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ABSTRACT: 
 
Surface water plays an important role in ecological circulation. Global climate change and urbanization affect the distribution and 
quality of water. In order to obtain surface water information quickly and accurately, this study uses Google Earth Engine (GEE) as a 
data processing tool, 309 Landsat 8 series images from 2016 to 2019 are selected to calculate 4 different water indexes, including 
Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), Automated Water Extraction Index (AWEIsh) and Multi-
Band Water Index (MBWI) to extract surface water in Pearl River Basin. In order to remove the influence of other ground objects, 
Normalized Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Digital Surface Model (DSM) are 
combined with the above four water indexes, and threshold segmentation is used to eliminate the influence of vegetation, buildings 
and mountains. Finally, take the advantage of morphological filtering algorithm to eliminate non-water pixels. The results show that 
GEE is able to extract surface water in a very short time; AWEIsh has the highest overall accuracy of 94.12%, which is 7.20% higher 
than the classical NDWI method; There is no significant difference in the width and shape of rivers from 2015 to 2018; The 
locations of the rivers extracted by the four methods are consistent with the 1: 100,000 river system basic data of 2015 provided by 
the Ministry of Water Resources of the People’s Republic of China.  
 

1. INTRODUCTION  

Water is the basis of material exchange in the earth's ecosystem 
and an indispensable important resource for human production 
and life. In recent years, the issue of water resources has 
become a hot topic of research. Extraction of water information 
is of great significance for rational allocation of water resources, 
prevention of flood disasters, and assessment and prediction of 
environmental ecological health. China has a vast territory and 
uneven distribution of water resources. Traditional water 
measurement methods are inefficient and costly and cannot 
meet the requirements of the big data era. Remote sensing 
technology has become the main means to obtain surface 
information due to its advantages of wide range, short period 
and abundant surface information (Xin et al., 2016). With the 
improvement of the resolution of remote sensing satellite 
images, the ground object information becomes more and more 
diversified and clear. Remote sensing technology has been 
widely used in information extraction (Acharya et al., 2019; 
Bahrawi and Elhag, 2019), disaster monitoring (Fan et al.,2016; 
Vishnu et al., 2019) and crop prediction (Dong et al., 2016). 
 
Scholars have done a lot of research on water identification and 
extraction using remote sensing technology. In 1996, Mcfeeters 
proposed normalized water body index (NDWI) to identify 
water information (McFeeters, 1996). Nine years later, Xu 
Hanqiu improved on the basis of NDWI, replacing near-infrared 
band with mid-infrared band, and proposed Modified NDWI 
(MNDWI) (Xu, 2005), which effectively removed the influence 
of buildings and further improved the accuracy of water 
extraction. Zhitian Deng et al (Deng et al., 2019) used Landsat 8 
OLI image and adopted a gray-based water body identification 
method to extract water bodies in the Bohai Sea region of China. 

The results show that the None-Radiation-Calibration Water 
Index is more suitable for nearshore and estuarine areas. 
Andrew Ogilvie and others (Ogilvie et al., 2018) used Landsat 
images to monitor small reservoirs in the Merguellil Upper 
Catchment Located in Central Semi-Arid Tunisia in the semi-
arid region of central Tunisia, indicating that remote sensing 
technology can also effectively identify small areas of water. In 
addition, remote sensing technology also has some applications 
in high altitude areas. ZHANG Mei-mei proposed a method of 
combining threshold segmentation with nonlocal active contour 
algorithm (Zhang et al., 2018), which has detected large areas of 
glacial lakes (26°-45°N, 67°-105°E) in Asia. it is found that this 
method is very effective for glacier identification in high 
mountain areas and is of great significance for further 
exploration of ice and snow areas and coping with climate 
change.  
 
Although the above remote sensing method can effectively 
identify and extract water bodies, the traditional remote sensing 
image processing software has limited computing power, small 
amount of data and low efficiency in dealing with large areas. 
GEE meets the requirements of big data era well, it is a cloud 
computing platform for global scale online processing, analysis 
and visualization of massive geoscience data sets (especially 
remote sensing image data), which can process a large number 
of satellite images quickly in a very short time (Gorelick et al., 
2017). GEE owns a collection of remote sensing images with a 
history of more than 40 years, including Landsat, Sentinel, 
MODIS and other high-resolution images, such as the 1-meter 
resolution U.S. aerial image data provided by the US National 
Agriculture Imagery Program (NAIP), and adds about 4,000 
images per day. Users can easily call or download them online. 
By using JavaScript API provided by GEE, Web services based 
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on Google Earth Engine and Google Cloud can be quickly 
established to realize urban land expansion monitoring (Sun et 
al., 2019), global water resources change monitoring (Pekel et 
al., 2016), forest time series change analysis (Chen et al., 2017; 
Hansen et al., 2013), disaster management and earth 
science(Onisimo and Lalit, 2019; Sazib et al., 2018). In addition, 
GEE is a cloud-based geospatial processing platform, and data 
don’t need to be downloaded for operation and calculation, thus 
avoiding the problem of insufficient storage space for 
traditional software. 
 
Climate change intensifies the severity and variability of 
drought in the Pearl River Basin (Wang et al.,2018). As the 
urbanization and the population increases, the Pearl River Delta 
is facing the problem of water shortage (Liu et al.,2017). This 
research adopts the method of extracting surface water in Pearl 
River Basin based on GEE platform. Firstly, obtain Landsat 8 
images from GEE to calculate four water indexes, including 
AWEIsh, MBWI, MNDWI and NDWI to preliminarily 
distinguishes water and non-water through threshold 
segmentation. Then removes the influences of mountain shadow, 
vegetation and buildings respectively by combining with Digital 
Surface Model (DSM), NDVI and NDBI. Finally, further 
removes non-water pixels according to morphological corrosion 
and expansion algorithm, and realizes fine extraction of water 
by comparing the advantages and disadvantages of the four 
kinds of water indexes. In the verification stage, 400 sample 
points are randomly generated from the extraction results to 
verify the extraction accuracy of the river. Compared with the 
existing water products from Ministry of Water Resources, the 
continuity and the geometric accuracy of extracted rivers are 
verified from the upper, middle and lower reaches of the Pearl 
River basin respectively. 
 

2. METHOD AND MATERIALS  

2.1 Method  

Spectral difference is an important foundation to successfully 
discern water from non-water surfaces. In the data 
preprocessing stage, the multi-band image with a resolution of 
30m and the panchromatic image are fused to obtain a 15m 
high-resolution image which is easy to interpret. Then NDWI 
(McFeeters, 1996), MNDWI (Xu, 2005), MBWI (Wang et al., 
2018) and AWEIsh (Feyisa et al., 2014) are used to extract water. 
Combined with NDVI and NDBI, vegetation and building 
shadow are removed by threshold segmentation. Because the 
spectral characteristics of hillshade are very similar to water and 
easy to be confused, Digital Surface Model is added to remove 
the influence of hillshade according to the physical 
characteristics of water. For the problems of incomplete small 
water, non-water pixel misclassification and discontinuous 
linear water, morphological expansion and corrosion methods 
are adopted to fix (Figure 1).  
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where G, NIR, MIR respectively corresponding to bands 3, 5 
and 6 of Landsat 8 images, and R, SWIR1, SWIR2 respectively 
corresponding to bands 4, 7 and 7 of Landsat 8 images.  
 

 
Figure 1. Methodology flowchart 

 
2.2 Materials  

2.2.1 Study area: The Pearl River Basin (102°14′ ～
115°53′E, 21°31′～ 26°49′N) is located in southern China, 
spanning 8 provinces (autonomous regions) including Yunnan, 
Guizhou, Guangxi, Guangdong, Hunan, Jiangxi, Fujian, Hainan 
and Hong Kong and Macao Special Administrative Regions. 
The basin covers an area of 453,700 square kilometers and is 
mainly composed of Xijiang River, Beijiang River, Dongjiang 
River and Pearl River Delta. Pearl River is the second largest 
river in China. Its main stream is Xijiang River, which 
originates from Mount Ma Xiong of the Wumeng mountain 
system in the Yunnan-Guizhou plateau. The area of Xijiang 
River accounts for 77.8% of the whole basin area (Su and Chen, 
2019).  
 
The Pearl River Basin is located in a tropical and subtropical 
climate region, with humid heat and rainy (Liu et al., 2013), 
annual average runoff of 338.1 billion cubic meters, and annual 
average total water resources of 520.1 billion cubic meters, 
accounting for 18.3% of the country. However, the temporal 
and spatial distribution of rainfall is uneven, mainly occurring 
in the east, gradually decreasing from east to west.  

 
The Pearl River Basin has mild climate and favorable 
geographical conditions. There are three basic 
geomorphological types distributed in the basin, including 
mountain, hill and plain, of which mountain and hill account for 
94.5% of the total area of the basin. Rich mineral resources, 
good shipping conditions and abundant fishery resources in the 
basin promote the sustained and rapid growth of the national 
economy in the pearl river basin, but the economic development 
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is uneven. The upstream areas such as Yunnan and Guangxi are 
experiencing slow economic development, while the 
downstream pearl river delta experienced large-scale land 
reclamation in the late 1980s, resulting in an exponential 
growth in social economy (Ranasinghe et al., 2019). 

 

 
Figure 2. Location of the Pearl River Basin 

 
2.2.2 Data: 309 Landsat 8 top-of-atmosphere reflectance 
(TOA) images from United States Geological Survey (USGS) 
are acquired on GEE, with a time span of January 1, 2016 to 
April 10, 2019, and cloud cover less than 10%. Landsat is a part 
of the USGS National Land Imaging (NLI) Program, with a 
spatial resolution of 30m for Band 1 -Band 7 and 15m for 
panchromatic band (Band8). The horizontal resolution of 30m 
ALOS Global Digital Surface Model (DSM) data is acquired by 
JAXA Earth Observation Research Center, the dataset is based 
on the DSM dataset (5-meter mesh version) of the World 3D 
Topographic Data. In addition, the vector data of the rivers used 
for verification come from the basic data of 1: 100000 river 
systems of the Ministry of Water Resources in 2015. The 
sample points are generated from Google earth Pro. In this 
study, 200 water and 200 non-water sample points are randomly 
and evenly selected for accuracy verification.  
 

Number 
ImageCollection 

ID 
Provider 

1 
LANDSAT/LC0
8/C01/T1_RT_T

OA 
USGS/Google 

2 
JAXA/ALOS/A
W3D30_V1_1 

JAXA Earth Observation 
Research Center 

 
Table 1. The source of imagecollection 

 
3. RESULTS  

3.1 Classification accuracy 

200 water sample points and 200 non-water sample points were 
randomly and evenly selected from Google Earth Pro to 
calculate the confusion matrix, and then analysis the overall 
classification accuracy, Kappa coefficient and total error of 
water. Water commission error means that non-water pixels are 
labeled as water, similarly, water commission error means that 
water is marked as non-water pixels (Wang et al., 2018；Feyisa 
et al., 2014). 
 

The accuracy of extracting water by different water indexes is 
shown in Table 2. Obviously, overall classification accuracy of 
AWEIsh is the highest among the four water indexes, reaching 
94.12%, 7.20% higher than NDWI, and the misclassification 
rate is only 44.95% of NDWI, while the overall classification 
accuracy of MBWI and MNDWI are between the above two, 
91.93 92.81% and 91.50%, respectively. 
 
In order to test the accuracy of water extraction, three different 
regions in the upper, middle and lower reaches of the Pearl 
River Basin are chosen respectively to verify, with Shilong as 
the dividing point in the middle and upper reaches and Wuzhou 
as the dividing point in the middle and lower reaches. The 
Junction of two major rivers, namely Nanpan River and 
Hongshui River, is selected in the upper reaches, a part of 
Xijiang River in Zhaoqing City, Guangdong Province with 
small tributaries is intercepted in the middle reaches, and a 
planar water named Gongping reservoir, is a verification area in 
the lower reaches. The blue part in figure 3 indicates water, 
which can be clearly seen from the upstream that compared with 
other methods, the river extracted by AWEIsh method maintains 
relatively complete water information, and it’s continuity is 
better than others. On the contrary, rivers extracted by MNDWI 
and NDWI has obvious interruption, and the small rivers cannot 
be identified. In the middle reaches, we can see that AWEIsh is 
more effective in extracting small tributaries, and buildings are 
effectively removed, and more importantly, it has a high degree 
of coincidence with the true color composite image. For planar 
water bodies, there is no obvious difference in the results of the 
four water indexes. To sum up, AWEIsh is superior to the other 
three methods with higher accuracy and smaller 
misclassification rate, and its Kappa coefficient is 88.24%.    
 
3.2 geometric accuracy 

As AWEI has the highest accuracy, three regions in the upper, 
middle and lower reaches of the Pearl River Basin are selected 
respectively in the results of AWEIsh to superimpose with the 1: 
100,000 river system basic data to further verify the geometric 
accuracy of rivers. Wanfeng Lake, the junction of Xijiang River 
and Hejiang River and the junction of Dongjiang River and 
Xizhi River are respectively the representative regions in the 
upper, middle and lower reaches of the Pearl River Basin for 
verification. In the following figure, the black outline represents 
the 2018 Pearl River Basin river vector extracted in this study, 
and the red outline represents the existing vector diagram in 
2015.   
 
The following figures shows that the center line of the river 
extracted in this study is consistent with the existing basic river 
data, but the river width is varying more or less. From 2015 to 
2018, the number and area of small tributaries of Wanfeng Lake 
increased (fig. 4). Except for very small rivers, the method of 
this study can extract most rivers, and remove hillshade and 
building shadow effectively, which are not easily distinguished 
from water (fig. 5). From 2015 to 2018, the width of some 
rivers at the junction of Dongjiang River and Xizhijiang River 
was reduced. Islands in the river, as long as reservoirs and lakes 
around the river can also be identified with correct geometric 
positions (fig. 6). 
 
In order to compare the river widths in 2015 and 2018, 148 
river widths in the Pearl River Basin are randomly measured. 
The scatter diagram (fig. 7) fluctuate slightly, but show a 
generally linear relationship, which meant that rivers in the 
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Pearl River Basin had not changed much during the three years 
and remained stable overall. 
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Figure 3. Water extraction images of different parts of the Pearl River Basin 

 

Index 
Overall 

accuracy% 
Kappa 
coeff.% 

water 
commission 

error% 

water 
omission 
error% 

water 
total 

error% 
NDWI 86.92 73.67 7.19 5.89 13.08 

MNDWI 91.5 82.93 5.23 3.27 8.5 
MBWI 92.81 85.63 5.88 1.31 7.19 
AWEI 94.12 88.24 1.96 3.92 5.88 
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Table 2. Accuracy and errors of different water indexes 

 

 
              Figure 4. Vector of Wanfeng lake                Figure 5. Vector of Xijiang river and Hejiang river 

 

 
Figure 6. Vector of Dongjiang river and Xizhi river     Figure 7. Some river widths in 2015 and 2018 

 
4. CONCLUSION 

The main purpose of this study is to extract surface water of the 
Pearl River Basin base on Google earth engine. By comparing 
the results of four water indexes after morphological post-
processing, it is shown that Google Earth Engine can extract 
surface water in a very short time, and AWEIsh is found to be 
superior to the other three water indexes with higher accuracy 
and smaller misclassification rate. 
 
Comprehensive evaluation of the upper, middle and lower 
reaches of the Pearl River Basin. All four water body indices 
can extract surface water effectively, but AWEIsh shows more 
accurate in identifying surface water under small rivers and 
complex terrain, and the integrity of the rivers is relatively 
better. For planar water bodies, such as reservoirs and lakes, the 
results of four water index are basically the same. Qualitative 
evaluation of the rivers in the Pearl River Basin from 2015 to 
2018 shows that the width of the rivers did not change much in 
the past three years, and the shape of the rivers remains 
basically stable.  
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