.3 19.6 22.3
22 14 239.2 20.3 21.6
23 13 238.2 20.8 20.2
24 13 240.5 21.4 19.3
25 22 241.1 22 19
26 14 242.4 22.4 19.6
27 14 241.42 23 20.3
28 19 242.1 23.5 20.8
29 16 240.56 24.1 21.4
30 13 240.6 24.6 22
31 15 238.5 25.2 22.4
32 20 238.8 25.7 23
33 17 239.6 25.8 23.5
34 14 240.2 25.4 24.1
35 13 240.7 25 24.6
36 15 239.8 24.4 25.2
37 13 240.5 23.6 25.7
38 27 239.95 21.9 25.8
39 29 240.3 20.3 25.4
40 33 240.8 19.6 25
41 32 239.7 20 24.4
42 31 239.3 21.2 23.6
43 31 239.5 22.7 21.9
44 32 243.15 24.2 20.3
45 31 238.5 25.1 19.6
46 39 239.1 25.8 20
47 27 241 25.6 21.2
48 22 240.35 25 22.7
49 28 239.56 23.8 24.2
50 36 242.2 21.4 25.1
51 26 241.25 20.3 25.8

Table 2. The original observational factors

The factors influencing dam deformation selected in this paper
were H1, H2, H3, T0, T5, and θ, where H1, H2 and H3 represent
the power of every water level, T0 and T5 represent the
temperature component influencing factors, and θ represents the
aging factor. The function mapping relationship between the six
factors and the displacement value δ can be established by an
ANFIS model. The values of the influencing factors θ, H2, and
H3, selected in this paper can be calculated from the data in
Table 2 and used as input samples for the ANFIS network.

4.2 Model Establishment

To compare our proposed CPSO-ANFIS prediction model, we
established other two models, an ANFIS model and a PSO-
ANFIS model. The three models used the same training and test
data sets as control variables, and their model parameters were

set to the same values as much as possible. In particular, the
neural network parameters for PSO-ANFIS and CPSO-ANFIS
were set the same as those for ANFIS. From above, the input
samples included H1, H2, H3, T0, T5, and θ—six impact factors.
The output samples were the horizontal displacement values or
components of the dam. Therefore, the number of input neurons
in the network was six and the number of output neurons was
one. The specific parameters for the three models are provided
in Tables 3–5, respectively.

Parameter Description
Fuzzy structure Sugeno-type
Initial FIS Genfis3
Number of clusters Automatic
Number of inputs 6
Number of outputs 1

Optimization method
Hybrid (least squares and

back propagation
techniques)

Fuzzy rule number Automatic
Maximum number of training 1000
Initial step size 0.01
Step reduction rate 0.9
Step increase rate 1.1

Table 3. Parameters for ANFIS

Parameter Description
Maximum number of iterations 1000
Number of particles 25
Initial inertia weight 1
Inertia weight damping ratio 0.99
Acceleration constant 1
Acceleration constant 2

Table 4. Parameters for PSO-ANFIS

Parameter Description
Maximum number of iterations 1000
Number of particles 25
Initial inertia weight 1
Inertia weight damping ratio 0.99
Acceleration constant 1
Acceleration constant 2
Maximum number of steps in chaotic search 15

Table 5. Parameters for CPSO-ANFIS

4.3 Results and Analysis

In this example, there are 52 sets of sample data. All three
models used the first 70% as input and output sample data for
training (the first 35 periods of data), and the last 30% was used
for testing (after 17 periods of data). In the proposed CPSO-
ANFIS model, the chaotic optimization used only the first 20%
of particles, which were the best particles, and the remaining
80% particles were randomly generated.
In order to compare different estimation models, mean-square
error (MSE), root-mean-square error (RMSE), average error
(Error Mean), standard deviation (Error Std), and correlation
analysis index (R2) between model output and measured data
were used as performance criteria, for which the equations are:

 2exp

1

1=
n

n
sim

i
MSE x x



 (8)

 2exp

1

1
n

n
sim

i
RMSE x x



  (9)
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 exp

1

1 n
sim

i
ErrorMean x x

n 

  (10)

 2 1

1

1 ,
n simn

sim m m i

i

x
ErrorStd x x x

n n




    (11)

exp
1 12

1

1 ,
n sim n
i i sim

mn sim m
i

x x x
R x

nx x
 



    
  

 


(12)

where xexp = the target value
xsim = the model output
n = the number of experimental data

A predictive model with high-accuracy is desired when MSE,
RMSE, Error Mean, and Error Std are near to 0 and R2 is 1.
Figures 3–5 exhibit the running results of the ANFIS, PSO-
ANFIS, and CPSO-ANFIS, respectively. Each result is divided
into two parts: training result and test result. From Figures 3–5,
the fitting degree between the output value and the target was
higher and the error was smaller in the training part of the three
models. Among them, the fitting degree of CPSO-ANFIS was
the best, followed by PSO-ANFIS, then ANFIS. In contrast, the
error value for CPSO-ANFIS was the smallest, followed by
PSO-ANFIS and ANFIS.

Among the three models, although the fitting degree in the
prediction part was smaller than that in the training part, and the
error in the prediction part was larger than in the training part,
this is in line with scientific logic. Notably, the results of the
prediction part were the same as those of the training part. The
fitting degree from good to bad was CPSO-ANFIS, PSO-
ANFIS, and ANFIS, and error from small to large was CPSO-
ANFIS, PSO-ANFIS, and ANFIS.

The comprehensive results of the training part error and the
prediction part error are shown in Table 6. From Table 6,
ANFIS had the highest MSE, RMSE, Error Mean, and Error Std
values, followed by PSO-ANFIS and CPSO-ANFIS, which
indicates that the CPSO-ANFIS error was the smallest among
the three models. Moreover, the correlation coefficients of the
three models were very high, all over 90%, and the R2 value for
CPSO-ANFIS was the highest among the three models, which
means CPSO-ANFIS has the highest reliability. Regarding the
experimental results, CPSO-ANFIS outperformed the other two
models in terms of reliability and lowest estimation error. The
chaotic ergodic algorithm can be used for improving the search
accuracy and performance of the PSO-ANFIS model. Therefore,
the proposed CPSO-ANFIS model can be used to predict dam
deformation.

Figure 3. Top: The training results of ANFIS. Bottom: The test
results of ANFIS

Figure 4. Top: The training results of PSO-ANFIS. Bottom: The
test results of PSO-ANFIS
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Figure 5. Top: The training results of CPSO-ANFIS. Bottom:
The test results of CPSO-ANFIS

criteria ANFIS PSO-ANFIS CPSO-ANFIS
MSE 0.158189 0.102088 0.081455
RMSE 0.375647 0.311966 0.283229
Error Mean 0.06351 –0.05759 –0.02124
Error Std 0.371678 0.304236 0.286796
R2 0.9495 0.970489 0.971135
Table 6. The training and prediction results of the three models

(mm)

5. CONCLUSIONS

In this study, we aimed to investigate how to improve PSO and
PSO-ANFIS. The solution we adopted used a chaotic ergodic
algorithm in PSO to propose a novel CPSO algorithm, and then,
by combining CPSO rather than POS with ANFIS, we proposed
and constructed a novel CPSO-ANFIS algorithm. In CPSO-
ANFIS, the chaotic ergodic algorithm allows the particles to
jump out of the local optimum and distribute evenly throughout
the solution space, so a more complex spatial search was
implemented and more accurate parameters were obtained.
Because the parameters of CPSO-ANFIS are updated iteratively
until the optimal results are obtained, the performance of the
algorithm and the precision of search were considerably
improved. We applied CPSO-ANFIS to a dam deformation
prediction example, which evaluation indicators such as MSE,
RMSE, Error Mean, Error Std, and R2 showed that CPSO-
ANFIS is more accurate and stable than ANFIS and PSO-
ANFIS, both in predictive ability and predicted results. This we
foresee as the next area for researchers with an interest in
applying CPSO-ANFIS to other studies, or introducing chaos
ergodic algorithm into other algorithms, such as the ant colony
algorithm or monkey colony algorithm, and forming some new

hybrid algorithms through combinations with neural network
algorithms.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China under grant number 41461085; the Natural
Science Foundation of Guangxi Province under grant number
2016GXNSFAA380035; the Foundation of Guangxi Key
Laboratory of Spatial Information and Geomatics under grant
number 16-380-25-04; the “BaGui Scholars” Special Funds of
Guangxi Province under grant number 2019-79; and the
Doctoral Foundation of Guilin University of Technology under
grant number 1996015.

REFERENCES

Chen, W., Panahi, M., Pourghasemi, H. R., 2017. Performance
evaluation of GIS-based new ensemble data mining techniques
of adaptive neuro-fuzzy inference system (ANFIS) with genetic
algorithm (GA), differential evolution (DE), and particle swarm
optimization (PSO) for landslide spatial modelling. Catena, 157,
310–324.

Coelho, L. D. S., Mariani, V. C., 2009. A novel chaotic particle
swarm optimization approach using Hénon map and implicit
filtering local search for economic load dispatch. Chaos
Solitons & Fractals, 39(2), 510-518.

Gao, Y., Liu, Y. J., 2016. Adaptive fuzzy optimal control using
direct heuristic dynamic programming for chaotic discrete-time
system. Journal of Vibration & Control, 22, 595-603.

Gu, S., Cheng, R., Jin, Y., 2016. Feature selection for high-
dimensional classification using a competitive swarm optimizer.
Soft Computing, 22(3), 811-822.

Hao, P., Wang, Y., Liu, C., Wang, B., Wu, H., 2017. A novel
non-probabilistic reliability-based design optimization
algorithm using enhanced chaos control method. Computer
Methods in Applied Mechanics & Engineering, 318, 572-593.

Hong, W. C., 2009. Chaotic particle swarm optimization
algorithm in a support vector regression electric load forecasting
model. Energy Conversion & Management, 50(1), 105-117.

Hu, W., Liang, H., Peng, C., Du, B., Hu, Q., 2013. A Hybrid
Chaos-Particle Swarm Optimization Algorithm for the Vehicle
Routing Problem with Time Window. Entropy, 15(4), 1247-
1270.

Jordehi, A. R., Jasni, J., Wahab, N. A., Kadir, M. Z., Javadi, M.
S., 2015. Enhanced leader PSO (ELPSO): A new algorithm for
allocating distributed TCSC’s in power systems. International
Journal of Electrical Power & Energy Systems, 64, 771-784.

Liu, B., Wang, L., Jin, Y. H., Tang, F., Huang, D. X., 2005.
Improved particle swarm optimization combined with chaos.
Chaos Solitons & Fractals, 25(5), 1261-1271.

Liu, H., Tian, H. Q., Li, Y. F., 2015. Comparison of new hybrid
FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and
Wavelet Packet-ANFIS for wind speed predictions. Energy
Conversion & Management, 89, 1-11.

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., Ammari, A. C., 2018.
An effective and distributed particle swarm optimization

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-1207-2020 | © Authors 2020. CC BY 4.0 License.

 
1212



algorithm for flexible job-shop scheduling problem. Journal of
Intelligent Manufacturing, 29, 603-615.

Rad, H. N., Jalali, Z., Jalalifar, H., 2015. Prediction of rock
mass rating system based on continuous functions using Chaos–
ANFIS model. International Journal of Rock Mechanics &
Mining Sciences, 73, 1-9.

Razavi, S. T., Kornejady, A., Pourghasemi, H. R., Keesstra, S.,
2018. Flood susceptibility mapping using novel ensembles of
adaptive neuro fuzzy inference system and metaheuristic
algorithms. Science of the Total Environment, 615, 438-451.

Rezakazemi, M., Dashti, A., Asghari, M., Shirazian, S., 2017.
H2 - selective mixed matrix membranes modeling using ANFIS,
PSO-ANFIS, GA-ANFIS. International Journal of Hydrogen
Energy, 42, 15211-15225.

Singh, R., Kainthola, A., Singh, T. N., 2012. Estimation of
elastic constant of rocks using an ANFIS approach. Applied Soft
Computing Journal, 12(1), 40-45.

Tatar, A., Barati, A., Yarahmadi, A., Najafi, A., Lee, M.,
Bahadori, A., 2016. Prediction of carbon dioxide solubility in
aqueous mixture of methyldiethanolamine and N-
methylpyrrolidone using intelligent models. International
Journal of Greenhouse Gas Control, 47, 122-136.

Wu, D., Chen, H., Huang, Y., He, Y., Hu, M., Chen, S., 2017.
Monitoring of weld joint penetration during variable polarity
plasma arc welding based on the keyhole characteristics and
PSO-ANFIS. Journal of Materials Processing Technology, 239,
113-124.

Xue, B., Zhang, M. J., Browne, W. N., 2014. Particle swarm
optimisation for feature selection in classification: Novel
initialisation and updating mechanisms. Applied Soft Computing
Journal, 18, 261-276.

Yilmaz, I., Kaynar, O., 2011. Multiple regression, ANN (RBF,
MLP) and ANFIS models for prediction of swell potential of
clayey soils. Expert Systems with Applications, 38(5), 5958-
5966.

Zahmatkesh, I., Soleimani, B., Kadkhodaie, A., Golalzadeh, A.,
Abdollahi, A. M., 2017. Estimation of DSI log parameters from
conventional well log data using a hybrid particle swarm
optimization–adaptive neuro-fuzzy inference system. Journal of
Petroleum Science & Engineering, 157, 842-859.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-1207-2020 | © Authors 2020. CC BY 4.0 License.

 
1213


	A OPTIMIZATION TUNED ADAPTIVE NEURO-FUZZY INFERENC
	1.INTRODUCTION
	2.ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
	3.CHAOTIC PARTICLE SWARM OPTIMIZATION ALGORITHM
	3.1Particle Swarm Optimization
	3.2Chaotic Particle Swarm Optimization Algorithm
	3.3CPSO Tuned ANFIS Algorithm

	4.DAM DEFORMATION PREDICTION
	4.1Data and Influential Factors
	4.2Model Establishment
	4.3Results and Analysis

	5.CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES



