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ABSTRACT: 

 

In point cloud data processing, smooth sampling and surface reconstruction are important aspects of point cloud data processing. In 

view of the current point cloud sampling method, the point cloud distribution is not uniform, the point cloud feature information is 

incomplete, and the reconstructed model surface is not smooth. This paper proposes a method of smoothing sampling processing and 

surface reconstruction using point cloud using moving least squares method. This paper first introduces the traditional moving least 

squares method in detail, and then proposes an improved moving least squares method for point cloud smooth sampling and surface 

reconstruction. In this paper, the algorithm is designed for the proposed theory, combined with C++ and point cloud library PCL 

programming, using voxel grid sampling and uniform sampling and moving least squares smooth sampling comparison, after 

sampling, using greedy triangulation algorithm surface reconstruction. The experimental results show that the improved moving least 

squares method performs point cloud smooth sampling more uniformly than the voxel grid sampling and the feature information is 

more prominent. The surface reconstructed by the moving least squares method is smooth, the surface reconstructed by the voxel grid 

sampling and the uniformly sampled data surface is rough, and the surface has a rough triangular surface. Point cloud smooth 

sampling and surface reconstruction based on moving least squares method can better maintain point cloud feature information and 

smooth model smoothness. The superiority and effectiveness of the method are demonstrated, which provides a reference for the 

subsequent study of point cloud sampling and surface reconstruction. 
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1. INTRODUCTION 

With the rapid development of modern scanning technology, 

3D reconstruction technology has been widely used in various 

industry fields. With the rapid development of modern 

scanning technology, 3D reconstruction technology has been 

widely used in various industries, such as reverse engineering 

(Kang, 2018) ( Zhu et al., 2017), virtual reality (Liang, 2018) 

( Wang, 2018), machine vision (Shi, 2017) and other fields. 

The original point cloud data scanned by the instrument usually 

contains a large number of noise points and a huge amount of 

data. If these raw data are directly used for surface 

reconstruction, the reconstructed surface will be not smooth or 

vulnerable, and the desired surface model will not be obtained. 

Moreover, the huge amount of data will put higher demands on 

the computer in terms of storage and display, resulting in 

inefficient data processing in the later stage. Therefore, under 

the premise of retaining the details of point cloud data and not 

affecting the accuracy of model reconstruction, point cloud 

reduction is required for massive data (Huang et al., 2018) 

(Zhai, 2015) (Chen, 2011), so as to achieve the purpose of 

removing redundant points and improving reconstruction 

efficiency. Many scholars at home and abroad have done a lot 

of research on sampling and surface reconstruction of point 

cloud data. Literature (Li, 2016), the curvature is used as the 

basis of point cloud data processing. An improved Meyer 

algorithm is proposed to improve the accuracy of curvature 

estimation. The feature area and the flat area are divided based 

on the curvature value, and then the curvature sampling and 

uniform sampling processing are used respectively, achieve the 

effect of reducing point clouds and retaining the details of the 

model. However, this method is more difficult to determine the 

division of the average curvature of each data point with the 

specified average curvature value, and is not suitable for flat 

area point clouds. Literature (Bernard et al., 2017) proposed a 

statistical shape model using the associated point distribution 

model, but due to the heteroscedasticity of the point cloud data, 

the surface generated by the surface reconstruction method 

using only the probabilistic model will have a certain deviation. 

Literature (Ma et al., 2017), the traditional least squares method 

is used for plane fitting. Although this algorithm is easy to 

implement, it is greatly affected by noise points and discrete 

group points, and the point cloud data is heteroscedastic. 

Therefore, there is a certain error in calculating the curvature 

using the traditional least squares method. Literature (Tang et 

al., 2019), a point cloud reduction algorithm based on weighted 

least squares curvature calculation is proposed. The algorithm 

is better in a relatively flat area, but retains more feature points 

for uneven areas. This method is less effective. Due to various 

defects in the above-mentioned various algorithms, the point 

cloud data feature point information after sampling is relatively 

small, and the reconstructed surface is not smooth or has a 

loophole. Based on this, this paper proposes a point cloud 

smooth sampling and surface reconstruction based on moving 

least squares method. 

 

2. PRINCIPLE OF MOVING LEAST SQUARES 

The moving least squares method is an optimization method of 

the least squares method, which has the advantage of high 

precision and can solve the practical problems that the least 

squares method cannot solve. Compared with the traditional 

least squares method, the moving least squares method has two 

major improvements (Zeng et al., 2004): the establishment of a 

fitting function is different. This method establishes the fitting 

function instead of using a traditional polynomial or other 

function, but consists of a coefficient vector a(x) and a basis 

function p(x), where a(x) is not a constant but a function of the 

coordinate x. Second, the concept of compact support is 

introduced in the moving least squares method. It is considered 

that the value y at the point x is only affected by the nodes in 

the subdomain near x. This sub-domain is called the influence 

area of point x, and the nodes outside the influence area have 

no influence on the value of x. Define a weight function on the 

affected area ( )w x . If the weight function is constant over the 

entire area, the traditional least squares method is obtained. The 

weight function is an important parameter when moving the 

least squares method. Whether the curve is smooth or not 

depends on the choice of the weight function, and the accuracy 

of the fitting is largely affected by the order of the basis 

function (Huang et al., 2010) (Guo, 2016). 

 

2.1 Establishment of a fitting function 

On a local subdomain of the fitted region, the fitting function 

f(x) is expressed as: 

 
1

f ( ) ( ) ( ) ( ) ( )
m

T
i i

i

x x p x p x x 


                (1) 

Where, 
1 2( ) [ ( ), ( ), ( )]Tmx a x a x a x   for the coefficient 
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to be obtained, it is a function of the coordinate x. 

1 2( ) [ ( ), ( ), ( )]Tmp x p x p x p x  for the basis function, it 

is a k-order complete polynomial, and m is the number of terms 

of the basis function. For a one-dimensional problem, the basis 

function can be: 

2( ) [1, , , , ]mp x x x x                         (2) 

For two-dimensional problems, the linear basis is: 

( ) [1, , ] ,  3Tp x x y m                      (3)

Secondary basis: 

2 2( ) [1, , , , ,  , ] 6Tp x x y x xy y m             (4) 

In order to obtain a more accurate local approximation as much 

as possible, it is necessary to minimize the squared weight of 

the difference between the local approximation ( )if x  and the 

node value
iy . Therefore, the discrete weighted paradigm of the 

residual
2L  (Chen et al., 2013) is: 

2
2

1 1

( )[ ( ) ] ( )[ ( ) ( ) ]
N N

T
i i i i i

i i

J w x x f x y w x x p x x y
 

       (5)

( ( ) ) ( )( ( ) )TJ P x Y W x P x Y                 (6) 

Where 
1 2( , , , )TnY y y y                        

(7) 
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      (8)

1 2( ) [ ( ), ( ), , ( )]nw x diag w x x w x x w x x      (9)

Where N is the number of nodes in the solution region and 

( )f x is the fitting function, ( )iw x x which is the weight 

function of the node
ix . The introduction of the tight support 

weight function ( ) ( )iw x w x x   effectively solves the defect 

that the piecewise fitting cannot be localized, and can fully 

consider the influence of each node on the point to be fitted. 

The weight function is only related to the distance between the 

node and the point to be fitted. It is centered on the i-th node 

and has a value only in the neighborhood around the i-th node. 

 

In the moving least squares algorithm, the coefficients ( )i x  

are chosen such that the fitting function f(x) finds the best 

approximation in the neighborhood of the computed point x. To 

determine the coefficient, let J take the minimum value, for any 

function ( )h x  and ( )g x  

1

( , ) ( ) ( ) ( )
n

i i i
i

h g w x x h x g x


                   (10)

1 1 2 2( )( , ) ( )( , ) ( )( , ) ( , )

1,2,
i i m i m i ix p p x p p x p p p y

i m

     





  (11)

Written in matrix form, you can get the system of equations: 

1 1 1 2 1 1 1

2 1 2 2 2 2 2

1 2

( , ) ( , ) ( , ) ( ) ( , )
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(12) 

The solution of the above equations can be obtained ( )x  

1 1 1 2 1

2 1 2 2 2
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TA p wp  ， TB p w                        (15)

Then formula (12) can be written as: 

A By                                   (16)

1A By                                  (17)

Bring the (1) formula to get the MLS fitting function: 

1

( ) ( )
n

i i
i

f x x y


                            (18)

Where the shape function: 

1

1

( ) ( )( )
m

i j
j ji

x p x A B 



                       

(19) 

2.2 Tight support weight function 

The weight function has an extremely important role and 

significance for the least squares fitting. The weight 

function ( )iw x x  in the moving least squares method should 

have tightness, that is, the weight function does not equal 0 in a 
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subfield of x, and is 0 outside this subfield. This subdomain is 

called the support domain of the weight function (that is, the 

influence domain of x), and its radius is recorded as maxs . Here 

are a few guidelines to follow when choosing a weight 

function: 

(1) The tight support of the weight function determines that the 

weight at each node is greater than 0 in the support domain and 

equal to zero outside the support region or at the boundary. 

(2) Must have unit decomposition. 

(3) The weight function should be smooth and continuous, and 

the function can be derived. 

(4) When in the support domain, the weight decreases as the 

distance from the node increases. 

 

According to the conditions satisfied by the above weight 

function, the weight function ( )Iw x x  with tight support 

indicates that only the nodes contained in the support domain to 

be fitted x have an effect on x; the weight function ( )Iw x x  is 

non-negative and monotonically decreasing as the distance 

increases. A commonly used weight function is a cubic spline 

weight function whose expression is: 

 

2 3
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( 1)

s
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







 



             (20) 

Where s


 is the relative amount of distance and 
Is x x   is 

the distance from the point to the point of the node 

 

2.3 Improved moving least squares method 

When the fitting curve passes through certain nodes, but the 

distance between the nodes is large, if the traditional moving 

least squares method is used for fitting directly, deviation may 

occur. In this paper, the proposed moving least squares method 

with value added can better reduce the impact of this deviation. 

 

Assuming that the discrete group points are ( , )i ix y , 

1,2, ,i n   and the value-added condition 

is ( , ), 1,2, , ,s sx y s t t n  , using the general moving least 

squares method to obtain the fitted curve, the curve with the 

added value of moving least squares is expressed as: 

1

( ) ( )
t

s s
s

y f x h x 


                           

(21) 

Where, 

1,

( )
( ) , 1, 2, , , ( )

( )

t
j

s s s s
j s j s j

x x
h x s t f x y

x x


 


   

 
       (22) 

Basic idea of the algorithm: 

(1) Determine the discrete group points ( , )i ix y , 1,2, ,i n   

calculate and store the corresponding normal of the point cloud. 

(2) Define a circle in the plane neighborhood of each sample 

point, project the circle onto the fitted surface, and determine 

the radius of the search neighborhood. 

(3) Set the value-added radius so that it meets the value-added 

condition ( , ), 1,2, , ,s sx y s t t n  , and then add a point 

cloud in a certain direction. 

(4) Since the added point cloud cannot determine its direction, 

the algorithm takes the sample point as the center and 

iteratively adds value to the surrounding, setting the number of 

iterations. 

 

3. EXPERIMENT AND ANALYSIS 

The algorithm in this paper is configured on the PC as Intel(R) 

Core(TM) i5-4590 CPU, running at 3.3GHz, RAM at 8.0G, 

running on Window 7 64W operating system. Experimental 

research was carried out under the development tool VS2015 

and the point cloud library PCL1.8.0. The experiment used 

RIEGL VZ-1000 high-precision ground 3D laser scanner to 

collect data from the school motto. The vertical resolution of 

the scan was 0.015° and the horizontal resolution was 0.02°. 

Since it is a verification algorithm, in order to reduce the 

experimental time, this paper selects one of the scanning station 

data as the experimental sample data. The sample data is 

trimmed to obtain the original data of the experiment, as shown 

in Figure 1. The experiment uses the commonly used voxel 

grid sampling and uniform sampling methods to sample the 

original data and compare it with the MLS smooth sampling. 

The experimental results are shown in Figure 2-4: 
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Figure 1. Raw data Figure 2. Voxel grid 

sampling 

  
Figure 3. Uniform sampling Figure 4. MLS smooth 

sampling 

 

It can be seen from the comparison between Fig. 2 and Fig. 1 

that the voxel grid sampling can well sample the point cloud 

data, reducing the amount of data, but the point cloud data 

detail feature points are also reduced. It can be seen from the 

comparison between Fig. 3 and Fig. 1 that uniform sampling 

can also reduce the amount of point cloud data, and the detailed 

feature point cloud can also be reflected, but the detail feature 

points are still reduced, and the good sampling effect is not 

achieved. It can be seen from the comparison between Fig. 4 

and Fig. 1 that the amount of point cloud data is not decreased 

but the number of detail features is also increased, and the point 

cloud increases the smoothing effect. Compared to the previous 

two sampling directions, the overall point cloud data details 

look more prominent. 

In order to further determine the influence of the search 

neighborhood radius on the detail effect of the value-added 

point cloud, the experiment also sets different search 

neighborhood radii for point cloud smooth sampling. As shown 

in Figure 5, the left half is the original data point cloud feature 

detail display, and the right half is the use algorithm. When the 

neighborhood radius r=0.02, the feature details of the right half 

are clearly displayed, and the point cloud of the detail feature is 

strengthened. When the neighborhood radius is r=0.05, the 

point cloud value-added is generally in the whole point set. 

Compared with the original data, the detailed feature points are 

more prominent, as shown in Fig. 6. It can be seen that as the 

radius of the search neighborhood increases, the amount of 

point cloud increment increases, but the longer the time is used, 

and the range of value increases will be reduced. 

 
Figure 5. Search neighborhood radius r=0.02 

 

Figure 6. Search neighborhood radius r=0.05 

 

The surface of the above sampled experimental data was 

reconstructed using greedy projection triangulation. The 

experimental results are shown in Figure 7-10. It can be clearly 

seen from the comparison of Fig. 7(a), Fig. 8(a), Fig. 9(a) and 

Fig. 10(a) that Figure 7 (a), Figure 8 (a), Figure 9 (a) the 

surface of the model is rough, and there are holes in the surface. 

It can be clearly seen from the comparison of Fig. 7(b), Fig. 

8(b), Fig. 9(b) and Fig. 10(b) that, the feature details of Figure 

10(b) are relatively smooth, and the triangular faces that make 

up the model are not so obvious, while the triangular faces of 

the model can be clearly seen in Figure 7(b), Figure 8(b), and 

Figure 9(b). Figure 8(b) and Figure 9(b) due to the reduction of 

the feature detail point cloud during sampling, resulting in 
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unclear defects in the detail features after reconstruction. It is 

shown that the model reconstructed by the point cloud smooth 

sampling data using the moving least squares method is better 

than the model reconstructed by the voxel grid sampling and 

the uniform sampling data. 

 

(

a) Raw data reconstruction 

model 

 

(b) Feature detail display 

Figure 7. Raw data reconstruction model and feature detail 

display 

(a

) Voxel grid sampling data 

reconstruction model  

(

b) Feature detail display  

Figure 8. Voxel grid sampling data reconstruction model and 

feature detail display 

(a) (

Uniform sampling data 

reconstruction model  

b) Feature detail display  

Figure 9. Uniformly sampled data reconstruction model and 

feature detail display 

(a) 

MLS smooth sampling data 

reconstruction model  

(b

) Feature detail display  

Figure 10. MLS smooth sampled data reconstruction model and 

feature detail display 

 

4. CONCLUSION 

Point cloud data sampling and surface reconstruction are 

important aspects of point cloud data processing. In this paper, 

based on the current point cloud sampling method, the point 

cloud distribution is not uniform, the point cloud feature 

information is incomplete, and the reconstructed model surface 

is not smooth. A point cloud smooth sampling process and 

surface reconstruction using moving least squares method are 

proposed. The method first uses the moving least squares 

method for point cloud smoothing, and then uses the improved 

moving least squares method to add value, draws a circle 

centered on the sample point, and within a certain 

neighborhood radius, meets the value-added condition, then 

iteratively increases the point cloud, reduces the fitting 

deviation, and achieves a better fitting effect. Finally, the 

greedy projection method is used to reconstruct the surface of 

the sampled data. The experimental results show that after 

using the improved moving least squares method for point 

cloud smooth sampling, the point cloud fitting effect is better, 

the feature details point cloud is prominent, the reconstructed 

model is smoother, and the feature details are well preserved. 
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