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ABSTRACT:
Fractal model as an effective solution to complex nonlinear problems or phenomena has been widely used to describe such 
complicated phenomenon as geological hazards. Quantitative analysis of the spatial distribution characteristics of geological hazards 
and measuring its fractal relation on a national scale are significant for the geological hazards prevention or mitigation. In this 
contribution, firstly, three typical geological hazards, such as landslides, collapses and mudslides, were taken as research objects for 
fractal analysis, and a detailed hazard inventory including 109,008 landslides, 55,178 collapses, and 28,914 mudslides cases were 
compiled as data samples. Next, the fractal dimensions describing the spatial distribution characteristics of geological hazard 
densities were calculated by the invariant fractal model, and then the internal classification of five common predisposing factors 
(elevation, slope, aspect, NDVI, and precipitation) was applied, and the relative density of geological hazard was calculated by the 
ratio of "hazard ratio" and "grid ratio" on the basis of 1 km × 1 km grid cells. Finally, the variable fractal model was introduced for 
measuring the spatial association among three typical geological hazards and five common predisposing factors, and the obtained 
fractal dimensions were regarded as the quantitative measure of the effect of predisposing factors on geological hazards. The results 
shows that the fractal dimensions of spatial distribution of landslide, collapse and mudslide densities are 1.3042, 1.5185 and 1.5897, 
respectively. Moreover, the relative densities of geological hazards also follows the fractal features with hazard-related predisposing 
factors, the elevation factor has the greatest impact on the landslide, collapse, and mudslide hazard, while other predisposing factors 
have different effects on different types of geological hazards.

1. INTRODUCTION

Landslides, collapses and mudslides are the most common 
geological hazards worldwide and they cause enormous 
casualties and severe economic losses every year (Guzzetti et 
al., 2012; Pradhan et al., 2016). In China, especially the 
southeast coastal, middle-south, and southeast areas have been 
seriously affected by landslides, collapses and mudslides, 
which pose a serious threat to the environment, residential 
districts, and industrial facilities (Xu et al., 2015).
Hazard susceptibility mapping aims to express the predicted 
results of where landslides are likely to occur on the basis of 
local geographical conditions (Guzzetti et al., 2005) and there 
is consensus among managers that they can be used to 
effectively assess and respond to geological hazards (Hong et 
al., 2016). Analyzing the spatial distribution characteristics of 
geological hazards and measuring the spatial relationship 
between hazards and hazard-related predisposing factors are 
essential to understand and recognize the key conditioning 
features of hazard formation in order to produce reliable 
susceptibility map (Bui et al., 2011).
Over the past several decades, although the development of 
various methods, such as the information value, weights of 
evidence, frequency ratio, Dempster–Shafer method, certainty 
factors, logistic regression, Bayesian algorithms (e.g. NB, 
Bayesian networks), Support vector machines, artificial neural 
networks, tree models and fractal model (Li et al., 2012; Zuo et 
al., 2017) all have proposed to analyze the characteristics of 
predisposing factors related to geological hazards for 
quantitative assessment of geological hazards susceptibility, the 
common of these methods or models mentioned above are to
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first analyze the potential association between geological
hazards and predisposing factors, so as to determine the impact
of geo-environment factors on hazards.
Compared with other nonlinear methods, fractal model is more
robust because fractal dimension can be the fraction, which
greatly enriches the traditional theories whose dimension is the
integer (Mandelbrot. 1967, Lu et al., 2012). The fractal or
multifractal model has been widely applied to provide an
effective solution to complex nonlinear problems or
phenomena, such as geological hazards (Li et al., 2011, 2012;
Lu et al., 2012). In current studies, fractal models are mainly
applied to investigate hazards’ characteristics in the following
aspects (Zuo et al., 2017), i. the frequency-area statistics of
landslides (Ghosh et al., 2012b; Trigila et al., 2010; Turcotte
and Malamud, 2004; Guzzetti et al., 2002); ii. the
frequency-size statistics of landslides (Malamud et al., 2004;
Iwahashi et al., 2003; Pelletier et al., 1997); iii. the cumulative
frequency statistics of landslides (Li et al., 2011), and iv.
statistics of the landslide spatial distribution characteristics at
different scales(Rouai and Jaaidi, 2003). However, the question
of how to evaluate the relationship between geological hazards
and predisposing factors from a fractal perspective is not well
explored (Zuo et al., 2017). In particular, the use of fractal
models to study the characteristics of geological hazards on a
national scale is also still lacking in China.
In this study, based on 251943 geological hazards (109,008
landslides, 55,178 collapses and 28,914 mudslides) location
information which are recorded nationwide, fractal models
were introduced to analyze and measure the spatial distribution
characteristics and spatial association among three typical
geological hazards (landslides, collapses and mudslides) and
five common predisposing factors such as elevation, slope,
aspect, NDVI, and precipitation. To our knowledge, our work
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differs from previous studies is that we first introduce fractal
model to evaluate the hazard characteristics on a national scale.

2. DATA USED

2.1 Geological Hazard Inventory

In this study, geological hazard records were collected from
“GeoCloud”, an online geological database (http://geocloudsso-
.cgs.gov.cn/) published by China Geological Survey. All
historical hazards information showed on “GeoCloud” were
compiled through on-site measures and field surveys of local
administrations. The detailed information contained in this
hazards inventory comprises the hazard name, hazard type,
occurrence location, hazard levels, structural positions,
groundwater type, seismic intensity, leading edge elevation,
trailing edge elevation, economic loss, population casualties,
management status, and so on. Finally, according to the criteria
in Table 1, these information of 109,008 landslides (412 super
large landslides, 5566 large landslides, 25392 medium-size
landslides, and 77638 minor landslides), 55,178 collapses
(1074 super-large collapses, 1388 large collapses, 9297
medium-size landslides, and 43419 minor landslides) and
28,914 mudslides (458 super-large collapses, 2302 large
collapses, 6458 medium-size landslides, and 19696 minor
landslides) locations (centroids) in China were identified as
sample data for further analysis.

Classification
Landslide
(104 m3)

Collapse
(104 m3)

Mudslide
(104 m3)

Super-large ≥ 1000 ≥ 100 ≥ 50

Large 100～1000 10～100 20～50

Medium-size 10～100 1～10 2～20

Minor ＜ 10 ＜ 1 ＜ 2

Table 1. Scale division of landslides, collapses and mudslides

2.2 Predisposing factors

Due to the regional differences of geographical environment,
the types and mechanisms of geological hazards in different
areas are very complex, and the type of hazard-related
predisposing factors may have been conditioned by the local
setting and the geo-environmental features. Conditional factors
for describing morphology such as elevation, slope and aspect
have proven particularly effective in predicting the spatial
distribution of geological hazards (Fabbri et al., 2003), so in
this study, the relationship between hazard-related common
factors such as elevation, slope and aspect and geological
hazards were considered.
Elevation, slope, and aspect are the typical variables used to
describe morphology (Kalantar et al. 2017) and always
obtained from the DEM data. In this study, DEM data with
resolution of 30 m × 30 m was derived from the National Basic
Science Data Sharing Service Platform, Chinese Academy of
Sciences (http://www.gscloud.cn). Elevation is affected by
geomorphological and geological processes, terrain slope
controls the balance of the retaining and the destabilizing forces
acting on a slope, and a larger resistance is mobilized to
maintain stable a steep slope than a gentle slope. Slope aspect
has a crucial effect on hazards because weathering is affected
by exposure to sunlight, winds, and precipitation (Kalantar et al.
2017; Ding et al. 2017).

NDVI is a quantitative parameter of vegetation coverage and
reflects ecological environmental quality. It can directly affect
the degree of soil erosion and the modification of the slope

surface (Du et al. 2017). The formation of plant root complexes
in the surface soil can help maintain slope stability by
enhancing the shear strength of slope soil (Wang et al. 2017;
Huang et al. 2017). Annual average NDVI data were calculated
from the spatial distribution dataset of China's annual NDVI
(2010-2018) (http://www.resdc.cn/DOI/doi.aspx?DOIid=49).

Moreover, the spatial and temporal distribution of
precipitation is not uniform. During precipitation infiltration,
liquefaction of the soil causes a gradual decrease in the material
suction, which leads to a decrease of shear strength and induces
landslides (Pham et al., 2017; Duc, 2012). The precipitation
data were derived from the data set of surface climate data
provided by the Resource and Environment Data Cloud
Platform, Chinese Academy of Sciences (http://www.resdc.cn/).

3. METHOD

3.1 Invariant Fractal model

Fractal model was first introduced by Mandelbrot and has
become a new method to study such complicated phenomenon
as earthquake and geological hazards in recent years (Ge et al.,
2018). The fractal model can be described as a power-law
expressed by Eq. (1) (Li et al., 2012). When ln(l) and ln(r)
satisfy the linear fitting characteristic, D is a fixed value and
which means the invariant fractal dimension.
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where r = feature measured scale
l = the measured value under the corresponding scale r
D = the fractal dimension
C = a constant.

In this study, the invariant fractal method was used to analyze
the spatial distribution characteristics of geological hazards. We
consider the hazards in a region as a set of points in the
two-dimensional space. For the study region, we discretize it
into square grid cells of different size and count the number of
cells that contain at least one hazard corresponding to grid unit
size. Next, the density of geological hazards were calculated at
different grid scales. Finally, the measurement scale and the
corresponding hazard density values were used as l and r
substituting Eq. 1, respectively, for double logarithmic fitting
and fractal dimension calculation.

3.2 Variable Dimension Fractal Model

Usually in many study, the invariant fractal relationship does
not strictly exist in nature, so ln(l) and ln(r) cannot be well
fitted linearly in the case of some sophisticated phenomena (Lu
et al., 2012). Therefore, the application of the traditional
invariable fractal dimension method is limited. In many
practical applications, as Newman (2005) and Li et al., (2012)
pointed out, one of the methods of studying the data is to
calculate the cumulative distribution function. The cumulative
sum can be calculated by Eq. (2).
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where L(r) = the cumulative sum of l(r)
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R = a value less than r

In this study, as an extension to applications of the power-law
(fractal) distribution, the specific method mainly includes the
following steps:
First, the internal classification of each predisposing factor was
applied, and the hazard relative density P was calculated by
Eq.(3).
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where Nh= the number of hazards in one predisposing factor
subclass

N= the total number of landslides
Phd = the ratio of Nh to N
Mg = the number of grid units in the same

predisposing factor subclass
M = the total number of grid units
Pgd = the ratio of Mg to M.
P = the relative density of geological hazards

Second, each subclass is numbered 0, 1, 2,... in descending
order of P values as the feature measured scale r. If the double
logarithmic curve of the raw data points (P, r) cannot be
linearly fitted (the R² value of the fitting curve would be above
0.95), then the cumulative sum (S) of P can be constructed as
Eq.(4) (Lu et al., 2012; Li et al., 2011, 2012). Next, the data
points (S, r) are plotted on the double logarithmic coordinates,
and linear fitting is carried out to obtain the variable dimension
fractal model.
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where Si = the i-th order cumulative sum of P.

4. RESULTS AND DISCUSSION

4.1 Spatial Distribution of Geological Hazard Density

In order to explain this hazard densities distribution behavior
using the fractal concept, landslide, collapse and mudslide
hazards occurred in China over the years and were taken as
data samples, and 1×1 km, 1.5×1.5 km, 2×2 km, ..., and 10×10
km regular grid models covering the whole of China are
respectively established at the size intervals of 0.5 km, and then
the number of grid units and the number of grid units
containing geological hazards were counted at different grid
scales, and then the hazard densities of three kinds of
geological hazards were also calculated separately. Each the
hazard density distribution curves were drawn in a double
logarithmic plot (Figure. 1). In these three plots, the high
root-square (R2) value reveals that the log-log plots of hazard
density versus the scale of grid unit can be fitted with straight
lines by the least-squares method. From a spatial statistic point,
the size of grid units do not influence the slope of the log-log
plot of hazard density, and therefore, the resulting fractal
dimension could not change when different grid unit sizes were
used. Moreover, it was observed that the larger the size of grid

unit, the greater the density of three geological hazards. This
phenomenon suggests a nonlinear spatial distribution of hazard
density, and meaning that hazard densities can be expressed as
a power-law function of measurement scales. In addition, in
terms of the three hazard densities, the values of three fractal
dimensions are between 0 and 2, this results show that the
fractal clustering distribution pattern of landslide, collapse and
mudslide densities are different from random distributions (e.g.,
Poisson distribution) and also different from the uniform
distribution (Li et al., 2012). Comparing the fractal dimensions
of these geological hazard densities, mudslide density has the
largest (1.5897) fractal dimension, followed by the collapses
(1.5185) and landslides (1.3042), it suggests that the spatial
clustering of mudslides density is more obvious than that of
collapses and landslides.

Figure 1. Fractal analysis of density of geological hazards

4.2 Fractal Relationship between Geological Hazards and
Predisposing factors

Elevation, slope, aspect, NDVI, precipitation are the most
widely used hazard-related predisposing factors in geological
hazard study. It is of great significance to analyze the
relationship between these common geo-environmental factors
and geological hazards on a national scale and to evaluate the
influence weight of these predisposing factors on hazards in
order to sort out the causes of disasters.
In view of the large scope of the research area, these
hazard-related predisposing factors with different scales were
calibrated to the uniform grid unit size of 1 × 1 km, and the
equidistant classification method was used for the internal
classification of five applied predisposing factors. Then, the
factors of elevation, slope, NDVI, and precipitation were
divided into eleven subcategories and aspect factor was divided
into nine subcategories for further analysis.
As shown in Figure 2, the 1-order variable dimensional fractal
relationship exists in elevation and collapse, elevation and
collapse, NDVI and landslide, NDVI and collapse, NDVI and
mudslide, precipitation and landslide, precipitation and
mudslide. In the remaining cases, the relationship between the
predisposing factors and the hazards satisfies the 0-order fractal,
this also shows that they meet the power law distribution
characteristics.
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Figure 1. Fractal analysis between geological hazards and
predisposing factors

According to Zuo et al. (2012) and Ge et al. (2018), the fractal
dimension can represents a significant spatial association
between a specific predisposing factor and corresponding
geological hazards. In this study, the acquired fractal dimension
(Table 2) of five predisposing factors with landslides, collapses,
and mudslides were used as weights of each factor on hazard
occurrence. Then, on the basis of the unified standard condition
R2 ≥ 0.95, we use straight lines to fit the highest order curve in
the double logarithmic coordinate linearly, and the fractal
dimension value of each predisposing factor directly estimated
from the slope of the fitted straight line. As far as landslide
hazards are concerned, the fractal dimensions describing the
correlation between five common predisposing factors and the
relative density of landslide hazards were 3.557, 2.610, 1.443,
3.400, and 1.671, respectively. This means that the influence of
elevation on landslides is the greatest, and followed by NDVI,
slope, precipitation, and aspect.
In term of collapses, elevation factor is also the most important
topographic factor affecting collapse hazards, the fractal
dimension between elevation factor and relative density of
collapses is 3.144, followed by the predisposing factors of
slope (2.645), NDVI (1.446), aspect (1.435), and precipitation
(0.652). With regard to mudslides, the fractal dimension of
elevation predisposing factor is still the highest, which value of
fractal dimension is 2.798, and the predisposing factor of slope
had the more influence, the corresponding fractal dimension is
2.137, then the fractal dimension of precipitation and aspect are
2.081 and 1.476, respectively. Moreover, the predisposing
factor of NDVI achieves the minimum fractal dimension
(1.220), suggesting that the NDVI play a less important role in
the mudslides than other predisposing factors.

Fractal dimension Landslide Collapse Mudslide

Elevation 3.557 3.144 2.798

Slope 2.610 2.645 2.137

Aspect 1.443 1.435 1.476

NDVI 3.400 1.446 1.220

Precipitation 1.671 0.652 2.081

Table 2. Fractal dimension of predisposing factors

On the whole, among the five hazard-related predisposing 
factors selected in this study, elevation has the greatest impact 
on these three typical geological hazards, especially on 
landslides, which has greater impact than collapses and 
mudslides. For slope factor, the influence of slope on collapses 
and mudslides is second only to that of elevation on collapses 
and mudslides, but the influence of slope on landslides is much 
smaller than that of NDVI on landslides, this shows that 
vegetation cover has more obvious control effect on landslides 
than terrain slope. However, the impact of NDVI on mudslides 
is quite different from that on landslide hazards, which also 
shows that landform factors have less impact on mudslide 
disasters. Rainfall, the only meteorological factor considered, 
has a great impact on mudslides, this features are consistent 
with the occurrence mechanism of mudslide hazards, because 
heavy rainfall is one of the necessary conditions leading to 
mudslide hazards, but for landslides and collapses, the effects 
of precipitation on landslides and collapses are relatively weak, 
which may be due to the diversity of landslides, while the cases 
of rainfall-type landslides are less distribute in the hazard 
inventory used in study.

5. CONCLUSIONS

In this study, based on the invariant fractal model, the fractal
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characteristics of the spatial distribution of landslide, collapse,
and mudslide densities in whole China were analyzed and
calculated the fractal dimension of these three common
geological hazards. Moreover, the variable fractal model was
used for measuring the spatial relationships between five
typical predisposing factors (elevation, slope, aspect, NDVI,
and precipitation) and these three common geological hazards
(landslides, collapses, and mudslides). The following
conclusions are obtained: (1) the spatial of the densities of
landslides, collapses, and mudslides satisfies the invariant
fractal characteristics, the fractal dimension of the densities of
landslides, collapses, and mudslides are 1.3042, 1.5185 and
1.5897, respectively; (2) relative density of geological hazards
follows a variable fractal relation with hazard-related
predisposing factors such as elevation, slope, aspect, NDVI,
and precipitation; (3) the fractal dimension is a robust
parameter for measuring the relative importance of
conditioning factors of hazard occurrence, and can provides
critical information for hazard susceptibility assessment or
mapping, so as to prevent and/or mitigate geological hazards;
and (4) the calculated fractal dimension suggested that the
elevation factor has the greatest impact on the landslides,
collapses, and mudslides, while other predisposing factors have
different effects on different types of geological hazards.
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