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ABSTRACT:  

 

Due to the diverse structure and complex background of airports, fast and accurate airport detection in remote sensing images is 

challenging. Currently, airport detection method is mostly based on boxes, but pixel-based detection method which identifies airport 

runway outline has been merely reported. In this paper, a framework using deep convolutional neural network is proposed to accurately 

identify runway contour from high resolution remote sensing images. Firstly, we make a large and medium airport runway semantic 

segmentation data set (excluding the south Korean region) including 1,464 airport runways. Then DeepLabv3 semantic segmentation 

network with cross-entropy loss is trained using airport runway dataset. After the training using cross-entropy loss, lovasz-softmax loss 

function is used to train network and improve the intersection-over-union (IoU) score by 5.9%. The IoU score 0.75 is selected as the 

threshold of whether the runway is detected and we get accuracy and recall are 96.64% and 94.32% respectively. Compared with the 

state-of-the-art method, our method improves 1.3% and 1.6% of accuracy and recall respectively. We extract the number of airport 

runway as well as their basic contours of all the Korean large and medium airports from the remote sensing images across South Korea. 

The results show that our method can effectively detect the runway contour from the remote sensing images of a large range of complex 

scenes, and can provide a reference for the detection of the airport. 

 

 

1. INTRODUCTION 

Remote sensing image object detection technology has attracted 

massive attention, especially in the fields of urban management, 

agriculture and military. As one of the most important facilities, 

the accurate detection of airports has attracted widespread 

concerns. However, it is challenging to accurately detect airport 

in remote sensing images with the diverse structure and complex 

background. 

 

Due to the characteristics of large aspect ratio and internal gray 

uniformity of the airport, the runway is the most discriminating 

feature of airport. Many methods have been proposed based on 

airport runway to detect airport from remote sensing images in 

recent years. According to the characteristics used, they can be 

divided into two categories: 1. using features designed by prior 

knowledge to extract airports(Tang, 2015; Zhu, 2015), 2. using 

features automatically extracted from convolutional neural 

networks(Xiao, 2017; Zhu, 2018). 

 

The methods with features of artificial design are mainly divided 

into two kinds: line detectors (Tang, 2015) and saliency models 

(Zhu, 2015). The advantages of line detectors based methods are 

fast and low complexity, but they are easily to be disturbed by 

complex background. Compared with methods based line 

detectors, the ways using saliency models are robust. But their 

sliding windows will introduce extra overlap redundancy. line 

detectors and saliency models employ artificial features that 
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heavily depend on prior knowledge. Instead of using human-

designed features, deep convolutional neural networks(DCNNs) 

is designed to extract low-level and high-level features and have 

been applied to detecting airports. Xiao etc. (Xiao, 2017) extract 

the multi-scale fusion features of airport using GoogleNet-LF 

model. But GoogleNet-LF model repeatedly calculates features 

of the inner area of the airports, resulting in massive additional 

computation. Xu etc.(Zhu, 2018) design a cascade region 

proposal networks that locate airport directly, which is an end-to-

end way to detect airport. However, these methods using features 

extracted by human and DCNNs are box-based to locate airport 

currently, which could not identify outline of airport. 

 

In this paper, we propose a framework that the precise outline of 

airport runway can be identified from remote sensing images 

using DeepLabv3. Then we use lovasz-softmax loss instead of 

cross cross-entropy to improve our accuracy by nearly 6% during 

training DeepLabv3 network. In order to validate effectiveness of 

our method, we extract the number of Korean large and medium 

airports runway as well as their basic contours using remote 

sensing images across South Korea.  

 

The remainder of this paper is organized as follows. In Section 2, 

we briefly introduce our recognition framework including 

DeepLabv3 and lovasz-softmax loss. In Section 3, we evaluate 

the multiple segmentation networks and lovasz-softmax loss with 

DeepLabv3 as well as present experimental results. This paper is 

concluded in Section 4. 
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2. METHOD 

2.1 DeepLabv3 Semantic Segmentation Network 

The Fully Convolutional Network(FCN) developed by Long 

(Long, 2014) takes a natural image as input and predicts a 

segmentation map of the same size as input image. Based on FCN, 

many semantic segmentation networks with different net-

structures were designed in recent years. Among them, the 

DeepLabv3 is one of the well performance networks, which can 

get rich contextual information by employing large receptive 

field. It is beneficial to detection airport runway using 

DeepLabv3, since airport runways have various scale and they 

are similar to texture feature with freeways. 

 

2.1.1 Overview of DeepLabv3: DeepLabv3 (Chen, 2017) 

network takes an entire images as input and as pixel probability 

value as output. The structure of DeepLabv3 is shown in Figure 

1. The network is mainly divided into two parts: features 

extracted networks and Atrous Spatial Pyramid Pooling(ASPP) 

module. As shown in Figure 1, we select Resnet50 to extract 

features. After inputting features into ASPP, 1*1 convolution 

layer contact multiscale features from ASPP and the pixel 

probability value with the same size as the input image is 

obtained. DeepLabv3 design a new module that adopts atrous 

convolution in cascade or in parallel to capture multi-scale 

context by adopting multiple atrous rates in features networks, 

which could handle the problem of segmenting objects at 

multiple scales. 

 

 
Figure 1. The structure of DeepLabv3 

 

2.1.2 ASPP: ASPP use multiple parallel atrous convolutional 

layers with different sampling rates at the incoming 

convolutional feature layer. Thus, ASPP can capture objects as 

well as image context at multiple scales. ASPP are commonly 

take four rates (r = {6,12,18,24}) to obtain different scales 

features. In order to encode global context, image-level features 

are added to ASPP in deeplabv3. 

 

Although accuracy of DeepLabv3+ (Chen, 2018) is higher than 

DeepLabv3, its model parameters size is much larger than 

Deeplabv3, as is shown in Table 1, which greatly increases the 

training and detection time. Since the recognition accuracy of 

DeepLabv3 can meet the requirements, this paper selects 

DeepLabv3 to identify the airport runway. 

 

Model Name DeepLabv3 DeepLabv3+ 

Backbone Resnet50 Xception 

Input Image Size (Pixel) 3*512*512 3*512*512 

Params size (MB) 151.66 208.85 

Forward/backward pass 

size (MB): 
3916.15 12169.77 

Estimated Total  Size 

(MB): 
4070.81 12381.62 

Table 1 Parameters size of deeplabv3 and deeplabv3 plus 

 

2.2 Lovasz-softmax Loss 

Semantic segmentation networks classify pixel 𝑖 of image into 

an object class c ∈ C.  They commonly rely on logistic 

regression, optimizing cross entropy loss during training: 

 

loss(𝐟) = −
1

𝑝
∑ 𝑙𝑜𝑔𝑓𝑖(𝑦𝑖

∗)
𝑝
𝑖=1             (1) 

 

where p the number of cells of the image, 𝑦𝑖
∗ the real class of 

cell i, and 𝑓𝑖(𝑦𝑖
∗) the probability that the network predicts that 

cell i belongs to the real class, and f a vector of all network 

outputs 𝑓𝑖(𝑐). 

 

Because background pixels occupy most of the pixels in our 

training images, our dataset is a class unbalanced dataset. The 

cross entropy loss is based on integrals over the segmentation 

regions and may affect training performance and stability. 

Lovasz-softmax loss proposed by Berman (Berman, 2017) is 

based on the Jaccard index and tackle the problem of class 

unbalanced well. The Jaccard index, also known as the 

intersection-over-union (IoU) score, is used in our method. 

 

J𝑐(𝑌, 𝑦) =
(𝑌=𝐶)∩(𝑦=𝐶)

(𝑌=𝐶)∪(𝑦=𝐶)
               (2) 

 

where Y the ground truth, y the predicted result, and the Jaccard 

index of category C J𝑐(𝑌, 𝑦) . Since J𝑐  is the ratio of the 

intersection of the prediction result and the ground truth result 

and the union, J𝑐 ∈ [0, 1]. Berman proposes a new loss function: 

lovasz-softmax 

 

𝛥J𝑐  = 1 − J𝑐(𝑌, 𝑦)              (3) 

 

According to Berman’s experiments, lovasz-softmax loss is 

superior to cross-entropy loss during training semantic 

segmentation networks. The performance of cross entropy loss 

and lovasz-softmax loss will be shown in chapter 3.4.1. 

 

2.3 IoP and IoG Definitions 

Different from the existing boxes-based airport detecting and 

locating methods, the semantic segmentation method used in this 

paper focus on extracting the runway in pixel-level. In order to 

compare with other methods conveniently, this paper defines two 

indices：IoP (Intersection-over-Prediction) and IoG (Intersection-

over-GroundTruth)： 

 

IoP𝑜 =
(𝑌=𝑂)∩(𝑦=𝑂)

(𝑌=𝑂)
                   (4) 

IoG𝑜 =
(𝑌=𝑂)∩(𝑦=𝑂)

(𝑦=𝑂)
                   (5) 
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GroundTruth 

 

   

DaNet 

(Runway mIoU: 73.221) 

   

PSPNet 

(Runway mIoU: 74.94) 

   

DenseNet 

(Runway mIoU: 74.94) 

   

DeepLabv3 

CrossEntropy Loss 

(Runway mIoU: 78.085) 

   

DeepLabv3 

Lovasz-softmax Loss 

(Runway mIoU: 83.98) 

   

 
(a)Sample A 

L:101.70, B56.37 

(b)Sample B 

L:104.18, B:52.34 

(a)Sample C 

L:-78.49, B:-7.14 

 

Figure 3 Results of different CNN networks (Runway mIoU is the mean IoU of result on validation set, the number in the upper left 

corner of the result image is the current result) 
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Where O the object of image, Y the GroundTruth of the airport 

object O and y the predicted result. We detect an airport runway 

from remote sensing images by most of runway pixels instead of 

all runway pixels. When defining 0.75 is the threshold whether the 

runway is detected: 

 

𝑅IoP =  {
IoP𝑜 > 0.75: 1,   𝐹𝑜𝑢𝑛𝑑

𝑒𝑙𝑠𝑒: 0, 𝑁𝑜𝑡 𝐹𝑜𝑢𝑛𝑑
         (6) 

𝑅𝐼𝑜𝐺 =  {
IoG𝑜 > 0.75: 1,   𝐹𝑜𝑢𝑛𝑑

𝑒𝑙𝑠𝑒: 0, 𝑁𝑜𝑡 𝐹𝑜𝑢𝑛𝑑
         (7) 

 

Based on above indices, the precision and recall rate can be 

calculated as: 

 

Precision = ∑ 𝑅𝐼𝑜𝑃 /𝑁              (8) 

Recall = ∑ 𝑅𝐼𝑜𝐺/𝑁                (9) 

 

Where N is the number of validation samples. 

 

3. EXPERIMENT 

3.1 Data 

According to the global airport information database of 

OurAirport website including airport type as well as coordinates 

and so on, we collect 1300 remote sensing images containing large 

and medium airports from Google Earth (excluding South Korea 

for performance test in 3.4.3). The image size is 1536*1536 in 

spatial. Locations of airport samples are shown in Figure 2. 

Among them, 900 images are randomly chosen to train network 

and the rest are used for validation. The experimental environment 

included a Xeon Gold 5118 CPU, 64G of memory, and an 

NVIDIA Quadro P5000 graphics card (16 GB memory). 

 

The entire networks were implemented using the Pytorch 

framework. We adopt Resnet50 as the basic feature extraction 

network (loading pre-training weights by ImageNet). The 

parameter of network training: batch size 2, learning rate 0.005 

and learning rate is reduced to 10e-5 by polynomial decrement, 

the number of iterations 60,000, and the Loss function cross-

entropy loss. 

 

In order to avoid network overfitting, images are randomly flipped 

left or right, flipped up or down, and rotated by 0~45 degrees in 

advance. Afterwards, images are randomly scaled with a ratio of 

0.75-1.25 as well as cut to 1120*1120.Finally images are 

normalized. 

 

 
Figure 2 Location of airport sample 

 

3.2 Results of Different Semantic Segmentation Models 

 

In order to verify the effectiveness of the selected networks, this 

paper selects three widely-used networks to compare with 

DeepLabv3, 1. PSPNet: using the pyramid pooling module to 

aggregate context information of different regions; 2. 

DENSE_ASPP NET: connecting a set of dilated convolution in a 

dense manner; 3. DANET using a positional attention mechanism 

and a channel attention mechanism to enhance global feature 

fusion. These three networks were trained and validated on the 

same sample sets, and the data pre-processing ways same as 

DeepLabv3 are used to avoid network overfitting during training. 

The mean IoU (mIoU) of the three networks is compared with 

DeepLabv3 on the validation set and shown in Table 2. According 

to the results, DeepLabv3 is higher than PSPNet, DENSE_ASPP 

NET, DANET, respectively. 

 

Model Airport Runway mIoU (%) 

DANET 73.22 

PSPNet 74.80 

DENSE_ASPP NET 74.94 

DeepLabv3 78.09 

Table 2 Performance of different networks 

 

3.3 Analyze result of different network:  

Figure 3 shows some typical runway detection results of the above 

semantic segmentation networks. In these experiments, mountains, 

trees, buildings, roads, waters, and other features in images are 

grouped in Background. Results of DaNet, PSPNet, DenseNet, 

DeepLabv3 with cross entropy loss are row 3 to 6 respectively. It 

is obvious that deeplabv3 result sample A and B have less false-

alarm pixels than other networks. Performance of different sample 

A, B, C is shown in Table 3. Analyzing the structure of the 

different networks, the advantage of DeepLabv3 is that 

DeepLabv3 adds image-level features into ASPP and adopts 

atrous convolution in cascade in features extracted networks. Thus, 

DeepLabv3 captures more multiscale context to identify the pixel 

of airport runway. 

 

Model Sample A Sample B Sample C 

DANET 64.18 % 76.96 % 83.42 % 

PSPNet 72.34 % 91.63 % 83.58 % 

DENSE_ASPP 81.83 % 77.41 % 80.29 % 

DeepLabv3 91.03 % 93.60 % 88.47 % 

Table 3 Performance of different Sample A, B, C 

3.4 Discussion 

3.4.1 Results of Different Loss Functions: The direct use of 

lovasz-softmax loss to train network will cause sharp gradient in 

the network and converge difficultly. Therefore, in this paper, 

lovasz-softmax loss was used to train network when the training 

of cross-entropy loss finished. The batch size, learning rate, and 

the number of iterations are 2, 0.0002, 30000 respectively. Data 

preprocessing ways are the same as before. The result of airport 

runway IoU in the validation set is shown in Table 4, which 

depicts that the use of lovasz-softmax loss improves the accuracy 

of the results by nearly 6% compared with that using cross entropy 

loss. 

Loss Function Airport Runway IoU(%) 

cross-entropy Loss 78.09 

Lovasz-softmax Loss 83.98 

Table 4 Airport runway IoU of Cross-entropy Loss and Lovasz-

softmax loss 
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3.4.2 Compared to Other Methods: In order to demonstrate the 

superiority of our method in airport detection, this paper compares 

the proposed DeepLabv3(with lovasz-softmax loss) with three 

state-of-the-art methods: a method based on geometry and 

texture(Tang, 2015), a Google-LF method that combines multi-

scale information(Xiao, 2017), and an improved neural network 

object detection method(Xu, 2018). Since authors do not disclose 

the source code, it is hard to determine a large number of 

parameters used by their experiments through the papers. The 

accuracy of different methods is shown in Table 4, and the 

precision and recall values are from corresponding original papers. 

Compared with Xu, the accuracy and recall of this paper are 

increased by 1.6% and 1.3% respectively. The reason is that the 

ASPP module of DeepLabv3 uses multiple rates atrous 

convolutional layers at the incoming convolutional feature layer 

and encodes multi-scale features of image. The number of airport 

in dataset of Tang, Xiao, Xu is 170, 403, 400 respectively. 

Therefore, the accuracy improvement also benefits from our large 

dataset containing 1300 airports. 

 

Method Precision(%) Recall(%) 

Tang (2015) 93.65 83.07 

Xiao (2017) 92.29 91.56 

Xu (2018) 95.00 93.10 

Ours 96.64 94.32 

Table 5 Comparison of airport detection results 

 

 
(a) 

 
(b) 

Figure 4 (a) and (b) are the extraction results of airport 

Gangneung airport and Osan air base respectively 

 

3.4.3 Performance: In order to test the performance of the model 

when applied to a wide range of remote sensing images, this paper 

identifies the airport runways throughout Korea (Our training data 

does not include Korean airports). The remote sensing images of 

South Korea were downloaded from Google Earth. We 

successfully detected all 32 large and medium airports of global 

airport information database in Korea according to the result, 

which further demonstrates the practicality of the proposed 

method. Results of Gangneung airport and Osan air-base are taken 

as representative and shown in Figure 4. The runway results are 

converted from the binary map to the airport runway vector profile 

as the final results. Model also identifies 8 small airport runways 

of global airport information database at a resolution of 4 m. 

However, due to the narrow runways of many small airports, it is 

difficult to extract all the airport runway whit 4m resolution 

images. If we extract small airport runway, we use remote sensing 

images with a resolution higher than 4m. 

 

4. CONCLUSION 

Based on the worldwide large and medium airport runway 

semantic segmentation dataset, this paper uses the DeepLabv3 

semantic segmentation network to identify the quantity of the 

airport runways from single remote sensing image, as well as to 

extract their basic contours. Accuracy of DeepLabv3 is improved 

by nearly 6% by using the lovasz-softmax loss function instead of 

cross-entropy loss during training. Results also show that our 

model identifies all the large and medium airport runways in the 

images acquired across the whole South Korea, indicating the 

effectiveness of our model. 

 

Due to the diversity of the airport's appearance, it is difficult to 

determine the limits of the two ends of the airport runway when 

we mark samples, which increases the difficulty of training 

models. Future research can be based on two aspects: refine 

airport runway labeling rules and reduce model parameters. 
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