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ABSTRACT: 

Urban information extraction from satellite based remote sensing data could provide the basic scientific decision-making data for the 
construction and management of future cities. In particular, long-term satellite based remote sensing such as Landsat observations 
provides a rich source of data for urban area mapping. Urban area mapping based on the single-temporal Landsat observations is 
vulnerable to data quality (such as cloud coverage and stripe), and it is difficult to extract urban areas accurately. The composite of 
dense time series Landsat observations can significantly reduce the effect of data quality on urban area mapping. Multidimensional 
array is currently effective theory for geographic big data analysis and management, providing a theoretical basis for the composite of 
dense time series Landsat observations. Google Earth Engine (GEE) not only provides rich satellite based remote sensing data for the 
composite of dense time series data, but also has powerful massive data analysis capabilities. In the study, we chose Random Forest 
(RF) algorithm for the urban area extraction owing to its stable performance, high classification accuracy and feature importance 
evaluation. In this work, the study area is located in the central part of the city of Beijing, China. Our main data source is all 
Landsat8 OLI images in Beijing (path/row: 123/32) in 2017.Based on the multidimensional array for geographic big data theory and 
the GEE cloud computing platform, four commonly used reducer methods are selected to composite the annual dense time series 
Landsat 8 OLI data. After collecting the training samples, RF algorithm was selected for supervised classification, feature importance 
evaluation and accuracy verification for urban area mapping. The results showed that 1), compared with the single temporal image of 
Landsat 8 OLI, the quality of annual composite image was improved obviously, especially for urban extraction in cloudy areas; 2) for 
the evaluation results of feature importance based on RF algorithm, Coastal, Blue, NIR, SWIR1 and SWIR2 bands were the more 
important characteristic bands, while the Green and Red bands were comparatively less important; 3) the annual composite images 
obtained by the ee.Reducer.min, ee.Reducer.max, ee.Reducer.mean and ee.Reducer.median methods were classified and accuracy 
verification was carried out using the verification points. The overall accuracy of the urban area mapping reached 0.805, 0.820, 0.868 
and 0.929, respectively. In summary, the ee.Reducer.median method is a suitable method for annual dense time series Landsat image 
composite, which could improve the data quality, and ensure the difference of features and the higher accuracy of urban area 
mapping. 

1. INTRODUCTION

Urban areas are the center of sustainable development. The 
2030 United Nations Sustainable Development Agenda 
included an independent Sustainable Development Goal (SDG) 
that aims to “ make cites and human settlements inclusive, 
resilient, adaptable and sustainable ” .Access to resource in 
building and managing cities is a huge challenge for social 
governance.We needs a lot of scientific knowledge that can help 
transition urban into a more sustainable future (Zhu et al., 2019). 
In the past decades, many scholars studied a large number of 
urban area extraction based on remote sensing technology. 
Schneider et al. mapped global urban areas using MODIS 500-
m data(.Schneider et al., 2010). After Landsat and other data are 
available for open access, it provides a rich source of data for 
urban area mapping. Zhu et al used the random forest algorithm 
to map urban areas based on Landsat7 and SAR data (Zhu et al., 
2012).Many urban area mapping studies are based on single-
temporal Landsat remote sensing data, which is difficult to 
mitigate the effects of clouds, strips, etc.(Wen et al., 2012), and 
it is also easy to confuse urban with other objects (such as bare 

land, farmland), so it is difficult to extract urban areas 
accurately. Li et al. proposed a method to map urban areas in 
Beijing based on the annual multi-temporal Landsat data, which 
mitigated the confusion between the urban and other objects (Li 
et al., 2015). However, they did not deal with Landsat data 
quality (such stripe and cloud). At present, the development of 
big data and cloud computing technology offer great potentials 
to resolve the problems in urban area mapping. High-
performance platforms such as Google Earth Engine (GEE) 
(Gorelick et al., 2017) and Data Cube not only provide plenty 
multi-source remote sensing data, but also have powerful 
massive data analysis capabilities. 
The image composite based on all Landsat dense time series 
data during the year can effectively mitigate the impact of data 
quality(such stripe and cloud) on urban areas mapping(Mateo-
García et al., 2018). Landsat dense time series data can be easily 
obtained using the Google Earth Engine, but how to composite 
time series data more efficiently is a key problem we need to 
consider. This study discussed how to composite effectively 
based on the annual dense time Landsat8 image, combined with 
the multidimensional arrays for analysing geoscientific data and 
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random forest algorithm, for mapping urban area of Beijing, 
China in 2017. 

2. MATERIALS 

The study area is in Beijing, China (Figure 1). Beijing is located 
on the northwestern edge of the North China Plain and covers 
an area of 16,410.54 square kilometers. Due to dense 
population activities such as urbanization and afforestation, its 
land cover has undergone tremendous changes.Now, its land 
cover types mainly include forest, farmland, water, urban, etc. 
As a region with relatively high urbanization, Beijing is a 
typical city for the study of urban areas mapping. We chose the 
time series of Landsat8 OLI surface reflectance data of 
Beijing(path/row:123/32) for 2017 as our primary data source 
(obtained from U.S. Geological Survey: 
http://earthexplorer.usgs.gov/)(Table 1).  

 
Figure 1. Research area — Beijing, China.  

 

Satell
ite Date Path/

Raw Band Use Resol
ution 

No. 
of 
Ima
ge 

B1 Coastal 30m 
B2 Blue 30m 
B3 Green 30m 
B4 Red 30m 
B5 NIR 30m 
B6 SWIR1 30m 

Land
sat8 
OLI 

20170
101 
-
20171
231 

123/3
2 

B7 SWIR2 30m 

22 

Table 1. Dense stacking of imagery throughout the year 
 

3. METHODS 

3.1 Multidimensional Arrays for Analysing Geoscientific 
Data 

With remote sensing data growing in variety and size, it calls 
for new management and analysis theory for big data. To 
efficiently integrate information from high dimensional data, Lu 
at al. explicitly proposed a array-based modeling theory, named 
multidimensional arrays for analysing geoscientific data (Lu et 
al., 2018). A multidimensional array can be seen as a function 
that maps the Cartesian product of multiple discrete, totally 
ordered, and finite dimensions to a multidimensional attribute 
space. Let D denote an n-dimensional index or dimension space 
and V refer to an m-dimensional attribute or value space. A 
multidimensional array A is then defined as , where VDA :

, and individual dimensions Di 
nDDD  1 mVVV  1

are finite and totally ordered. Since multidimensional arrays are 
functions, operations to modify array data can be categorised 
into five types (Figure 2).They are select, scale, reduce, 
rearrange and compute operations, respectively. The application 
of reduce operations can yield composite image from time series 
Landsat 8 OLI images.  

 
Figure 2. Array operations. “A” indicates original arrays, “B” 

indicates result arrays after certain array operations are applied 
(Lu et al., 2018). 

 
3.2 Google Earth Engine 

Google Earth Engine is a cloud-based planetary scale geospatial 
analysis platform.It makes use of high-speed computing power 
of Google to handle a variety of significant social and 
environment research topics, including deforestation, drought 
and climate monitoring. 
GEE stores multiple PB-level data sets for remote sensing and 
other data, while providing high-performance parallel 
computing capabilities. GEE is controlled based on an 
Application Programming Interface (API) and associated web-
based Interactive Development Environment (IDE), and also 
supports visual visualization of results. The functions in GEE 
are designed for multidimensional data, and ee.Reducer is a 
commonly used class to composite annual intensive time series 
data. Table 2 lists some methods of the Reducer provided by 
GEE. 

Reducers Examples Mode of 
operation 

Simple 
Count, distinct, first, etc. Context-

dependent 
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Mathematical sum, product, min, max, etc. 

Logical Logical, etc. 
Statistical Mean, median, mode, 

percentile, standard 
deviation, covariance, 
histogram, etc. 

Correlation Kendall, Spearman, 
Pearson, etc. 

Regression 
Linear regression, etc. 

Table 2. Earth Engine Reducers function 
 

3.3 Supervised Classification 

The supervised classification methods based on remote sensing 
data are widely used. They are generally based on mathematical 
model classification methods, which can significantly improve 
the efficiency of urban area mapping.Commonly used classifiers 
are Maximum Likelihood Estimation(MLE), Support Vector 
Machine (SVM), Decision Tree (DT), Random Forest (RF), etc. 
Among them, the Random Forest algorithm is an Ensemble 
Learning method proposed by Breiman, Berkeley University 
professor, which combines decision tree, Bagging method, and 
random subspace theory. The Random Forest (RF) algorithm 
obtains the decision tree sequence by constructing multiple 
training sets, and finally produces the output result by voting: 
  
                      


k

i iy YxhIxH
1

))((maxarg)(
(1) 
 
where   = output result )(xH

  = single decision tree classifier ih
  = output variable Y

  = indication function )(I
  
The upper bound of the generalization error is: 
 

                                                     
2

2
*

S
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(2) 
 
Where  = upper bound of the generalization error *PE

  = correlation between decision trees 

  = classification strength of decision trees S
  
Here are many advantages of the random forest algorithm:(1) 
Because the base classifier of the random forest is a CART 
decision tree, the random forest can be classified or regressed;(2) 
Out-of-bag (OOB) unbiased estimation of random forest can 
effectively estimate the generalization error of classifier;(3) 
Variable importance estimation is also one of the important 
advantages of random forest algorithms, and is widely used in 
feature selecting. Based on the stability performance of the 
random forest algorithm and the evaluation of feature 
importance, it was chosen as the method of supervised 
classification. 
3.4 Accuracy Assessment  

There are several ways to assess the accuracy of classification 
results. Among them, the accuracy evaluation based on the error 

matrix is the most commonly used method. The error matrix 
established is shown in table 4. 
A number of accuracy measures may be derived from the error 
matrices, and the four commonly used accuracy measures for 
error matrices are Overall Accuracy (OA),  
  

                                                     E
EEOA 2211 



(3) 
 
Commission error ratio (Ce), 
  

                                                      112 / EECe
(4) 
 
Omission error ratio (Oe),  
  
                                                     121 /  EEOe
(5) 
 
and Kappa coefficients(K), 
  
                     

)(
)()(

2211
2

22112211









EEEEE

EEEEEEEK

(6) 
 

Reference data  

Urban Non urban 

Row 

total 

Urban  11E  12E  
1E

Non urban  21E  22E  
2E

Col. total  1E  2E  E

Table 3. Error matrix 
 

4. RESULTS 

4.1 Annual Composite Result 

The research area is in Beijing, China. Based on the GEE 
platform, Landsat8 OLI data can be easily obtained. The data 
set of the experiment is “ LANDSAT/LC08/C01/T1_SR ” . 
ee.Reducer is a useful class in GEE, which provides dozens of 
multidimensional array reduce methods (Table 2).The four 
commonly used Reducer methods provided by GEE was used to 
composite the annual dense time series Landsat8 OLI data. (See 
Table 4). 

 Reducers Use Band 
(a) ee.Reducer.min() B1-B7 
(b) ee.Reducer.max() B1-B7 
(c) ee.Reducer.mean() B1-B7 
(d) ee.Reducer.median() B1-B7 

Table 4. Selected reduce methods 
 

The annual composite image has many advantages for urban 
mapping. It is more important that the composite image without 
cloud and cloud shadows can be obtained based on the 
multidimensional array reduce method, so that the influence of 
data quality on urban mapping may be mitigated. In addition, 
the composite image calculated by selecting the appropriate 
reduce method can have better feature distinguishing ability 
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than the single-temporal image, reduce the commission and 
omission error , and improve the accuracy of urban mapping. 
Based on the four reduce methods in Table 4, a partial map of 
the annual composite image of Beijing in 2017 is obtained, as 
shown in Figure 2. It can be seen that the annual images 

composite based on the above methods are clear and cloudless 
images, which is very advantageous for urban mapping, 
especially for urban extraction in cloudy areas. 
 

 
Figure 3. Different annual composite results 

 
4.2 Sample Analysis 

The main land cover types in Beijing in the study include 
forests, farmland, water, and urban. Combining the performance 
of the classifier with the time-series spectral characteristics of 
the features, the ground objects were divided into three types, 
namely water, urban and other (including forests, grasslands, 
farmland, etc.). We refered the definition of urban land 
as(Schneider et al., 2014): sites that are dominated by built 
environment, including all non-vegetative, human-constructed 
elements (e.g., roads and buildings). The “dominated” indicates 
a greater than 50% coverage of built environment within each 
pixel. Based on the knowledge mentioned above, training and 
verification sample points were selected. Stable training sample 
points were collected by visually interpreting Landsat8 images 
and supplementing them with higher resolution images in 
Google Earth. Training sets of each types has 500 training 
sample points and 200 verification sample points. 
The characteristic mean line of the training sample points is the 
most simple and intuitive chart for evaluating the correlation 
and separability of various training samples. For the four annual 

composite images obtained by the ee.Reducer.min(), 
ee.Reducer.max(), ee.Reducer.mean(), and ee.Reducer.median() 
methods, the feature mean values and standard deviation of 
three types of training samples points were separately counted 
(Figure 4.). It can be seen from Figure 4.that the spectral change 
of the urban during the year was not obvious. And the urban 
didn’t have significant phenological phenomena.For water type, 
there was some spectral change during the year. For the other 
type, mainly including forests, grasslands, farmland, etc., the 
spectral changes during the year were obvious, with some 
phenological characteristics. Especially in the NIR band, the 
maximum value is about 4 times the minimum value. 
The number of decision tree estimators (n_estimators) is one of 
the important parameters of the Random Forest (RF) algorithm. 
By setting the number of n_estimators of the random forest 
algorithm to 100 (Foody et al., 2006), stable classification 
results could be obtained. After the training the data, the 
normalized feature importance of each variable is output, that is, 
the sum of all feature importance is 1. If the feature importance 
is greater, the more important the feature, and vice versa, the 
less important the feature. 
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Figure 4. Characteristic mean line chart 

 
Figure 6 shows the feature importance when the n_estimators of 
RF is 100. For the four results obtained by the ee.Reducer.min(), 
ee.Reducer.max(), ee.Reducer.mean(), and ee.Reducer.median() 
methods, there was a certain similarity in the feature 
importance.Coastal, Blue, NIR, SWIR1 and SWIR2 bands were 
the more important bands, while the Green and Red bands were 
comparatively less important. 

 
Figure 5. Feature importance 

 
4.3 Classification Results and Accuracy 

 After the training the data, four annual composite images are 
separately classified. The comparison of the classification 
results is shown in Figure 6. Based on the annual composite 
image obtained by ee.Reducer.median(), it has the best 
classification result by visual interpretation, and there is no 

obvious commission or omission errors. The classification 
results obtained from the annual composite image by 
ee.Reducer.min() arose a commission between farmland and 
urban in the fallow period. And the shadow of the mountain was 
also greatly affected the result and was mistakenly classified as 
water. The obvious error is that there has some omission errors 
in urban in the classification results obtained based on the 
annual composite image obtained by ee.Reducer.max(). 

 

Numb
er of 
featur

es 

Reducer OA K Oe Ce 

a 7 ee.Reducer.min() 0.805  0.609  0.141  0.280  
b 7 ee.Reducer.max() 0.820  0.635  0.238  0.169  
c 7 ee.Reducer.mean() 0.868  0.723  0.162  0.173  
d 7 ee.Reducer.median() 0.909  0.815  0.144  0.061  

Table 5. Classification accuracy 
 

The accuracy of the verification point is verified based on the 
high-resolution remote sensing image in Google Earth, and the 
accuracy results are shown in Table 5. It is similar to the visual 
interpretation.The classification result obtained form the annual 
composite image by ee.Reducer.min() had the highest 
commission error and the lowest overall accuracy, indicating 
that ee.Reducer.min() is not a appropriate reducer method for 
image composite. The classification result obtained form the 
annual composite image by ee.Reducer.max() had a high 
omission error and a poor overall accuracy.The overall accuracy 
of the classification results obtained from the annual composite 
images by ee.Reducer.mean() is general.The classification 
results obtained by the annual composite image obtained by 
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ee.Reducer.median() had the best overall accuracy, the omission 
error and the commission error. 

Figure 6.Classification results 

5. CONCLUSIONS

New remotely sensed big data streams are revolutionizing 
urban areas mapping. Particularly, Long-term sequence based 
satellite observations provides abundant data for urban remote 
sensing. In this research, we focus only on urban area mapping 
form annul composite image by Random Forest (RF) algorithm 
in Beijing, China,but it can been reference for other mapping 
study. We can find out from the research that 1), composite 
image form reducer method such as ee.Reducer.median() can 
mitigate the interference of cloud ect.; 2) Coastal, Blue, NIR, 
SWIR1 and SWIR2 bands were the more important bands, 
while the Green and Red bands were comparatively less 
important for classification; 3) the ee.Reducer.median methods 

is appropriate for image composite. Though a majority of urban 
areas mapping are based on daytime optical and thermal sensors, 
there are other sensors that also provide unique observations of 
urban characteristics, such as LiDAR, RADAR, and nighttime 
lights sensors. If combined with multi-source remotely sensed 
data, the accuracy of mapping can be improved. 
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