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ABSTRACT: 
 
Aiming at multi-class artificial object detection in remote sensing images, the detection framework based on deep learning is used to 
extract and localize the numerous targets existing in very high resolution remote sensing images. In order to realize rapid and 
efficient detection of the typical artificial targets on the remote sensing image, this paper proposes an end-to-end multi-category 
object detection method in remote sensing image based on the convolutional neural network to solve several challenges, including 
dense objects and objects with arbitrary direction and large aspect ratios. Specifically, in this paper, the feature extraction process is 
improved by utilizing a more advanced backbone network with deeper layers and combining multiple feature maps including the 
high-resolution features maps with more location details and low-resolution feature maps with highly-abstracted information. And a 
Rotating Regional Proposal Network is adopted into the Faster R-CNN network to generate candidate object-like regions with 
different orientations and to improve the sensitivity to dense and cluttered objects. The rotation factor is added into the regional 
proposal network to control the generation of anchor box’s angle and to cover enough directions of typical man-made objects. 
Meanwhile, the misalignment caused by the two quantifications operations in the pooling process is eliminated and a convolution 
layer is appended before the fully connected layer of the final classification network to reduce the feature parameters and avoid over-
fitting. Compared with current generic object detection method, the proposed algorithm focus on the arbitrary oriented and dense 
artificial targets in remote sensing images. After comprehensive evaluation with several state-of-the-art object detection algorithms, 
our method is proved to be effective to detect multi-class artificial object in remote sensing image. Experiments demonstrate that the 
proposed method combines the powerful features extracted by the improved convolutional neural networks with multi-scale features 
and rotating region network is more accurate in the public DOTA dataset. 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Object detection aims to recognize and localize object, 
including pre-processing, feature extraction and classification. It 
is divided into two categories, one based on combination of 
traditional image processing and machine learning algorithm 
and the other based on deep convolution neural network. The 
machine learning based algorithms mainly extract hand-crafted 
or shallow features with limited representation power, such as 
the histograms of oriented gradients  (Dalal and Triggs, 2005) 
and then input these features into the classifier such as support 
vector machine(Cortes and Vapnik, 1995). Meanwhile, the 
diversity and complexity of the background as well as different 
perspectives change interference detection performance.  
So far, many object detection(Liu et al., 2016) research based 
on deep learning (LeCun et al., 2015) have been proposed due 
to the large success of deep learning in the natural scene object 
detection. However, the detection in very high resolution 
remote sensing images performs poor when achieved by directly 
applying the existing algorithms because of the scale diversity, 
the object orientation and complex background(Xiao et al., 
2018). Since the AlexNet won in the ImageNet(Deng et al., 
2009; Krizhevsky et al., 2012) competition, some kinds of 
object detection algorithms were proposed successively. The 
object detection algorithms are mainly divided into One-Stage 
and Two-Stage. The YOLO(Redmon et al., 2016), proposed in 
the 2016, was a typical One-Stage method and improved to be 
faster. While RCNN(Girshick et al., 2014), Fast 
RCNN(Girshick, 2015) and Faster RCNN (Ren et al., 2017) are 
the representative of the Two-Stage algorithms. The Mask 
RCNN(He et al., 2017) is based on the instance object 

segmentation by appending a mask branch and proposing a 
more accurate matching strategy.  
One of the key challenge in the remote sensing image target 
detection is the arbitrary orientation and scale variability. The 
remote sensing image was captured through aerial photography 
equipment or artificial satellite. There are some similarities 
between the object detection of remote sensing and the text 
detection in regards of the orientation.  To solve this problem, 
some methods have been proposed (He et al., 2016b; Yao et al., 
2016; Zhang et al., 2016)[14-16]. For example, the (Jiang et al., 
2017)[17] proposed a text detection algorithm based on the 
region proposal network which uses a region proposal network 
to produce the horizon candidate bounding box and then predict 
the rotated text box. And the (Ma et al., 2018)[18] improves the 
RPN in the Faster RCNN and adds rotation information to 
predict the rotated text boxes. 
Above all, this article investigates several public remote sensing 
image datasets and collects high resolution remote sensing 
images from the Google Earth and CRESDA [19]. We proposed 
an end-to-end multi-category object detection algorithm based 
on the Faster RCNN and the deep neural network theory. As 
showed in the figure 1, we adopt the rotated region proposal 
network to generate rotated proposal. This network can propose 
candidate bounding boxes with angles, which are much more 
suitable for dense object in the remote sensing image, and 
improved the detection accuracy. Meanwhile, the RoIAlign is 
applied to eliminate the unnecessary misalignment in the 
pooling stage. And a modification is made in the classification 
layer by appending a convolution layer to reduce the parameters 
in the feature map, which can avoid the over-fitting and 
improve the classifier performance. After comprehensive 
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evaluation with several state-of-the-art algorithms such as 
YOLO v2, YOLO V3 and Faster RCNN, the experimental 
results showed that the method we proposed can achieve better 
performance in the remote sensing image object detection which 
demonstrated the effectiveness of our method   
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Figure.1 The proposed network 

 
2. FASTER R-CNN 

Faster RCNN was proposed as one of the state-of-the-art   
detection framework. The framework is shown in Figure 2. It 
takes VGG 16 (Simonyan and Zisserman, 2015)to act as the 
backbone network . 
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Figure.2 The framework of Faster RCNN 

The first stage of Faster RCNN is a backbone feature extraction 
network. Each layer of the convolutional network utilizes the 
feature map obtained from the former layer to extract more 
abstract feature.  
The RPN is critical in the Faster RCNN to propose candidate 
region box. The architect of the RPN is showed in the figure 2. 
It can share the feature extraction network with the subsequent 
classification network. The RPN utilizes a 3*3 window to slide 
on the feature map generated after the shared convolution layer 
and each window corresponds to 9 bounding box with different 
scale and ratio mapping to the input image.  
The last stage of Faster RCNN is the RCNN, a classification 
network. The input is the object proposal region produced by 
the RPN network. Then the feature of the proposal region is 
extracted and the network accomplishes classification by using 
these features. Fully connected layer is used to output a 
confidence score for each probable object.  
The original Faster RCNN use part of VGG Net to function as 
the feature extractor and ignore some features which are vital to 
the small object detection. Due to the orientation of the objects 
in the satellite images, some objects, for example, the ship and 
the car, are densely peaked in the images. And the recognition 
and detection would be influenced by the direction of the target. 
In order to address these challenges, three improvements will be 
described in the next section including the backbone network, 
the region proposal network and the classification network. 

3. THE DETSILS OF OUR METHODS 

In this paper, an improved algorithm is proposed to achieve the 
multi-class object detection and object orientation, including: 
first, apply ResNet and FPN in the backbone network to 

construct feature pyramid network and achieve multi-scale 
object detection; and second, redesign the RRPN to replace the 
RPN in the Faster RCNN to propose rotated proposal region; 
third, use RoIAlign to accomplish more accurate matching and 
add a convolution layer in the classification network. The 
overall framework of the proposed method is shown in the Fig.1. 
 
3.1 Multi-scale feature extraction 

Due to the high-resolution of the remote sensing images, the 
ResNet-101 is used as the backbone feature network. At the 
same time, multi-scale feature is extracted to make the network 
more robust to the small object detection. 
The Faster RCNN apply the feature maps pooled by the topmost 
layer of VGG Net with low resolution. However, this method 
only concentrates on the high-level semantic feature while 
neglecting the low-level feature that brings much more location 
details, which may lose information of small objects.  At present, 
ResNet(He et al., 2016a) is one of the state-of-the-art backbone 
networks. Innovated by the grate performance of ResNet, we 
improved the detection accuracy by replacing the VGG Net with 
the ResNet. 
When the high-level and low-level features are combined, 
multi-scale information will be used. According to the(Lin et al., 
2017) [22],  feature pyramid is used in the feature extraction 
stage to improve the final detection performance, as shown in 
the Fig.3. 

predict
predict

predict

predict

  (b)   (a)  
(a) Faster RCNN feature extraction; (b) Improved feature 

extraction 
Figure.3   multi-feature extraction 

Therefore, a bottom-to-up, top-to-down path and a horizontal 
connection pathway are built. As the equation shows, the ROI 
with width w and height h are allocated to the feature pyramid: 

0 2[ log ( / 224)]k k wh 
             

(1) 

The top-to-down pathway combines the low-level and high-
resolution function to up sample in the high-level semantic 
information. And then these features are connected to the 
former features horizontally to strength the high-level features.  
So the small object can be processed with the following reasons: 
First is that this structure can utilize much more high-level 
semantic information compared to the method only using the 
last convolution features; Second is that operating in the larger 
feature map can increase the resolution and then acquire more 
useful information of the small target. 
 
3.2 Rotated Region proposal network 

Faster RCNN uses 9 anchor boxes to produce candidate 
bounding boxes with 3 different scales and 3 different ratios. 
However, for the very high resolution satellite image, the shape 
and scales have much difference. Thus, the original parameters 
cannot detect all of the objects perfectly. 
Firstly, an angle parameter is used to control the direction of the 
proposal anchor boxes, and we tried different angles in the 
experiments to cover as much directions as possible. And to 
ensure the balance between the computation complexity and 
detection performance, we selected six different angles in the 
following tests. Secondly, the aspect ratios are set to 1, 1:2，
1:3，1:4，1:5，1:6，1:7，1:8 due to the special ratios of the 
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targets in the remote sensing images. Moreover, we designed 
the scales as 4, 8, 16 and 32 in that some object are relatively 
small. 
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Fig.4 the anchor strategy in our method 

The proposal generated by our network is rotated with angles. 
The traditional IoU calculation used in the axisymmetric boxes 
is not suitable in the RRPN network, which may cause 
inaccurate learning and lead to poor detection performance. The 
IoU value between two horizontal bounding boxes are very 
simple. However, it becomes troublesome to calculate the 
intersecting location of two rectangles with rotated angles. As 
shown in the Fig.5, the intersecting shape of two rotated boxes 
is uncertain. In our method, we firstly calculate the intersecting 
point of the two rectangles and the vertex of one of the 
rectangles in the other rectangles. And then we can calculate the 
area of the polygon encircled by these points to compute the 
IoU value. 
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(a) Regular intersection; (b) Irregular intersection  

Fig.5 the IoU calculation in the rotated box  
The conventional NMS merely consider the IoU factor but it’ s 
not suitable in the rotated box processing. For example, the IoU 
of the box with extreme aspect ratio, such as 1：8 and relatively 
low angel, such as π /12, is 0.31 (less than the threshold) but it 
can be treated as a positive sample. In our method, the IoU and 
the angle are considered simultaneously. It consists of two 
phase: （i）the maximal IoU is reserved of the box with higher 
IoU than 0.7; （ii）the minimal angle is reserved if all IoU is 
between 0.3 and 0.7 (which should be less than π /12）. 
The Fig.6 shows three different detection results for different 
NMS and boxes. The rotated NMS means to calculate IoU 
between two rotated boxes. Compared to (a), (b) missed several 
objects which located near each other. Figure (c) shows that 
some horizontal boxes are over-lapping. For the dense rotated 
targets, the traditional NMS would miss some object because 
the IoU may be high between the axisymmetric boxes while low 
in the rotated NMS. 
 

 
(a)                          (b)                          (c) 

 (a) Rotated NMS for rotated boxes (b)Traditional NMS for 
rotated boxes (c)Traditional NMS for horizontal boxes 

Fig.6 Traditional NMS vs. Rotated NMS 

3.3 Pooling layer and classification layer 

There are two quantification steps in the RoIPooling. Firstly, 
the input image is fed into the feature map through the 
convolution layer and the candidate frame location changes 
from float to the nearest whole number. Secondly, there are 
rounding operation when the RoIPooling was executed to 
localize each anchor boxes. 
RoIAlign was proposed in Mask R-CNN [13] and it can 
eliminate the misalignment produced in the quantification. As 
shown in Fig.7, the key idea of the RoIAlign is to cancel the 
quantification steps and use bilinear interpolation method to 
convert the pixels of the image to float(Jiang et al., 2018). Thus, 
the whole procedure was transformed to continuous operation. 

(a) (b)  
(a) RoI Pooling；(b) RoI Align 

Fig.7 RoI Pooling and RoI Align 
The fully connected layer of the CNN contains too much 
parameters. According to the research of Min Lin (Lin et al., 
2014)[23], the fully connected layer easily leads to over-fitting 
and weaken the generalization ability of the network. On the 
basis of the theory, some modification is conducted by adding 
one convolution layer before the fully connected layer to reduce 
the parameters to strength the classifier. 3*3 convolution kernel 
is used to accelerate computing at the same time. Besides, the 
operation can avoid the over-fitting which is caused by the large 
dimension of fusion feature and reduce half size of the feature 
to speed up the subsequent calculation. 

 
Fig.8 RRPN vs our method 

As the Fig.8 shows, we compared our method with the original 
RRPN and the first and third figures represent the original 
RRPN and the second and fourth one stand for our method 
results. It shows that our methods can improve the detection 
performances. 
Our improvements to the primary Faster R-CNN algorithm are 
three aspects: 1) the ResNet is used to function as the feature 
extraction network and the FPN network is introduced to fusion 
the multi-feature; 2) the RRPN is used to propose rotated region; 
3) substitute the RoIPooling with the RoIAlign and then add a 
convolution layer in the classification network. 
 

4. EXPERIMENTS 

4.1 Dataset and Implementation Details 

In this paper, we investigated and analysed several public 
dataset of satellite images for the task of object detection in 
remote sensing images. The DOTA(Xia et al., 2018) is selected 
as base dataset and we request some data from the websites of 
Google Earth and CRESDA at the same time. We labelled the 
collected data and applied them in the experiments. The dataset 
contains 2806 images for 15 categories, including 1411 images 
for training, 458 images for validation and 937 images for 
testing. And in this paper, we mainly focus on 10 categories 
object, including bridge, small vehicle, harbor, storage tank, 
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large vehicle, plane, tennis court, helicopter, ship and 
swimming pool. 
An end-to-end training strategy is used, which proved to be 
better than the alternative training. In the whole training period, 
there are 4 loss function, 2 in the RPN phase while 2 in the 
RCNN phase.  We utilize the pre-trained ResNet101 model that 
trained on the Image Net [8] dataset in our training process. 
In the training and the testing process, the parameters setting are 
as follows: 
(1) Pre-processing: Input images size is set to 800×800 and the 
learning rate is 0.0003; 
(2) Parameters of the RRPN: location loss weight is 1/7, 
classification loss weight is 2, IoU positive sample threshold is 
0.7, negative sample threshold is 0.3, the threshold of the NMS 
is 0.7, anchor scale is [4, 8, 16, 32], anchor aspect ratios are [1, 
1 / 2, 2., 1 / 3, 3, 5, 1 / 4, 4, 1 / 5, 6, 1 / 6, 7, 1 / 7], anchor angle 
is [-90, -75, -60, -45, -30, -15]; 
(3) Parameters of the Fast R-CNN: location loss weight is 4, 
classification loss weight is 2, the ROI pooling size is 14, the 
threshold of the NMS is 0.2, IoU positive sample threshold is 
0.6. 
 
4.2 Experiments and Analysis 

Different Feature Extraction Network. 

In order to evaluate whether the backbone network 
improvement can make a difference to the final detection or not, 
we use the VGG 16 and ResNet-101+FPN as our backbone and 
experiments are carried out on the DOTA dataset.  
      

 
Fig.9 AP of different feature extraction network. (blue: with 

VGG backbone; green: with ResNet101+FPN; orange: 
RoIAlign) 

We adopted one of the widely used criteria to quantitatively 
evaluate the detection performance, namely, average precision 
(AP). The higher AP value means the better the performance. 
And the Figure 9 shows the AP value we calculated and the 
green line denotes the improvement with backbone network.As 
shown in Figure 9, accuracy was improved apparently when the 
Res-Net101+FPN was used to act as the backbone network. The 
inference time cost of the VGG 16 is 1.87s while the Res-
Net101+FPN cost 2.14s. This computation increase may be 
caused by the latter’s deeper layers and much more feature 
parameters. 
 
Different Pooling methods. 

The RoIPooling method and the RoIAlign method are used 
separately for evaluation on the DOTA dataset. The Figure 9 
shows the AP value of 5 categories object and the orange line 
denotes the improvement with RoIAlign method. In Figure 9, 
we evaluate the comparison of the two approaches of the five 

categories of object. In Table 1, the test accuracy and recall rate 
of the 5 categories of typical ocean targets are statistically 
analysed.  
                                                                                 

Categories Precision Recall AP 
Bridge 55.9 32.5 23.9 

Harbor 70.1 54.0 47.0 

Storage-tank 82.6 50.2 48.5 

Plane 92.5 55.8 83.8 

Ship 74.1 52.8 47.4 

          Table 1. Precision, Recall and AP of the RoIAlign.  

For the target is relatively dense, RoIAlign reduces the pixel 
deviation during the pooling process, thus the detection 
accuracy is improved compared with the original RoIPooling 
method. The costing time is 2.14s for the RoIPooling method 
while 2.18s for the RoIAlign method, which means that the 
modified network will not add too much calculation complexity. 
Different classification network. 

The original classification network and a classification network 
with a newly appended convolution layer are evaluated. And the 
corresponding statistic values of the two methods are shown in 
Figure 10. 

 
Fig.10 AP of different Classification network. (blue: original; 

orange: with convolution layer appended) 

The improved classification network method increased the 
detection accuracy of some categories, such as bridges, vehicles, 
track and field fields, soccer fields, airplanes and etc. At the 
same time, the average time for the original classification 
network is 2.14s, while 1.98s for the improved classification n 
network. This proved that the improvement remains the 
computation complexity 
 
Overall algorithm comparison. 

As shown in Table 2, the detection performance of airplanes 
and tennis courts is better (the precision value is over 80%), 
while the bridge detection is of poor performance (the precision 
value is less than 30%). This may be caused by the fact that 
airplanes and tennis courts have apparent shape, colour and 
texture features, and the environment is relatively simple and 
easier to recognize. However, ships and ports are generally 
densely packed, with varying shapes and scales, and bridges 
tend to be occluded by the complex background, making the 
accurate recognition difficult.  
                                                                                  

Categories Precision Recall AP 
Bridge 59.15 32.92 26.38 

Small -Vehicle 68.65 44.12 34.15 

Harbor 77.95 61.41 56.18 

Storage-tank 81.40 52.82 51.55 
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Large-Vehicle 62.68 76.20 56.91 

Plane 94.10 87.36 86.52 

Tennis court 97.04 91.29 91.15 

Helicopter 82.05 65.31 61.91 

Ship 74.01 55.35 50.15 

Swimming pool 71.60 53.45 47.55 

 Table 2. Statistical results of the experimental.    % 

In order to demonstrate the effectiveness of our proposed 
algorithm, we also conduct comprehensive comparison with 
several state-of-the-art deep learning object detectors, including 
YOLO v2, YOLO v3, Faster R-CNN and the original RRPN 
algorithm. Here, we adopted three widely used criteria to 
quantitatively evaluate the performance of detection, namely, 
the precision, recall and average precision (AP). These 
quantization values of detection accuracy are shown in Table 3. 

Categories YOLO 
v2 

YOLO 
v3 

Faster 
RCNN 

RRP
N 

Propose
d 

Bridge 14.18 10.03 41.82 23.88 26.38 

Small -Vehicle 13.08 14.79 3.85 34.65 34.15 

Harbor 51.99 17.07 59.04 47.3 56.18 

Storage-tank 40.21 24.59 5.31 48.77 51.55 

Large-Vehicle 22.02 9.09 38.94 49.74 56.91 

Plane 80.91 49.44 38.74 83.89 86.52 

Tennis court 72.52 15.18 89.75 89.4 91.15 

Helicopter 21.22 0.02 40.64 45.44 61.91 

Ship 46.73 30.31 3.99 47.19 50.15 

Swimming pool 34.31 7.54 22.71 39.78 47.55 

mAP 39.72 17.81 34.48 51.00 56.25 

 Table 3. Different algorithm comparison results.  % 

As the Table 3 shows, the optimal values in each category are 
emphasized by the bold numbers. It’s noteworthy that for most 
class of objects detection, including bridge, storage-tank, large-
vehicle, plane, tennis court, helicopter, ship and swimming pool, 
our proposed method can achieve the best performances. It’s 
proved that the rotated candidate region boxes predicted from 
the improved network by adopting RRPN and earlier mentioned 
improvements can truly improve the detection performance of 
the remote sensing image objects with different directions, 
shapes and scales apparently. However, although our method 
has achieved the best mAP in the 10 class object detection, the 
detection performances of some categories, such as bridge and 
small vehicle are still relatively lower than the other categories. 
To further improve the detection accuracy of these objects is 
our future task. 

(a)YOLO v2   (b) YOLO      (c) Faster RCNN    (d) RRPN (e) Ours

Fig.11 Small-vehicle. 

(a)YOLO v2   (b) YOLO      (c) Faster RCNN    (d) RRPN (e) Ours

Fig. 12 Storage-tank. 

(a)YOLO v2   (b) YOLO      (c) Faster RCNN    (d) RRPN (e) Ours

Fig. 13 Helicopter. 

As shown in Figure 11-13, the target of our test contains 15 
categories. It can be seen that the method is useful for oriented 
and dense object detection, such as ships, storages-tanks, and 
helicopters. The detection results in targets such as helicopters 
and ships are better than the rest of the algorithms. In summary, 
the experimental results show that our algorithm can effectively 
deal with multi-class object detection problem of high 
resolution remote sensing images. 

5. CONCLUSION

With the increasing spatial resolution of remote sensing images, 
convolutional neural networks have been widely used in remote 
sensing image scene classification, target recognition, 
segmentation and other fields. Aiming at the typical targets in 
satellite images, this paper focuses on the CNN based object 
detection. Considering the distinctiveness of remote sensing 
images, the network structure of Faster R-CNN is improved, 
and the accuracy of typical target detection of remote sensing 
images is achieved. For most of the targets in remote sensing 
images, they are characterized by orientation and denseness. A 
rotation factor is added to the regional proposal network so that 
it can generate candidate regions with angles. At the same time, 
a convolution layer is appended in front of the fully connected 
layer of the final classification network to reduce the feature 
parameters and avoid over-fitting. The experimental evaluation 
shows that the improved algorithm can get better detection 
results.  

6. ACKNOWLEDGEMENTS

This work is supported by the National Key Research and 
Development Program of China (No. 2016YFB0502602), and 
National Natural Science Foundation of China (Grant No. 
61471272). 

REFERENCES 

Cortes, C., Vapnik, V., 1995. Support-vector networks. 
Machine Learning 20, 273-297. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-321-2020 | © Authors 2020. CC BY 4.0 License. 325



 

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for 
human detection, 2005 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR'05), pp. 886-
893 vol. 881. 
 
Deng, J., Dong, W., Socher, R., Li, L., Kai, L., Li, F.-F., 2009. 
ImageNet: A large-scale hierarchical image database, 2009 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 248-255. 
 
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich 
Feature Hierarchies for Accurate Object Detection and 
Semantic Segmentation, 2014 IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 580-587. 
 
Girshick, R.B., 2015. Fast R-CNN, 2015 IEEE International 
Conference on Computer Vision (ICCV), pp. 1440-1448. 
 
He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask R-
CNN, 2017 IEEE International Conference on Computer Vision 
(ICCV), pp. 2980-2988. 
 
He, K., Zhang, X., Ren, S., Sun, J., 2016a. Deep Residual 
Learning for Image Recognition, pp. 770-778. 
 
He, T., Huang, W., Qiao, Y., Yao, J., 2016b. Accurate Text 
Localization in Natural Image with Cascaded Convolutional 
Text Network. CoRR abs/1603.09423. 
 
Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y., 2018. 
Acquisition of Localization Confidence for Accurate Object 
Detection, in: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, 
Y. (Eds.), Computer Vision – ECCV 2018. Springer 
International Publishing, Cham, pp. 816-832. 
 
Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H., Fu, 
P., Luo, Z., 2017. R2CNN: Rotational Region CNN for 
Orientation Robust Scene Text Detection. CoRR 
abs/1706.09579. 
 
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet 
Classification with Deep Convolutional Neural Networks. 
Commun. ACM 60, 84-90. 
 
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 
521, 436. 
 
Lin, M., Chn, Q., Yan, S., 2014. Network In Network. ICLR 
abs/1312.4400. 
 
Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, 
S., 2017. Feature Pyramid Networks for Object Detection, 2017 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 936-944. 
 
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, 
C.-Y., Berg, A.C., 2016. SSD: Single Shot MultiBox Detector, 
in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer 
Vision – ECCV 2016. Springer International Publishing, Cham, 
pp. 21-37. 
 
Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, 
X., 2018. Arbitrary-Oriented Scene Text Detection via Rotation 
Proposals. IEEE Transactions on Multimedia 20, 3111-3122. 
 

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You 
Only Look Once: Unified, Real-Time Object Detection, 2016 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 779-788. 
 
Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: 
Towards Real-Time Object Detection with Region Proposal 
Networks. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 39, 1137-1149. 
 
Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional 
Networks for Large-Scale Image Recognition. 
 
Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, 
M., Pelillo, M., Zhang, L., 2018. DOTA: A Large-Scale Dataset 
for Object Detection in Aerial Images, 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 
3974-3983. 
 
Xiao, J., Tian, H., Zhang, Y., Zhou, Y., Lei, J., 2018. Blind 
video denoising via texture-aware noise estimation. Computer 
Vision and Image Understanding 169, 1-13. 
 
Yao, C., Bai, X., Sang, N., Zhou, X., Zhou, S., Cao, Z., 2016. 
Scene Text Detection via Holistic, Multi-Channel Prediction. 
CoRR abs/1606.09002. 
 
Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., Bai, X., 2016. 
Multi-oriented Text Detection with Fully Convolutional 
Networks, 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 4159-4167. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W10, 2020 
International Conference on Geomatics in the Big Data Era (ICGBD), 15–17 November 2019, Guilin, Guangxi, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-321-2020 | © Authors 2020. CC BY 4.0 License.

 
326




