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ABSTRACT: 
 
With the advancement of urbanization, urban-rural public transport issues have become one of the most critical issues in urban 
development. The paper makes a detailed study on the optimization of urban-rural bus routes in Erqi District of Zhengzhou, China. 
The factors of bus stop selection are analyzed, and the three categories, including traffic road condition factors, economic benefit 
factors and waiting number factors, are mainly considered. The analytic hierarchy process is used to determine 35 specific objectives 
of urban-rural bus stop optimization, 20 of which are selected for simulation experiment with large weight. Then the ant colony 
optimization (ACO) algorithm in path optimization is analyzed, which has the following two advantages. First, the global pheromone 
update is combined with the local pheromone update to enhance the algorithm's optimization ability and convergence speed. Second, 
through the method of spatial contraction transformation, the ant constructs a solution to reduce the number of construction steps and 
speed up the operation. Based on the actual analysis of urban-rural public transportation in the Erqi District of Zhengzhou, a 
simulation experiment is executed to show that the ACO algorithm is able to find out the optimal path, which is 15.1% shorter than 
the ant colony system (ACS) algorithm. The ACO algorithm improved path planning has good time effectiveness and path 
practicability. 
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1. INTRODUCTION 

With the development of urbanization, an increasing number of 
rural residents take urban-rural public transportation to work in 
the cities. The urban-rural public transportation has become one 
of the most critical issues in urban-rural development. Based on 
the study of the current situation and the existing routes of 
urban-rural public transport, an ant colony optimization 
algorithm (ACO) (Martin, Frank, Hartmut, 2003) for optimal 
path planning is proposed according to the traffic characteristics 
of township residents and the analysis of traffic flow in each 
station, which the constraints of carrying capacity in urban-rural 
public transport are considered. The ant colony optimization 
algorithm for optimal path planning is to seek an optimal route 
for the urban-rural public transportation with the maximum 
benefit in maximum passenger capacity and short running time. 
 
The ant colony optimization algorithm is a simulation algorithm 
that optimizes the regularity of ant foraging in nature and 
mutual cooperation in foraging operations (Feng, Zheng, Liu, 
2005). It is a self-organizing algorithm that increases the system 
without external influences. The ant colony optimization 
algorithm has strong global search ability and robustness. 
However, its pheromone is huge and the search time is long, 
which will lead to the lack of some information and reduce the 
credibility of the evaluation results. The Analytic Hierarchy 
Process (AHP) is a hierarchical thinking framework. It is 
scientific and practical by comparing scales. However, when 
there are too many evaluation factors, the scale workload is 
large, which is easy to cause confusion (Yuan, Liu, 2013). If the 
consideration is insufficient and the matrix judgment is 

discussed more, the rationality is not enough (Shou, Fu, 2010). 
In the paper, the analytic hierarchy process and the ant colony 
optimization algorithm are used to complement each other, 
which are used to determine the weight of the point index in the 
urban-rural Public Transport path planning, which makes the 
determination of the selected point weight more objective. 
 
At present, in the ant colony algorithm, the literature (Dorigo et 
al., 1996) proposed the ant system (AS) algorithm, in which the 
algorithm selects the path by random method, and updates 
pheromone after the iteration. The literature (Dorigo et al., 1997) 
proposed the ant colony optimization (ACO) algorithm, which 
uses the path selection method combining optimal selection and 
random selection. The pheromone update adopts local update 
and global update, which improves the global convergence 
ability of the algorithm. Some scholars have begun to use AHP 
for site selection analysis, but these analyses emphasize the 
analysis of attribute information, while the analysis of weight 
applications is incompetent. This paper focuses on the analysis 
of the weight of the station, that bus station with large weight is 
selected for path planning. 
 

2. OPTIMIZE THE OBJECTIVE EVALUATION 
SYSTEM 

Analytic Hierarchy Process (AHP) was proposed by Professor 
Saaty of the University of Pittsburgh in 1973 (Xia, Wang, et al., 
2011). The complex multi-index evaluation problem is taken as 
a system by constructing a hierarchical structure. The overall 
goal is decomposed into multiple sub-goals or standards, and 
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the corresponding sub-goals are further decomposed into related 
multiple indicators to form an overall hierarchical model. 
Through the layer-by-layer analysis, the importance weights are 
determined from the lowest layer to the highest layer. 
 
2.1 Evaluation Index System 

According to the selection factors of urban-rural bus station 
selection, the comprehensive evaluation index system for urban-
rural bus station selection is divided into three levels. The 
second layer is mainly determined by the relevant evaluation 
criteria for urban-rural bus operations. The third layer is the 
main evaluation index, that is, the first-level indicator layer such 
as traffic condition factors, income factors, and waiting number 
factors. The secondary index layer is an alternative 35 bus 
stations. 
 
2.2 Establishment of AHP Model 

Among them, the target layer of bus station selection evaluation 
system is system name a. the six indexes of the second criterion 
layer are operating cost B1, vehicle loss B2, traffic feature B3, 
station performance B4, bus number B5 and passenger 
satisfaction B6. The three indexes in the third layer are traffic 
condition C1, revenue benefit C2 and waiting number C3 
respectively. The specific Figure 1 below shows the 
comprehensive evaluation system structure of urban-rural bus 
station selection. 
 

 
Figure 1. Analytic hierarchy process model 

 
2.3 Construction Judgment Matrix 

The judgment matrix is used to represent the relative 
importance of each indicator at the same level to represent value. 
The AHP method introduces a scale of nine-point scale when 
judging the relative importance of indicators, that is, 9 means 
extremely important, 7 means very important, 5 means 
important, 3 means slightly important, 1 means equal, 1/3 
Slightly important, 1/5 minor, 1/7 is secondary, 1/9 is secondary, 
taking 8, 6, 4, 2, 1/2, 1/4, 1/6, 1/8 for the above review the 
median of value (Ni, 2002). According to the scale table, all 
relevant attribute values are compared in pairs, the relative 
importance of the hierarchical elements is determined, and 
finally, all the values of the elements of each level are given. 

As shown in Table 1, the pairwise comparison matrix A–B1-6, 
where CR = 0.0470, A = urban-rural bus station selection, B1 = 
operating cost, B2 = vehicle loss, B3 = traffic feature, B4 = 
station performance, B5 = bus number and B6 = passenger 
satisfaction. WA is the weight of B1–B6 to A. 
 

A B1 B2 B3 B4 B5 B6 WA 

B1 1 1 1 1/3 1/3 1/3 0.0942 
B2 1 1 1/2 1/2 1/3 1 0.099 
B3 1 2 1 1 1 1 0.1775 
B4 3 2 1 1 1 3 0.2453 
B5 3 3 1 1 1 2 0.242 
B6 3 1 1 1/3 1/2 1 0.142 

Table 1. The pairwise comparison matrix A–B1-6 

 
As shown in Table 2, the pairwise comparison matrix C1-3–B1, 
where CR = 0.0470, B1 = operating cost, C1 = traffic condition, 
C2 = income benefit and C3 = waiting number. WB1 is the weight 
of C1–C3 to B1. 
 

B1 C1 C2 C3 W B1 
C1 1 1/9 1/2 0.074 
C2 9 1 9 0.8084 
C3 2 1/9 1 0.1176 

Table 2. The pairwise comparison matrix C1-3–B1 

 
As shown in Table 3, the pairwise comparison matrix C1-3–B2, 
where CR = 0.0790, B2 = vehicle loss, C1 = traffic condition, C2 
= income benefit and C3 = waiting number. WB2 is the weight of 
C1–C3 to B2. 
 

B2 C1 C2 C3 WB2 
C1 1 1/9 1/2 0.074 
C2 9 1 9 0.8084 
C3 2 1/9 1 0.1176 

Table 3. The pairwise comparison matrix C1-3–B2 

 
As shown in Table 4, the pairwise comparison matrix C1-3–B3, 
where CR = 0.0089, B3 = traffic feature, C1= traffic condition, 
C2 = income benefit and C3 = waiting number. WB3 is the weight 
of C1–C3 to B3. 
 

B3 C1 C2 C3 WB3 
C1 1 1 3 0.416 
C2 1 1 4 0.4577 
C3 1/3 1/4 1 0.1263 

Table 4. The pairwise comparison matrix C1-3–B3 

 
As shown in Table 5, the pairwise comparison matrix C1-3–B4, 
where CR = 0.0358, B4 = station performance, C1 = traffic 
condition, C2 = income benefit and C3 = waiting number. WB4 is 
the weight of C1–C3 to B4. 
 

B4 C1 C2 C3 WB4 
C1 1 1/4 4 0.22 
C2 4 1 9 0.7132 
C3 1/4 1/9 1 0.0669 
Table 5. The pairwise comparison matrix C1-3–B4 
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As shown in Table 6, the pairwise comparison matrix C1-3–B5, 
where CR = 0.0337, B5 = Bus Number, C1 = Traffic condition, 
C2 = income benefit and C3 = waiting number. WB5 is the weight 
of C1–C3 to B5. 
 

B5 C1 C2 C3 W B5 
C1 1 7 1 0.4981 
C2 1/7 1 1/4 0.087 
C3 1 4 1 0.4148 
Table 6. The pairwise comparison matrix C1-3–B5 

 
As shown in Table7, the pairwise comparison matrix C1-3–B6, 
where CR = 0.0914, B6 = passenger satisfaction, C1 = traffic 
condition, C2 = income benefit and C3 = waiting number. WB6 is 
the weight of C1–C3 to B6. 
 

B6 C1 C2 C3 WB6 
C1 1 0.2 1 0.1702 
C2 5 1 2 0.6008 
C3 1 0.5 1 0.229 
Table 7. The pairwise comparisons matrix C1-3–B6 

 
2.4 Indicator Calculate and Consistency Check 

The analytic hierarchy process is used to determine 35 specific 
objectives of urban-rural bus stop optimization, 20 of which are 
selected for simulation experiment with large weight. Table 8 
shows the calculated total weight index of each site Di, 20 of 
which are very large, and the weight indicators of each site Di-
C1, Di-C2, Di-C3, where Wi = criteria weight, D1 = Sanli, D2 = 
Tongshuwa, D3 = Arboretum, D4 = the First City, D5 = Huang 
Gang Temple, D6 = Asia Star Square, D7 = Houzhai, D8 = 
Guoxioazhai, D9 = Zheng-mi Station, D10 = Houzhang Line 
Hubin Road, D11 = Zhang Xian,  D12 = Erqiwanda, D13 = Cherry 
Vale, D14 = University Road South Third Ring Road, D15 = 
South Songshan Road, D16 = Song Shan South Road Yuanzhai, 
D17 = Medical College, D18 = Lucheng Square, D19 = Bei-guang 
South Road, D20 = West Square of Railway Station. 
 

3. PATH OPTIMIZATION METHOD BASED ON ANT 
COLONY OPTIMIZATION ALGORITHM  

3.1 Basic Principles of Ant Colony Algorithm 

In nature, ant colonies seek the shortest path from ant colony to 
food through information exchange and collaboration between 
individuals. During the movement, ants can leave a substance 
called “pheromone” on the path they are passing through, and 
each ant can perceive the existence and intensity of the 
pheromone and will have a high intensity toward the pheromone 
(Abreu, 1996). The direction of movement, in the process of a 
large number of ants collectively foraging, the more ants that 
pass through a certain path, the greater the chance that later ants 
will choose the path, thus leaving more pheromones (Russo, 
1996). In the next time, the possibility that this path is selected 
by other ants is greater, and finally it is determined to be the 
shortest path selected by all ants (Russo, 1999). 
 
3.2 Ant Colony Optimization Algorithm Process 

3.2.1 The Process of Constructing a Problem Solution 

The ant adopts a pseudo-random ratio rule strategy. The rule of 
the k ant selects the next city j in the city I, such as formula (1). 

Goal D C1 C2 C3 Wi 
Error! No 
bookmark 

name 
given.D1 

0.1099 0.1331 0.1557 0.1306 

D2 0.1205 0.1331 0.0472 0.1131 
D3 0.0712 0.0881 0.0511 0.0761 
D4 0.0702 0.0881 0.0511 0.0758 
D5 0.0853 0.0371 0.1557 0.0738 
D6 0.0755 0.0371 0.0698 0.0546 
D7 0.0594 0.0541 0.0472 0.0543 
D8 0.0509 0.0523 0.0495 0.0513 
D9 0.0495 0.0361 0.0472 0.0421 
D10 0.0363 0.0523 0.0204 0.0415 
D11 0.0375 0.027 0.0505 0.0345 
D12 0.0188 0.0225 0.0742 0.0312 
D13 0.0293 0.0361 0.0136 0.0298 
D14 0.0240 0.0349 0.0127 0.0275 
D15 0.0350 0.027 0.0143 0.0269 
D16 0.0179 0.0267 0.0127 0.0215 
D17 0.0178 0.0192 0.0312 0.0210 
D18 0.0161 0.0187 0.0319 0.0204 
D19 0.0163 0.0145 0.0319 0.0183 
D20 0.0171 0.0083 0.0127 0.0117 

Table 8. Criteria weights of all bus stations 

 

                     (1) 
arg max{ },
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i
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

A

 
where  τ = the pheromone intensity 

Ƞ = heuristic information  
J = a random variable determined according to 

equation 
 

 α is the relative importance parameter of the pheromone 
accumulated in the ant selection path during the movement of 
the ant; β is the relatively important parameter of the heuristic 
information in the selection path; N is located in the city The ant 
k of i can directly reach the collection of neighboring cities, q0 
 (0 ， 1) is a constant, q  (0,1) is a random number. By 
adjusting the parameter q0, the adjusting degree of the algorithm 
to the new path can be adjusted. Obviously, this strategy 
enhances the diversity of the search to avoid premature search 
stagnation. 
 
3.2.2 Local Pheromone Update 

The effect of the local pheromone update is to make the selected 
edge have less influence on the later ants so that the ants have a 
stronger ability to explore the unselected edges (Cecilia, Nisbet, 
Amos, 2013). When the ant moves from city i to city j, the 
pheromone on the side (i, j) is updated as follows (2): 
 

                                                         (2) 0(1 )ij ij      A A

 
where  ξ = a parameter that satisfies 0<ξ<1 

τ0 = the initial value of the pheromone quantity 
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3.2.3 Global Pheromone Update 

After the end of the iteration, the current optimal path is used to 
update the pheromone globally. 

                          (3) (1 )ij ij ij       A A

 

                                        
                            

  (4) 1 R
ij

R

L L
L

 
 

 
where  0<ξ<1ρ = the globally updated evaporation rate 

∆τij = the global update pheromone increment 
L1 = the current iteration optimal path length 
LR = the current optimal path length 

 
Updating the pheromone on the current optimal path lies in the 
continuation of the development of the optimal path, and the 
feedback of the current optimal path to the information element 
is retained until the next iteration until a better path is replaced. 
Used in conjunction with local pheromone updates, the 
algorithm's ability to optimize and convergence speed is 
enhanced. 
 
3.2.4 Space Shrinkage Transformation Method 

The spatial contraction transformation method is to set a 
weighted value ω*, and the algorithm updates the building 
block weight (implicit pheromone update) after each run. After 
the algorithm runs a certain number of algebras, and all 
component weights are compared with the weighted value ω*, 
and all the building weights are greater than the corresponding 
weights ω* recombination, thus combining the extended 
building blocks, so that the construction of the algorithm 
solution is still in a simple space. Repeat the operation until the 
conditions are met (Zhao, Yang, Liu, 2013). 
 
3.3 Algorithm Steps 

The ant colony optimization algorithm uses the standard ACS 
algorithm as the basic framework to improve the design (Zhao, 
Yang, Liu, 2013). The specific algorithm operation steps can be 
summarized as follows: 
 

1. Parameter initialization. Let the iteration counter 
NC=0, set the current optimal path length S, the maximum 
number of iterations T, the distance dij between cities (i, 
j=1, . . . , n), the current optimal path table t, the heuristic 
information Ƞij (i, j = 1, 2, ..., n), pheromone τij (i, j = 1, 
2, ..., n) on the path. 
2. The ant position is initialized. Initialize m ants' taboo 
table tk (k = 1, 2,…, m) and the path length Lk (k = 1, 2, ..., 
m). 
3. The localization algorithm is used to locally optimize 
the construction solution. Each ant performs path selection 
according to equation (1), adds the selected city to Tk, and 
updates the value of Lk. 
4. The pheromone is partially updated. Each time the 
salesperson selects a city, the pheromone is partially 
updated according to formula (2) just after the path (i, j). 
5. The pheromone is dynamically updated globally. The 
pheromone global dynamic update is performed according 
to the formulas (3) and (4) for the current optimal path. 
6. Whether the space contraction construction condition 
is satisfied. If it is satisfied, the weight is calculated and the 
building block weight is updated. 

7. Iterate loop. If NC <= T, return to Step2 and start a 
new iteration, otherwise the algorithm ends and output the 
optimal path and the average path table. 

 
The specific process of path planning based on ant colony 
optimization algorithm is shown in Figure 2. 

 
Figure 2. Ant colony optimization algorithm to solve the 

optimal path flow chart for the urban-rural bus 

 
3.4 Ant Colony Optimization Algorithm Solves the TSP 
Problem. 
 
The traveling salesman problem is one of the most studied 
problems in computational mathematics (Gregory, Abraham, 
2002). The algorithm will select a standard example from the 
common data set of the traveling salesman problem for test, and 
make it be programmed with BCB+ Matlab, and the CPU is 
IntelCeleron1.0G runs on the computer with 512M memory. 
The experimental parameter is p = 0.1 to 0.2. ξ  0.1 ~ 04, β = 
2~ 5, m = 15 ~ 30, q0 = 0.7 ~ 0.95.  
 
Figure 3 depicts the best path for the algorithm to STP studies in 
eil51, kroA100, d198 and pcb442. Figure 4 denotes the optimal 
route of urban-rural bus and the relationship between the 
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shortest distance or the average distance and iteration number. 
When selecting some examples from the dataset and running 
each set of examples 10 times, such as eil51, kroA100, d198, 

pcb442, Table 9 depicts the optimal solution and mean that ant 
colony optimization algorithm (ACO) compares with ant colony 
system algorithm (ACS). 

 
(a)                                                                      (b) 

 
(c)                                                                        (d) 

Figure 3. Denotes the optimal route of eil51 (a), kroA100 (b), d198 (c) and pcb442 (d) 

 

 
Figure 4. Denotes the optimal route of urban-rural bus 

 
The TSP 
problem. 

Algorithm optimal 
solution 

mean 

ACS 428.871 430.891 eil51 
428.871 431.953 ACO 

ACS 21621.360 21480.203 kroA100 
21002.250 21056.258 ACO 

ACS 15893.445 15456.238 d198 
15106.153 15301.562 ACO 

ACS 51156.583 51522.856 pcb442 
ACO 50905.458 50966.537 

Table 9. Best results for algorithm on various instances 

 
4. CONCLUSIONS 

Based on the actual analysis of urban-rural public transportation 
in the Erqi District of Zhengzhou City, China, which is used to 
determine 20 specific objectives of urban-rural bus stop with 
large weight, the simulation experiment shows that the ant 
colony optimization algorithm of the optimal urban-rural bus 
route is 43.8km. The ant colony optimization algorithm is able 
to find out the optimal path, which is 15.1% shorter than the ant 
colony system algorithm with the 50.4km of bus route.  
 
The ant colony optimization algorithm for path planning has 
good time effectiveness and path practicability. The feasibility 
of applying the ant colony optimization algorithm for path 
planning to the urban-rural public transportation system is 
verified, and a good balance among remarkable economical 
benefit, time efficiency and practicability of the path are 
achieved, expected to be popularized and applied in modern 
urban-rural public transportation. 
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