
 

 

DENOISING OF LIDAR ECHO SIGNAL BASED ON WAVELET ADAPTIVE 
THRESHOLD METHOD 

 
 

Shuhua Long 1,Guoqing Zhou 1, Haoyu Wang 1,Xiang Zhou 2, 3, *,Jinlong Chen 1, 2,Jian Gao 1 

 
1 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, No. 12 Jian’gan Road, Guilin, 

Guangxi 541004, China 

2 College of Mechanical and Control Engineering, Guilin University of Technology, No. 12 Jian’gan Road, Guilin,  

Guangxi 541004, China  

3 School of Microelectronics, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China  

 
 

KEY WORDS: Denoising, Wavelet transform, Gaussian noise, Adaptive thresholding, Signal processing, Signal-to-noise ratio 

 
 

ABSTRACT: 
 
The wavelet threshold method is widely used in signal denoising. However, traditional hard threshold method or soft threshold method 
is deficient for depending on fixed threshold and instability. In order to achieve efficient denoising of echo signals, an adaptive wavelet 
threshold denoising method, absorbing the advantages of the hard threshold and the soft threshold, is proposed. Based on the advantages 
of traditional threshold method, new threshold function is continuous, steerable and flexibly changeable by adjusting two parameters. 
The threshold function is flexibly changed between the hard threshold and the soft threshold function by two parameter adjustments. 
According to the Stein unbiased risk estimate (SURE), this new method can determine thresholds adaptively. Adopting different 
thresholds adaptively at different scales, this method can automatically track noise, which can effectively remove the noise on each 
scale. Therefore, the problems of noise misjudgement and incomplete denoising can be solved, to some extent, in the process of signal 
processing. The simulation results of MATLAB show that compared with hard threshold method and soft threshold method, the signal-
to-noise ratio (SNR) of the proposed de-noising method is increased by nearly 2dB, and 4dB respectively. It is safely to conclude that, 
when background noise eliminated, the new wavelet adaptive threshold method preserves signal details effectively and enhances the 
separability of signal characteristics. 
 
 

1. INTRODUCTION 

Our research team have won a key project of innovation-driven 
development in Guangxi in 2018 that aims to develop a high 
precision airborne LiDAR which can survey the seabed in three-
dimensional. The schematic structure of the instrument is shown 
in Fig.1. My task is to process the echo signal of LiDAR. 
Denoising is a crucial issue in signal processing. The details in 
the observation data of the unsteady signal contain a large 
amount of feature information (Frei et al., 2007). The 
characteristics of Lidar signal lidar echo signal is typically 
nonlinear and unstable. The echo signal detected by airborne 
laser detection system is not only weak in light intensity, but also 
has a wide dynamic range, which can generally reach 10ସ~10଺ 
(Xu, 2002; Zhou, 2015a). The traditional Fourier transform plays 
a huge role in the denoising of steady-state signals, but it cannot 
describe the local information of the unsteady signal. Therefore, 
it is not suitable for the denoising processing of such signals. The 
wavelet threshold denoising method is a nonlinear denoising 
method, which is approximate optimal in the sense of minimum 
mean square error. At present, wavelet analysis is considered to 
be the best method for non-stationary signal de-noising. 
 
In 1995, Donoho proposed the wavelet threshold method 
(Donoho, 1995). By setting an appropriate threshold, the wavelet 
coefficients of the signal decomposition were modified 
according to the selected threshold function, and the signal was 
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reconstructed to achieve signal denoising. In the literature, 
various techniques for adaptive selection of threshold values 
(Deng et al., 2007; Madeiro et al., 2007). Quan (1998, 1999, 
2007) constructs an approximation function of the mean square 
error function. A lot of research work is done around the optimal 
threshold, which makes the wavelet threshold filtering method 
tend to be perfect. In recent years, other scholars have made great 
efforts to construct the threshold function and obtain the best 
denoising effect in the sense of mean square error by various 
methods (Beenamol et al., 2012; Li et al., 2012; Atto et al., 2011; 
Stefan et al., 2012; Sanam et al., 2013). However, it is not 

Figure 1. Dual LiDAR working diagram 
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possible to consider the minimum mean square error as a 
performance indicator for denoising in some practical 
applications. For example, the characteristics of signals 
extracted from low-signal-to-noise LiDAR noisy signals are 
used for target recognition (Zhou, 2018). The mutation points, 
signal singularities, often contains key features of the signal. The 
wavelet transform coefficients of these mutation points are not 
always greater than the optimal threshold. The ordinary 
threshold function will weaken or even eliminate the wavelet 
coefficients of these mutation points seriously, thus losing the 
key features represented by signal singularity. It even generates 
enormous difficulties to the subsequent target recognition. 
 
As an ideal signal processing method, the wavelet threshold 
method still has some shortcomings. Based on utilizing both 
advantages and disadvantages of the soft and hard threshold 
methods adequately, this paper constructs a new threshold 
function, which can overcome the defects of discontinuous and 
fixed deviation of traditional methods. Furthermore, the 
selection of threshold is adaptive, which improves the denoising 
quality of the wavelet threshold method. 
 

2. WAVELET THRESHOLD DENOISING OF 
UNSTEADY SIGNALS 

2.1 Denoising Problem in Singular Feature Extraction of 
Unsteady Signals 

 
In the pattern recognition of unsteady noise-containing signals, 
the singularity of the reserved signals needs to be considered in 
the process of denoising (Mallat, 1992). This is especially 
important in low signal-to-noise ratio (SNR), such as lidar 
signals, where the signal-to-noise ratio is very low (Zhou, 
2007,2015b). The real signal is often submerged in the noise, and 
a large number of singular points representing the target 
characteristics need to be reserved during the denoising process. 
As shown in Fig.2, the waveform in Fig.2(a) contains the 
mutation signal. Fig.2(b) shows the signal waveform after 
adding Gaussian white noise to the data in Fig.2(a). The signal 
is basically submerged in the noise. The graph in Fig.2(c) is the 
effect diagram of the noisy signal denoised by the hard threshold 
function. The noise is basically filtered out, but the detail signal 

of the target echo (the rectangular part in the Fig.2(c)) is also 
smoothed out. Fig.2(d) is a diagram showing the effect of 
denoising the signal with the soft threshold function. Compared 
with the hard threshold function filtering, the detail of the signal 
is better retained, but more noise is also retained. In order to 
preserve the details of the signal as much as possible during the 
denoising process, it is necessary to design a new threshold 
function between the hard threshold function and the soft 
threshold function. 
 
2.2 Wavelet Threshold Denoising Model 

Assume the observed data vector y = [y଴, yଵ, … , 𝑦ேିଵ]் given 
by： 
 
 𝑦௜ = 𝑓௜ + 𝑛௜ , 𝑖 = 0,1, … 𝑁 − 1. (1) 

 
Where 𝑦௜ is the noisy signal, 𝑓௜ is the useful signal, and 𝑛௜ is 
the noise (Randhawa, 2018). The noise distribution is Gaussian 
white noise in Lidar. The useful signal 𝑓௜ in the noisy signal is 
a low frequency signal, and 𝑛௜ is a high frequency signal. After 
wavelet transform, the energy is distributed on a few wavelet 
coefficients, and these wavelet coefficients are significantly 
distributed on each decomposition scale. The core idea of the 
wavelet threshold method is to compare the pre-set threshold and 
the wavelet coefficients after signal decomposition. The wavelet 
coefficients larger or less than the threshold is reserved or 
contracted. Then the signal is reconstructed by inverter of 
wavelet coefficient (Kim et al., 2006). The process of noise 
reduction by wavelet threshold method is shown in Fig.3. 

(c) Hard threshold denoising results (d) Soft threshold denoising results 

(b) Noise added data 

Figure 2. Denoising effect of echo signal using traditional threshold function 

Original signal f(t) 

𝑊෡୨,୩ 

Wavelet decomposition, 
obtaining scale coefficients 

Threshold processing 
𝑊୨,୩ Wavelet reconstruction, 

denoised signal 

Figure 3. Wavelet threshold method denoising flow chart 
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It can be seen from the above that the core of the wavelet 
threshold denoising method is the threshold processing or 
estimation of the wavelet coefficients. Different wavelet 
coefficient estimation methods correspond to different wavelet 
threshold denoising methods. Hard threshold and soft threshold 
method are traditional methods. As shown in formula (2), the 
hard threshold function is to decrease wavelet coefficients to 0 
when their absolute values are smaller than the threshold, and 
preserve the wavelet coefficient whose absolute value is larger 
than the threshold (Nason, 1996). The soft threshold function is 
to shrink the wavelet coefficients whose absolute values are 
larger than the threshold, as shown in formula (3) (Jansen, 1997). 
 

 𝑊
௝，௞

= ቊ
𝑊௝,௞ , ห𝑊௝,௞ห ≥ 𝜆

0,         ห𝑊௝,௞ห < 𝜆   
 (2) 

 

 𝑊
௝，௞

= ቊ
𝑠𝑖𝑔𝑛൫𝑊௝,௞൯ · ൫ห𝑊௝,௞ห − 𝜆൯, ห𝑊௝,௞ห ≥ 𝜆

0,                                                ห𝑊௝,௞ห < 𝜆   
 (3) 

 
Where 𝑊௝,௞ is the wavelet coefficient, and 𝜆 is the threshold. 
The wavelet coefficients processed by the hard threshold 
function are discontinuous at ±𝜆 , leading to poor continuity 
after transformation. There may be oscillations in the signal via 
wavelet reconstruction. Meanwhile, there is a certain deviation 
between the wavelet coefficients and the wavelet coefficients 
treated by the soft threshold function. As a result, an enormous 
error exists between the reconstructed signal and the real signal. 
The error is unavoidable with this method. 
 

3 ADAPTIVE THRESHOLD METHOD 

3.1 Constructing a New Threshold Function 

In order to solve the problem of traditional wavelet threshold 
denoising, it is necessary for the threshold function to be 
continuous at its threshold point and possesses a high-order 
derivable property. Thus, the function of selecting the threshold 
can be realized, and the energy distribution of the decomposed 
coefficient can be embodied in good condition. Inspired by Wu 
et al. (2014), a new threshold function is proposed: 

 𝑊෡
௝，௞

= ൞

𝑥 − 𝑠𝑖𝑔𝑛൫𝑊௝,௞൯
௠ఒഀ

ଶหௐೕ,ೖห
ഀషభ ，ห𝑊௝,௞ห > 𝜆

𝑠𝑖𝑔𝑛൫𝑊௝,௞൯
௠หௐೕ,ೖห

ഀశభ

ଶఒഀ
，       ห𝑊௝,௞ห ≤ 𝜆

 (4) 

 

Where 𝑊௝,௞  and 𝑊෡௝,௞  are wavelet transform coefficients 
before and after denoising, respectively. Sign( )  is the sign 
function, and 𝜆  is the threshold. The newly constructed 
threshold function is continuous and first-order steerable. The 
function waveform is shown in Fig.4(a). The parameters 𝛼，m 
are threshold function adjustment factors. By adjusting their 
values, the flexibility of the threshold function can be enhanced 
in practical denoising applications. Ranging from 0 to 1, the 
parameter m determines the shape of the threshold function 
while 𝛼  ensures the asymptote. When 𝛼 → 0 , the new 
threshold function tends to be a soft threshold function. 
Oppositely, when 𝛼 → 1, the new threshold function tends to be 
a hard threshold function. Using the new threshold function for 
wavelet threshold denoising, a smooth transition from noise 
figure to signal coefficient is accomplished. By observing 
Fig.4(c) and Fig.4(d), it can be found that the new threshold 
function can zero, shrink or maintain the wavelet coefficients in 
different regions, which is different from the soft or hard 
threshold function. The wavelet transform coefficient in the 
critical region, a region that can shrink the wavelet coefficient, 
is composed of signal and noise (Nasri, 2009). The removal ratio 
of the noise signal or the retention ratio of the signal details can 
be controlled by adjusting the size of the contraction region, 
attaining the maximum detail preservation of signal while 
removing noise. It provides a more realistic initial signal for 
subsequent target recognition. 
 
In summary, the threshold function proposed in this paper 
contributes a smooth transition of the wavelet coefficient 
weakening degree in the critical section. The critical region can 
be adjusted by m. The larger the m is, the closer it is to the hard 
threshold function, the larger scale contraction of the wavelet 
coefficients of the critical region. Therefore, it is suitable to 
process a noisy signal with higher Signal-to-Noise Ratio (SNR) 

(a) New threshold functions and soft and hard threshold 

(c) An enlarged view of zone 1 in Figure (b) 

(b) Threshold functions corresponding to different m 
values and hard threshold functions 

(d) Enlarged view of zone 2 in Figure (b) 
Figure 4. New threshold function graph 

(a) Raw data 
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when m is relatively large. Conversely, the smaller the m value 
is, the more wavelet coefficients are in the critical region. The 
signal detail wavelet coefficients can be preserved preferably in 
the case of shrinking noise coefficients, thereby maintaining the 
original local singularity of the signal. 
 
3.2 Adaptive Threshold Determination Method 

The amplitude and density of noise decrease with the increase of 
scale, while the signal increases with the increase of scale series. 
If the same threshold is used, some useful information will be 
removed at a lower scale, leaving some noise at the maximum 
scale at the same time. The problem we are trying to solve here 
is how to find the optimal threshold at each level of scale. 
 
In this paper, the optimal threshold in the sense of minimum 
variance is calculated first, and the minimum variance estimate 
(MSE) can be estimated by calculating SURE (Stein Unbiased 
Risk Estimate), that is, the optimal threshold is calculated by 
SURE. Assuming that the observed signal is y, the real signal is 
x, the noise signal is n, then the mathematical model is as shown 
in equation (1). The coefficients of these three quantities after 
wavelet transform are 𝑢ො , 𝜇  and 𝜈 , respectively. The 
corresponding mathematical model is: 
 
 𝑢ො = 𝜇 + 𝜈 (5) 

 
A function is defined: 
 
 𝑔(𝑦) = 𝑓መ(𝑦) − 𝑦 (6) 

 
Where 𝑓መ(𝑦)  is a threshold function, 𝑔 = [𝑔଴, 𝑔ଵ, … , 𝑔ேିଵ]் 
is the mapping function of the N-dimensional vector 𝑦 . The 
equation can be established as: 
 

𝐸[‖𝑔(𝑦)‖ଶ] = 𝐸 ቂฮ𝑓መ(𝑦) − 𝑦ฮ
ଶ

ቃ = 𝐸 ቂฮ𝑓መ(𝑦) − (𝑥 + 𝑛)ฮ
ଶ

ቃ 

   = 𝐸 ቂฮ𝑓መ(𝑦) − 𝑥ฮ
ଶ

ቃ + 𝐸[‖𝑛‖]ଶ + 0 

 = 𝐸[‖𝑢ො − 𝑥‖ଶ] + 𝐸[‖𝜈‖]ଶ (7) 
 

Therefore, when 𝐸[‖𝑢ො − 𝑥‖ଶ]  takes the minimum value, 
𝐸[‖𝑔(𝑦)‖ଶ] also corresponds to the minimum value. Because 
𝑔(𝑦) is divisible, it can be obtained according to the unbiased 
estimate of SURE (Stein, 1981): 
 

 𝐸 ቂฮ𝑓መ(𝑦) − 𝑦ฮ
ଶ

ቃ = 𝑁 + 𝐸 ቂ‖𝑔(𝑦) − 𝑥‖ଶ + 2 ∑
డ௚೔

డ୷೔

ேିଵ
௜ୀ଴ ቃ (8) 

 
The SURE is an unbiased estimate of equation (8), defined as: 
 

 𝑅௦(𝑡) = 𝑁 + [‖𝑔(𝑦)‖]ଶ + 2 ∑
డ௚೔

డ୷೔

ேିଵ
௜ୀ଴  (9) 

 
From equation (7), it can be concluded that the minimum of MSE 
corresponds to the minimum of the unbiased estimate of SURE. 
Therefore, when 𝑅௦(𝑡) in the formula (9) takes the minimum 
value, the corresponding threshold is the best threshold in the 
sense of minimum MSE. The gradient function of Rs(t) is: 
 

 
డோೞ(௧)

డఒ
= 2 ∑ 𝑔௜ ∙

డ௚೔

డఒ
+ 2 ∑

డమ௚೔

డ௬೔డఒ

ேିଵ
௜ୀ଴

ேିଵ
௜ୀ଴  (10) 

Substituting equation (6) into equation (4) to calculate the partial 
derivative: 
 

 
௚೔

డఒ
=

డௐ෡ ೕ,ೖ

డఒ
= ቐ

−0.5𝑚𝑎 ∙ 𝑠𝑖𝑔𝑛(𝑦)(
ఒ

|௬|
)௔ିଵ, |𝑦| > 𝜆

−0.5𝑚𝑎 ∙ 𝑠𝑖𝑔𝑛(𝑦)(
|௬|

ఒ
)௔ାଵ, |𝑦| ≤ 𝜆

 (11) 

 

 
డమ௚೔

డ௬೔డఒ
= ቊ

0                                                      , |𝑦| > 𝜆

−0.5𝑚𝑎(𝑎 + 1) ∙ 𝑠𝑖𝑔𝑛(𝑦)
|௬|ೌ

ఒೌశభ
, |𝑦| ≤ 𝜆

 (12) 

 
By minimizing 𝑅௦

௝
(𝜆) on different decomposition scales, the 

optimal threshold 𝜆௝  on the corresponding scale can be 
obtained. By using the steepest descent method of the 
optimization algorithm, the optimal threshold can be acquired. 
 
4. SIGNAL DENOISING EXPERIMENT SIMULATION 

In the experiment, the lidar echo signal model, named Wa-
Lid, proposed by Hani Abdallah et al. is used to simulate the 
actual observation data by superimposing the zero mean 
Gaussian white noise, which represents the underwater 
environmental noise(Abdallah et al., 2012). 500 sets of lidar 
echo data are processed by the method in this paper to obtain 
their average values of SNR, root mean square error (RMSE) and 
local peak relative error (LREPV), respectively. The expressions 
of the three indicators are (13), (14) and (15) respectively. The 
(SNR) represents the amount of noise in the signal. The greater 
the value is, the less the noise content is in the signal. 

 
The RMSE indicates the measurement. The smaller the value is, 
the higher the measurement reliability is. The LREPV is used to 
measure the singularity retention of the original signal. 
 

 𝑆𝑁𝑅 = 10𝑙𝑔 (
∑ หௐೕ,ೖห

మ೙
೔సభ

∑ หௐ෡ ೕ,ೖିௐೕ,ೖห
మ೙

೔సభ

) (13) 

 

 𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ ห𝑊෡௝,௞ − 𝑊௝,௞ห

ଶ௡
௜ୀଵ  (14) 

 

 𝐿𝑅𝐸𝑃𝑉 =
ଵ

ே
∑

|௉೚೔ି௉೏೔|

௉೚೔
× 100%௡

௜ୀଵ  (15) 

 
Where 𝑃௢௜ is the local peak of the i-th segment of the original 
signal, and 𝑃ௗ௜ is the corresponding peak of the i-th segment 
after the signal denoising process 
 
After the echo signal is denoised, it can be seen from Fig.5 and 
Table 1: The waveform is smooth after denoising by the soft 
threshold function while the accuracy of signal reconstruction is 
poor, and There are some oscillation points by the soft threshold 
function. According to the two indicators of SNR and MSE, the 
denoising effect of the proposed method is better than the 
traditional method, which can overcome the constant deviation 
effectively between the estimated value and the real value. It can 
also suppress the signal concussion phenomenon effectively in 
the hard threshold denoising method. In addition, according to 
the comparison results of LREPV, the local peak value of the 
signal can be better preserved and the same as preserving the 
local singularity of the signal, resulting in enhanced details of 
the signal preferably. 

Table 1. Three threshold function denoising indicators 

 Hard threshold Soft threshold Threshold method proposed in this paper 
Signal-to-noise ratio (dB) 20.5667 19.8520 23.3172 
Root mean square error 0.02134 0.03546 0.01827 

Local peak relative error (%) 3.035 3.525 1.754 
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5. CONCLUSION 

In order to satisfy the need of denoising of target echo signal, a 
new threshold function with parameters is proposed in this paper, 
which is continuously derivable. Further, the optimal threshold 
in the sense of minimum mean square error is obtained by using 
the Stein unbiased risk estimate. The echo signal is denoised by 

the proposed method under the expectation to preserve the 
singularity of the noisy signal while de-noising. Compared with 
the traditional hard threshold method and the soft threshold 
method, simulation experiment confirms the denoising efficacy 
of the proposed method that results in enhanced SNR and 
reduced MSE. The details of the original signal can be better 
preserved, and the signal denoising recovery ability is improved.
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