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ABSTRACT:

Airborne Light Detection And Ranging (LiDAR) has become an important means for efficient and high-precision acquisition of 3D
spatial data of large scenes. It has important application value in digital cities and location-based services. The classification and
identification of point cloud is the basis of its application, and it is also a hot and difficult problem in the field of geographic
information science.The difficulty of LiDAR point cloud classification in large-scale urban scenes is: On the one hand, the urban
scene LiDAR point cloud contains rich and complex features, many types of features, different shapes, complex structures, and
mutual occlusion, resulting in large data loss; On the other hand, the LiDAR scanner is far away from the urban features, and is like a
car, a pedestrian, etc., which is in motion during the scanning process, which causes a certain degree of data noise of the point cloud
and uneven density of the point cloud.
Aiming at the characteristics of LiDAR point cloud in urban scene.The main work of this paper implements a method based on the
saliency dictionary and Latent Dirichlet Allocation (LDA) model for LiDAR point cloud classification. The method uses the tag
information of the training data and the tag source of each dictionary item to construct a significant dictionary learning model in
sparse coding to expresses the feature of the point set more accurately.And it also uses the multi-path AdaBoost classifier to perform
the features of the multi-level point set. The classification of point clouds is realized based on the supervised method. The
experimental results show that the feature set extracted by the method combined with the multi-path classifier can significantly
improve the cloud classification accuracy of complex city market attractions.
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1. INTRODUCTION

The difficulty of laser radar point cloud classification in large-
scale urban scenes lies in: on the one hand, urban scenes have
many types of objects, different shapes, complex structures,
mutual occlusion, and like cars, pedestrians, etc. are in motion
during scanning. It causes a certain degree of stretching and
deformation of the point cloud. On the other hand, the LiDAR
scanner is far away from the urban ground object, which
reduces the accuracy of the point cloud and brings higher data
noise.
LiDAR point cloud classification methods based on point sets
and contexts need to extract and construct single point or point
set features [1]. Single point features mainly include average
points, average normal vectors [2], etc. The calculation of
feature based on single point is relatively simple, and can
express the difference of characteristics of each point differently
from other points, but this kind of feature ignores the feature
similarity and interrelationship between adjacent points, and the
density of point clouds. Changes and noise are sensitive and can
easily lead to the misclassification of different types of
morphologically similar areas in complex urban scenes. The
feature of the point set inherits the advantages of the single
point feature, and considers the correlation between adjacent
points, which is not sensitive to the change of the point density,
but needs to determine the size of the support area of each point
reasonably. This paper mainly classifies point clouds by
constructing multi-
level point sets and describing the characteristics of point sets in
each level.
This paper proposes a new framework to extract shape features
from features in urban LiDAR point cloud scenes, and then uses
the multipath AdaBoost classifier to classify the ground objects.

The frame is particularly suitable for identifying objects with
relatively small shapes, such as cars and pedestrians. First,
based on the natural exponential function threshold algorithm,
the input LiDAR point cloud that removes the ground point is
segmented into Nature Exponential-based Hierarchical Point
Clusters (NEHPCs); then, the Sparse Coding and Latent
Dirichlet Allocation (SCLDA) is used to construct the shape
features of the point set based on the single point feature; finally,
the AdaBoost classifier is used to distinguish ground objects
from the LiDAR point cloud, and the LiDAR point cloud of
different urban scenes is used to test the method.
The main contributions of this section are as follows:
1) Considering the difference in the spatial extent of the object
entities, we propose a method based on the natural exponential
function to construct a multi-level point set, that is, use the
natural exponential form to control the segmentation thresholds
of each level in the point cloud, the point cloud is then
segmented using graph cuts [3] and normalized cuts [4]. Since
the constructed point set is multi-level, the features extracted
from the multi-level point set are more robust than the point-
based features, and they can adapt to the change of the point
cloud density.
2) Use SCLDA to extract the shape features of each point set
in NEHPCs. Since SCLDA combines the advantages of sparse
coding and LDA, LDA can extract features of the same length
from a set of points with different numbers of points. Sparse
coding can identify the correlation between different features,
eliminate redundant expression, and retain significant features.
SCLDA can better express the feature of point set, and at the

same time, further improve the degree of discrimination of the
set of points to be discriminated by means of the inheritance of
different sets of point sets.

2. RELATED WORK

Biosca et al. [5] used unsupervised fuzzy clustering to planarly
segment the point cloud, which can also be extended to the
recognition of surface morphology of non-planar objects.
Barnea and Filin [6] converted the point cloud into a depth map,
and then used the image, and used the mean-shift algorithm [7]
to separate the depth map and the image independently. Finally,
they combined the segmentation results to obtain good
clustering. Then, based on the previous work [7], Barnea
improved the segmentation algorithm of depth map and image
[8]. In order to get better segmentation boundary and
segmentation region, an iterative segmentation method was
designed, but the method cannot achieve the purpose of
segmentation of the target object. Rusu et al. [9] mainly classify
indoor LiDAR point clouds, including kitchen scenes. By
dividing the indoor point cloud meaningfully, the main
segmentation unit is a meaningful entity, by resampling and
removing outliers. To preserve the gap between the cabinet
doors, this method can only be segmented for a single object,
and at the same time, it needs to have prior knowledge of the
features in the scene. Yokoyama et al. [10] extracted rod-shaped
features in the on-board LiDAR cloud. First, in order to
highlight the rod-shaped features and the planar features, the
point cloud is contracted by Laplacian smoothing, and then the
point cloud is formed into a rod-shaped, planar, and mixed
ground by clustering, finally, they identified the rod-like
features through some combination rules.
Multi-level neighborhoods can be implemented by setting the
multi-level neighborhood size [11] or adaptively determining
the neighborhood size based on the scale parameter [12]. In
addition to multi-level neighborhoods, multi-scale features
based on multi-level segmentation have also been studied by
many scholars. Wang et al. [13] used a multi-scale multi-level
framework to handle Terrestrial Laser Scanning (TLS) point
clouds in complex urban scenes. Within this framework, the
point cloud is first resampled into point clouds of different
scales. The point clouds resampled at each scale are aggregated
into multi-level point sets, and the point set features at each
level of each scale are expressed by means of LDA. Then, each
point set is classified by the classifier to be classified into the
respective categories. Another method based on multi-level
segmentation is used in image classification [14]. This method
divides the image into multi-level superpixels, and then
aggregates the local neighborhood points with similar color and
texture features into one class. Brodu and Lague [15] used
multi-scale local features to classify TLS point clouds. Because
of the combination of features at different scales, this method
has better classification than single-scale features. The
classification of TLS point clouds with missing partial data has
certainly robust. Pauly et al. [16] proposed a multi-scale
classification framework for discrete surface analysis and
multiscale feature extraction in a multiscale framework. Xiong
et al. [17] subdivided point cloud data from coarse to
subdivided into multiple levels. These levels include point-
based and region-based hierarchies. In this multi-level structure,
the previous level of discrimination is used. At a level, semantic
features are formed, and point cloud classification is performed
by means of statistics and associated information. Xu et al. [18]
used three levels of point cloud classification, namely single
point level, plane segmentation level and level segmented by
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mean-shift method [7]. The method extracts features at these
three levels for segmentation. The contextual and shape features
of the point cloud are determined from different levels. Based
on spectral information, geometry and topological features, the
literature [19] proposes a rule-based multi-level semantic
classification framework.
The object entities in the LiDAR point cloud scene are rich and
complex, and a discriminative feature that is insensitive to point
density is needed to describe the objects in the point cloud. At
the same time, this feature needs to have scale invariance. There
is a certain difference in the point density of objects in the point
cloud, which may result in different point cloud distributions of
the same species, and different types of features have the same
point cloud distribution locally. Therefore, the feature of
expressing a feature needs to have a high degree of
discrimination. However, local features in a single range are
difficult to identify the object entities better, and different local
ranges are used to identify the ground objects, which can get
better recognition results. Therefore, we propose a multi-level
point cloud classification framework, which can effectively
obtain the shape features of objects from complex airborne laser
point cloud scenes. Each level of point set trains the respective
classifier. By combining the discriminant results of the different
levels of the point set to be identified, it is possible to determine
the category of the set of points to be identified from different
spatial ranges, and improve the distinguishability of the feature
of the point set. Further, a more accurate point set
discrimination result is achieved. In this way, the set of points
to be identified can be jointly classified by using different levels
of recognition results. The multi-level architecture can
effectively improve the classification accuracy of object point
clouds, especially the classification accuracy of small objects.

3. METHOD

3.1 Build a multi-level point set

The extraction of single-point features requires a certain support
area, and the size of the support area affects the quality of the
point features, especially in areas with complex scenes. In order
to overcome the influence of single point features on
classification instability, we cluster point clouds into point sets
according to certain rules, and use point sets to judge the
category attribution of single points. Compared with single-
point feature classification, the point set-based method is more
stable and efficient, because it contains and integrates more and
more significant feature information.
This paper proposes a point threshold control method based on
natural index change to construct a multi-level point set. The
multi-level point set generated by this method has certain
variability, and different levels of point sets can cover different
spatial ranges. The point cloud is segmented by the method of
this paper. Entities (such as buildings and cars) with large
spatial differences in the point cloud can be synchronized and
fully segmented, especially small objects that are difficult to
segment. Different levels of point sets show good variability,
and different range of point sets can provide more abundant
spatial features, which is helpful for the identification of target
point sets. Building a multi-level point set includes the
following steps[20]:
(1) Remove ground points and isolated points. Because this
paper mainly studies an efficient method based on point set
entity shape feature, and classifies and recognizes different
entities based on shape features, we need to remove ground

points.
(2) Construct a graph structure of the point cloud. After
removing the ground point, most of the features in the point
cloud are isolated. To segment the point cloud, the point cloud
after removing the ground point needs to be organized in a
certain way.
Perform a preliminary segmentation of the point cloud
(3) using the graph cut method. Because some areas in a point
cloud scene are more complex, such as some features have
some aggregation or occlusion, the connected components of
the area may contain multiple feature entities, so we need to
further segment the connected components. Graph cuts can
minimize the similarity between categories, and the intraclass
similarity is the largest. By disconnecting the edges with the
least weight among the connected components, the connections
inside each feature are the closest.
(4) After the above segmentation, although some aggregated
point sets are segmented to some extent, there are still point sets
containing multiple features in the point set, which is
determined by the complexity of the scene. In order to obtain a
higher-resolution point set feature, a point set can only contain
one feature or a part of the feature, and the point distribution in
each point set is relatively consistent. Since the normalized cuts
balance the relationship between the points of the point sets and
the points inside the point sets, not only the weight of the edge
between the points is minimized, but also the spatial extent
between the points is not much different. Therefore, we use the
normalized cuts method to divide the point cloud into multi-
level point sets, which can effectively divide the point set into
point sets with similar distribution, and at the same time
separate the points with dissimilar distribution.

3.2 Multi-level point set features construction

Different levels of point sets contain different numbers of points.
In order to better express the characteristics of point sets,
inspired by the BoW method, we introduce sparse coding to
describe the characteristics of point sets. Sparse coding has
obvious advantages in dictionary extraction and feature
representation. It has the following basic assumptions: input
data can be represented by a linear combination of words in an
overcomplete dictionary. Among them, the dictionary can be
obtained through point-based feature training. First, we define a
point set as a document, and all the point sets make up a set of
documents. A dictionary obtained by sparse coding is defined as
a dictionary of LDA. Each point-based feature in the point set is
used as the basic unit, and the features of the point are sparsely
expressed using sparse coding. In each point set, the frequency
at which each word appears is calculated to generate a word
frequency vector having a length of N (where N represents the
number of words in the dictionary). The SCLDA model is
trained through point-based features, which include the
following steps:
(1) Point feature normalization
All point feature matrices F are normalized by column using
equation (1). After all the columns are normalized, they are then
trained in the dictionary and sparsely expressed.

� = �ulim
l��ulim （1）

where, n represents the normalized value of the sub-items in the
feature vector, f represents the value of the current sub-item,
max represents the maximum value in each column of F, and
min represents the minimum value in each column of F.
(2) Construct a sparse coding model based on point features
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Let all point features be normalized to X = [x1, x2, …, xq]t,
where q is the number of point features. The sparse coding
model for constructing the point feature X, the dictionary V,
and the sparse expression U is as shown in the equation (2).

��� = limݎ�� � u �� �
� � � �

Subject to �� � �，�� = �������� （2）

(3) Training of the dictionary
The training of the dictionary V is obtained by U and V iterative
solution. When V is fixed, U is obtained by the Feature Sign
Method; when U is fixed, V is solved by Lagrange Dual
Method. Through such several iterations, when the objective
function converges, the optimal dictionary V is obtained.
(4) Sparse expression
After the dictionary V is optimized, the sparse expression of the
input point feature X is calculated, and the feature signature
method is used to solve the sparse representation code U based
on the point feature.
(5) Extracting NEHPC features based on SCLDA
Through the above steps, the sparse expression result U of each
point feature is obtained, and the frequency of occurrence of
each word in each point set needs to be counted, and the
frequency at which each word appears forms a word frequency
vector of N-dimensional (N represents the number of words in
the dictionary).
The LDA model is established as follows:

� ����� = Γ i�i�

�i Γ �i i=�
� �i

�i u�� m=�
�

�m
� �m�� � �m��m���� ���

（3）

3.3 Point cloud classification based on discriminative
inheritance

In order to test the multi-level point set features, we use the
AdaBoost classifier to train the multi-level point set features
based on the SCLDA model, and test the set of identified points,
and classify the points into different categories. First, the
training data is clustered into multi-level point sets, and then the
multi-level point set features based on the SCLDA model are
extracted from the multi-level points. After the multi-level point
set feature based on the SCLDA model is constructed, the one-
vs-all strategy is used to obtain the AdaBoost classifier of each
category through training. Assume that the ground objects are
divided into three categories: buildings, trees and cars. The
training data is divided into n-level point sets. 3n AdaBoost
classifiers need to be trained. In the training process, SCLDA
model parameters and AdaBoost classifiers are obtained in turn.
The trained classifier is then used in the identification of
unmarked point clouds.
This paper proposes a method to distinguish unmarked points
from a coarser level to a fine level. First, the probability �mRl
of the point set class attribution is designed. The mathematical
expression of the probability �mRl (�i, ��t) that marks the point
set as the label �i is:

�mRl �i���t = exp (�mRl(�i���t��

i exp (�mRl(�i��
�t���

（4）

where, ��t is a feature obtained by each point set based on the
SCLDA model, num is an integer (1≤num≤n), and �mRl(�i, ��t)
is a probability that the AdaBoost classifier marks the set of
points to be marked as the category �i.
Next, the unknown point set is marked according to the
discriminative inheritance from the coarse to the fine level.
During the training process, the training data is manually
marked by manual visual interpretation, and each point set
contains only

a specific object category. In the generalization phase, the most
elaborate level of point set contains only one object or part of
the object. Other levels of point sets may contain one or more
feature entities, so we only mark the most fine-level point set. A
point set and a set of points above it contain SCLDA features of
different spatial extents. Therefore, the unknown point set
achieves the classification purpose by inheriting the category
discrimination result of the upper hierarchical point set. The
probability that a point set is marked as �i is:

�m
� �i = l=�

m �l�mRl(�i���t�� （5）

where, n represents the total number of levels of the multi-level
point set, �m

� represents the probability that the j-th point set
belongs to the category li, and �m

l�mRl represents the m-th point
set attribution in the num-level point set belongs to the category
li. Finally, the largest one of the probabilities marked as each
class is taken as the tag recognition result of the point set at the
finest level.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The computer environment in which this algorithm runs is: 2.71
GHz Intel(R) Core(TM) i5-7300U CPU, 8GB RAM. The
system takes about 35 minutes to learn the SCLDA model and
the AdaBoost classifier. The identification of point clouds in
scenes I, II and III takes approximately 28.5 min, 17.6 min and
10.8 min. Feature extraction and sparse expression take about
60% of the total time during program execution. However, most

of the steps are parallelizable. Therefore, parallel strategies can
be used to reduce time overhead.
In order to verify the method of this paper and compare it with
other methods, we use three other methods to compare with the
method. The basic characteristics of these four methods are
shown in Table 1. The first method (method I) uses BoW and
LDA to express the characteristics of the point set based on the
multi-level point set, and uses the AdaBoost classifier to
classify the unknown point cloud through the k-means method
[21]-[22]. Training is performed to obtain a dictionary, and each
point-based feature is expressed by vector quantization. The
second method (method II) is classified by AdaBoost classifier
on the basis of point features. This method does not divide the
point cloud into point sets, and does not involve multi-level
structure. It is classified and identified by single point as the
basic unit. The third method (method III) is the method
described in [2]. In this method, each feature is described by
geometric, multi-echo strength, statistics, etc., and then the
JointBoost method is used to select features and evaluate their
correlation. However, the method does not use context
information (such as intensity information, etc.) to identify
point cloud, we only use the spatial correlation features based
on multi-level point sets to identify the ground objects, and the
point changes between the multi-level point sets are exponential.
Precision and recall can be used to assess the quality of the
classification [13]. The precision is the proportion of the
retrieved instance in the retrieved instance; the recall rate is the
proportion of the retrieved instance in the related instance to the
related instance. High precision means that the algorithm can
get more relevant results, and the high recall rate means that the
algorithm can get most of the relevant results. Table 2 lists the
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accuracy, recall, and accuracy of the four methods in the
learning phase. It can be seen from Table 2 that the accuracy
and recall rate of the classification results obtained by the
method is the highest. The precision/recall of this method is
significantly higher than other methods. Compared with the

other three methods, this paper is based on SCLDA. The multi-
level point set feature of the model can better describe the
training data and effectively distinguish the ground objects.

Table 1 MAIN CHARACTERISTICS OF METHODS
Methods Feature

representation
Vocabulary

extraction method
Vocabulary
representation

Cluster-
based

Hierarchical point-
cluster sets

Our Method SCLDA of point-
cluster sets

Lagrange dual
method

Feature sign
method

Yes Exponential

Method I LDA of point-
cluster sets

k-means method Vector
quantization

Yes Exponential

Method II Point-based No vocabulary No vocabulary No No
Method III Point-based No vocabulary No vocabulary No No

Table 2 PRECISION/RECALL(%) OF DIFFERENT METHODS
Our Method Method I Method II Method III

Scene precision recall precision recall precision recall precision recall
I 98.3 97.9 94.9 95.1 90.2 94.6 95.5 96.8
II 91.5 96.7 92.5 96.6 79.5 92.8 90.4 93.5
III 93.8 86.9 78.3 84.7 80.1 59.4 84.7 62.6
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(a)raw data (b)classification results
Figure 1. Results of scene I

(a)raw data (b)classification results
Figure 2. Results of scene II

(a)raw data (b)classification results
Figure 3. Results of scene III
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Compared with other methods, the classification accuracy of the
method is higher, for example, the recognition result of small
objects is significantly better than the other three methods. The
classification result of Method II is the worst among the four
methods, which means that the classification of points as a basic
unit is significantly better than the point-based method. Method
I is superior to the identification of small objects in
distinguishing large objects, however, it cannot effectively
identify features in mixed point clouds. Although Method III
has a certain effect on the recognition of features, the accuracy
of recognition of small objects needs to be further improved.
The method of this paper can achieve better results for the
recognition of small objects. This is because the method uses
the sparse coding method for dictionary training and feature
expression, which can better express the characteristics of
spatial entities. The feature of sparse coding combined with
LDA to express point sets can obtain more accurate
classification results. Figures 1, 2 and 3 visually show the
classification results of the method. It can be seen from Figures
1(b), 2(b) and 3(b) that most of the points in this method are
correctly classified.

5. CONCLUSIONS

This paper proposes a method for extracting the shape features
of object objects to classify and identify LiDAR point clouds. In
this method, the LiDAR point cloud is segmented into multi-
level point sets by using a multi-level point set segmentation
method based on an exponential threshold. When segmenting
point clouds, ensure that each point set contains the necessary
points for extracting the shape features of various objects. The
SCLDA model is constructed to extract and encode multi-level
point features. Then, the point set is jointly marked by
identifying the inheritance of the result by means of point sets at
different levels. The SCLDA model we built has certain
flexibility and scalability, and can be extended to the classifier
of multi-feature channels, thereby further improving the
accuracy of point cloud classification. The experimental results
show that the proposed method utilizes the correlation between
multi-level point sets and effectively captures the salient
features of the point set through the SCLDA model. It can
classify the point cloud of complex scenes with high
classification accuracy, especially for small objects.
The hierarchy of point clouds can be constructed using semantic
relationships or visual similarities between categories. In the
future, layered learning and multiple feature expressions will be
incorporated into the framework of this paper to further improve
classification accuracy.

REFERENCES

[1] Langley P,1994. Selection of relevant features in machine
learning. Defense Technical Information Center, 1994.
[2] Guo B., Huang X., Zhang F.,2015. Sohn G. Classification of
airborne laser scanning data using JointBoost. ISPRS Journal of
photogrammetry and remote sensing, 100: 71-83.
[3] Boykov Y., Veksler O., Zabih R, 2001. Fast approximate
energy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(11): 1222-1239.
[4] Shi J., Malik J,1997. Normalized cuts and image
segmentation. Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

[5] Biosca J. M., Lerma J. L,2008. Unsupervised robust planar
segmentation of terrestrial laser scanner point clouds based on
fuzzy clustering methods. ISPRS Journal of photogrammetry
and remote sensing, 63(1): 84-98.
[6] Barnea S., Filin S,2008. Segmentation of terrestrial laser
scanning data by integrating range and image content. The
Proceedings of XXIth ISPRS Congress.
[7] Comaniciu D., Meer P,2002. Mean shift: a robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5): 603-619.
[8] Barnea S., Filin S,2013. Segmentation of terrestrial laser
scanning data using geometry and image information. ISPRS
Journal of photogrammetry and remote sensing, 76: 33-48.
[9] Rusu R. B., Marton Z. C., Blodow N., Dolha M., Beetz
M,2008. Towards 3D point cloud based object maps for
household environments. Robotics and Autonomous Systems,
56(11): 927-941.
[10] Yokoyama H., Date H., Kanai S., Takeda H,2013.
Detection and classification of pole-like objects from mobile
laser scanning data of urban environments. International Journal
of CAD/CAM, 13(2): 31-40.
[11] Weinmann M., Jutzi B., Mallet C,2013. Feature relevance
assessment for the semantic interpretation of 3D point cloud
data. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 5: W2.
[12] Weinmann M., Urban S., Hinz S., Jutzi B., Mallet C,2015.
Distinctive 2D and 3D features for automated large-scale scene
analysis in urban areas. Computers & Graphics, 49: 47-57.
[13] Wang Z., Zhang L., Fang T., Mathiopoulos P. T., Tong X.,
Qu H., Xiao Z., Li F., Chen D,2015. A multiscale and
hierarchical feature extraction method for terrestrial laser
scanning point cloud classification. IEEE Transactions on
Geoscience and Remote Sensing, 53(5): 2409-2425.
[14] Russell B. C., Freeman W. T., Efros A. A., Sivic J.,
Zisserman A,2006. Using multiple segmentations to discover
objects and their extent in image collections. Proceedings of the
Computer Vision and Pattern Recognition.
[15] Brodu N., Lague D,2012. 3D terrestrial lidar data
classification of complex natural scenes using a multi-scale
dimensionality criterion: applications in geomorphology. ISPRS
Journal of photogrammetry and remote sensing, 68: 121-134.
[16] Pauly M., Keiser R., Gross M,2003. Multi‐scale feature
extraction on point-sampled surfaces. Computer Graphics
Forum, Eurographics issue, 22(3): 3281-289.
[17] Xiong X., Munoz D., Bagnell J. A., Hebert M,2011.3-D
scene analysis via sequenced predictions over points and
regions[A].IEEE International Conference on proceedings of
the Robotics and Automation (ICRA)[C].2011.2609-2616.
[18] Xu S., Oude E. S., Vosselman G,2012. Entities and
features for classification of airborne laser scanning data in
urban area[A]. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences[C]. 257–262.
[19] Rau J. Y., Jhan J. P., Hsu Y. C,2015. Analysis of oblique
aerial images for land cover and point cloud classification in an
urban environment. IEEE Transactions on Geoscience and
Remote Sensing, 53(3): 1304-1319.
[20] Zhang Z,Zhang L,Tong X,et al.2016.A Multi-Level Point
Cluster-based Discriminative Feature for ALS Point Cloud
Classification[J].IEEE Transactions on Geoscience and Remote
Sensing,54(6),3309– 3321.
[21] Hartigan J. A., Wong M. A,1979. Algorithm AS 136: A k-
means clustering algorithm. Journal of the Royal Statistical
Society (Series C: applied atatistics), 28(1): 100-108.
[22] Zhang Z, Zhang L,Tong X,et al.2016.IEEE Transactions on
Geoscience and Remote Sensing,54(12),7309-7322.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-1231-2020 | © Authors 2020. CC BY 4.0 License.

 
1237




