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ABSTRACT:

Forest cover rate is the principal indice to reflect the forest acount of a nation and region. In view of the difficulty of 

accurately calculating large-scale forest area by traditional statistical survey methods, it is proposed to extract China 

forest area based on Google Earth Engine platform. Trained by the enough samples selected through the Google 

Earth software, there are nine different random forest classifiers applicable to their corresponding zones. Using 

Landsat 8 surface reflectance data of 2018 year and the modified forest partition map, China forest cover is generated 

on the Google Earth Engine platform. The accuracy of China's forest coverage achieves 89.08%, while the accuracy 

of Global Forest Change datasets of Maryland university and Japan’s ALOS Forest/Non-Forest forest product reach 

87.78% and 84.57%. Besides, the precision of tropical/subtropical forest , temperate coniferous forest as well as 

nonforest region are 83.25% , 87.94% and 97.83%, higher than those of other’s accuracy. Our results show that by 

means of the random forest algorithm and enough samples, tropical and subtropical broadleaf forest, temperate 

coniferous forest and nonforest partition can be extracted more accurately. Through the computation of forest cover, 

our result shows that China has a area of 220.42 million hectare in 2018.

1.INTRODUCTION

Among many earth systematical processings, 

vagetation land cover is the indispensible element. 

Vegetation land cover is required by a number of 

general to be the boundary layer of execution 

model(Sellers et al. 1997). As a significant component 

of land cover research topics, forest cover detection is 

now more than ever becoming the focus of scientific 

research and resource management projects,such as 

investigating climate change, food security, habitat 

loss(Foley et al. 2005). The purpose of mapping large 

area forest is producing globally consistent characters 

possessing local relevance and practicability, in other 

words, cross-scale reliable information(Hansen et al. 

2013). Due to the significance of forest cover data, 

countries in the world and international research 

institutes conduct a series of investigations on the topic 

of different scale land cover mapping.

Forest detection already raises wide concern of 

international society and achives s series of results. 

Recently, remote sensing satellite data reveal a 

greening pattern that is strikingly prominent in China 

and India and overlaps with croplands world-wide and 

China alone accounts for 25% of the global net increase 

in leaf area with only 6.6% of global vegetated 

area(Chen et al. 2019). Meanwhile, mangrove forests 

along the coastal zones in China were mapped by 

integration of the GEE platform, time series Landsat 

and Sentine-1A SAR images(Chen et al. 2017). 

Besides, PALSAR-based forest map in China 
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demonstrate the potential of integrating PALSAR and 

MODIS images to map forests in large areas(Qin et al. 

2015). On the other hand, some novel approachs were 

proposed to produce more accurate 25m forest maps by 

integrating PALSAR/PALSAR-2 and MODIS NDVI 

data during 2007–2010 and reconstruct annual 25m 

forest maps from time-series MODIS NDVI images 

during 2011–2014(Zhang et al. 2019). To minimize the 

influence of the changing ground footprint of MODIS, 

there were two new algorithms and a new assessment 

framework for near real-time monitoring of tropical 

forest disturbance(Tang et al. 2019). Referring to the 

global forest cover datasets, there are four 

representitive products alternative: (1) The Global 

Forest Change map (GFC) product proviede by the 

Maryland university(Hansen et al. 2013). (2) The 

PALSAR/PALSAR-2 mosaic and forest/non-forest 

(FNF) map produced by Japan Aerospace Exploration 

Agency (JAXA) (Shimada et al. 2014). (3) The first 

30m and 10m resolution global land-cover maps 

created by Landsat Themtic Mapper (TM) and 

Enhanced Thematic Mapper Plus (EMT+) data(Gong 

et al. 2019; Gong et al. 2013). (4) The Global Land 

Cover (GLC) mapping at 30m resolution based on a 

POK-based operational approach supplied by National 

Geomatics Center of China(Chen et al. 2015). 

Comparing above products, there are some problem 

existing on the data processing and reprocessing, or the 

precision to be improved. Therefore, how to produce 

big scale forest maps efficiently and precisely is a 

puzzle to be solved.

The Google Earth Engine based on cloud compute 

platform combines the high-performance abilities with 

large=scale geographic data processing missions. This 

solution settles a train of major information technology 

challenges,such as data acquisition and storage, file 

pattern analysis, database management and equipment 

distribution(Gorelick et al. 2017).

In this study, we produce China forest cover maps of 

different partitions in 2018 using Google Earth Engine 

for data acquisition and operation platform. This forest 

distribution product is made from Landsat image data 

and random forest classification method. To guarantee 

the accuracy of this map, this study compares the forest 

map with Global Forest Change data and Forest/Non-

Forest data.

2.CHINA FOREST PARTITION

Global land covers are usually divided into fourteen 

biocoenosis and eight geographic zones and China has 

eight biocoenosis(Olson and Dinerstein 2002; Olson et 

al. 2001). In this study，we merge eight biocoenosis in 

China into five forest partitions to assist extraction of 

different forest. The five forest partitions are boreal 

forest, temperate coniferous forest, temperate cross 

forest, tropical/subtropical forest and nonforest.

Forest Partitions Biocoenosis

Boreal Forests Boreal Forests/Taiga

Temperate Conifer 

Forests

Temperate Conifer Forests

Temperate Mixed 

Forests

Temperate Broadleaf and 

Mixed Forests

Tropical and 

Subtropical 

Broadleaf Forests

Tropical and Subtropical 

Broadleaf Forests

Temperate Grasslands, 

Savannas and Shrublands

Flooded Grasslands ,Savannas

Nonforest

Montane Grasslands and 

Shrublands

Deserts and Xeric Shrublands

Table 1. Mapping relation between forest partitions 

and biocoenosis

Figure 1. China forest partitions
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3.DATASETS AND RESEARCH METHODS

Google Earth Engine (GEE) contains a a range of 

Landsat image collections, among which is Landsat-8 

Surface Reflectance Tier and it comes from Landsat 8 

Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS). 

In this paper, the USGS Landsat-8 Surface Reflectance 

Tier datasets are used for import data, which is provied 

by GEE. These data have been atmospherically 

corrected using Landsat Surface Reflectance Code 

(LaSRC) (Vermote et al. 2016) and includes a cloud, 

shadow, water and snow mask produced using C 

Function of Mask (CFMASK) (Zhu and Woodcock 

2014) , as well as a per-pixel saturation mask. 

Meanwhile, we select the median time images after 

cloud clear in different partitions to serve as the train 

data and classification data of the partition. The 

influence of cloud and shadow can greatly be avoided 

by mean of the operations.

Figure 2. China forest cover detection flowchart

3.1 Index computation

In order to avoid the cloud and shadow influence, 

quality assessment band is used for mask band to reject 

the cloud pixels. After that operation, six spectral 

indexes are computed to act as character indexes for 

different land cover species. These indexes include 

Normalized Difference Vegetation Index (NDVI) 

(Tucker 1979) , Normalized Difference Water Index 

(NDWI) (Gao 1996) , Normalized Difference Built-up 

Index (NDBI) (Zha et al. 2003), Normalized Difference 

Moisture Index (NDMI) (Wilson and Sader 2002) , 

Global Environment Monitoring Index (GEMI) (Pinty 

and Verstraete 1992) and Soil Adjusted Vegetation 

Index (SAVI) (Huete 1988). Normalized Difference 

Vegetation Index is sensitive to vegetation greenness 

and can be employed to monitor the photosynthetically 

active biomass of plant canopies. Normalized 

Difference Water Index is sensitive to changes in liquid 

water content of vegetation canopies and less sensitive 

to atmospheric effects than Normalized Difference 

Vegetation Index. Normalized Difference Built-up 

Index is much more effective and advantageous in 

mapping general built-up areas, which can serve as a 

worthwhile alternative for quickly mapping nonforest 

land. Some study shows that the less common 

Normalized Difference Moisture Index method 

(utilizing the middle infrared band instead of the visible 

red) produced significantly higher accuracies for 

detecting forest harvest in all classification trials. 

Global Environment Monitoring Index reduces the 

relative effects of these undesirable atmospheric 

perturbations, while maintaining the information about 

the vegetation cover. Soil-adjusted vegetation index is 

found to be an important step toward the establishment 

of simple "global" models that can describe dynamic 

soil-vegetation systems from remotely sensed data. The 

six spectral indexes are combined with six band 

reflectances.

3.2 Training samples

On the basis of the forest density in various partitions, 

a diifferent number of samples are selected as training 

data. Referring to near-real time high-resolution image 

collection on the Google Earth software, these datasets 

are labelled on forest,nonforest or water,in order to 

correspond to the classification labels of GFC and FNF 

products. The training pixels are extracted randomly. 

To ensure only clearly forest pixels were selected, the 
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forest samples were collected carefully to avoid pixels 

near the boundary of forest(Bastarrika et al. 2011).

Sample NumberStudy

Area Forest Non-

Forest

Water

Nonforest 66 1474 36

Boreal Forest 39 10 4

Tropical and 

Subtropical 

Broadleaf Forest

626 444 10

Temperate 

Mixed Forest

824 1505 68

Temperate 

Conifer Forest

1017 889 37

China 2572 4322 155

Table 2.The training sample numbers for the forest 

,nonforest and water in each partition.

Figure 3. The samples map of distribution

3.3Model Training

The random forest algorithm provided by GEE was 

applied to train the forest classifier. Compared with 

decision tree algorithm creating GFC maps, the random 

forest classifier contains more numbers of decision 

trees. The Random Forest classifier uses bootstrap 

aggregating for form an ensemble of classification and 

induction tree like tree classifiers. This structure means 

that random forest model has more robustness and 

higher anti-interference. Random forest has become 

one of the high accuracy and widely applicable 

algorithms(Pal 2005). Random forest is a ensamble 

composed of decision trees acted as basic learners, 

while all learners in the forest have same distribution 

and every attribute of decision tree depends on the 

spectral characters choosed independently and 

randomly. The generalization error of random forest is 

dicided by the individual structural strength and 

relevance of decision trees in the forest. The formula of 

random forest is expressed as

              (1)
Where indicates the random forest integrated 𝐻(𝑥) 

classification model,  indicates single decision tree, ℎ𝑖

 indicates the output variable ,  indicates the 𝑌 𝐼( ∙ )

indicator function which ranges from 0 and 1.

The advantage of random forest algorithm lies in usage 

of out-of-bag cross-validaton (OOBCV) to realise 

overall evaluation of classification accuracy. 

Compared with Adaboost, random forest utilizes 

characters selected randomly to split error ratio of 

every node domain, thus this model has better stability 

in noise reduction and anti-interference aspects. 

Overall evaluation manages the interior error, structure 

and relevance of forest model by means of estimating 

the posterior probability of every node in the decision 

tree of random forest. These indices indicate the 

response of character number increase which are 

applied by segmentation. Not only that, overall 

estimation also evaluates the significance of variable 

(Breiman 2001).

Because of multiplicate input characters including six 

bands of surface reflectance and six specific spectral 

indexes, the number of decision trees in the random 

forest model was limited to 500 to balance accuracy 

and timeliness.

Classification results are hard voting of three labels. 

This is the overall consequences of all decision trees in 

the classifier. In the other hand, random forest classifier 

can also export the probability of each category. This 

results act as the confidence level output of every 

category,which contain the confidence index ranging 

from 0 to 1.

4. CLASSIFICATION RESULT AND 

ACCURACY ANALYSIS

4.1 Classification results

In view of area forest partion, different number of 

validation points were produced for every study region. 

After that, extract the real categories of points based on 
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the high resolution images in the Google Earth software 

and the three forest maps, thus we obtained the error 

matrixs of classification results. At Last, the overall 

accuracy (OA) and kappa coefficients (KCs) were 

computed by the error matrixs.

(2)
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Where N indicates the pixels used in the accuracy 

assessment, x_ii indicates the overall number of the 

class i pixels classified correctly, x_(i+) indicates the 

number of class i pixels in classification results, x_(+i) 

indicates the number of class i pixels in validation 

results.

Figure 4. The forest extraction result in China

4.2 Classification accuracy

Overall Accuracy（%）Study Area

RF FNF GFC

Tropical and 

Subtropical 

Broadleaf 

Forests

83.25% 69.25% 73.25%

Temperate 

Conifer 

Forests

87.94% 81.81% 86.87%

Nonforest 97.83% 95.50% 96.83%

Temperate 

Mixed Forests

87.90% 87.40% 88.70%

Boreal Forests 90.00% 93.00% 97.00%

China 89.08% 84.57% 87.78%

Table 3. The overall accuracy of the three 
forest maps in five partitions

Kappa CoefficientStudy Area

RF FNF GFC

Tropical and 

Subtropical 

Broadleaf 

Forests

0.6735 0.3985 0.4794

Temperate 

Conifer 

Forests

0.7513 0.6197 0.7209

Nonforest
0.4957 0.2100 0.2879

Temperate 

Mixed Forests
0.6335 0.5663 0.6057

Boreal Forests
0.00 0.00 0.5640

China
0.7503 0.6367 0.7088

Table 4. The kappa coefficients of the three 
forest maps in five partitions

4.3 Local comparision of forest detection

In this part, four forest extractions of four forest 

partitions are compared to analysis the reason of 

misclassification and missorting. Fig 4 shows the 

original images and forest extraction results of four 

forest partitions including Tropical and Subtropical 

Broadleaf Forests（a1,a2,a3,a4）, Temperate Conifer 

Forests of Notheast（b1,b2,b3,b4）, Temperate 

Conifer Forests of Southwest (c1,c2,c3,c4) and 

Temperate Mixed Forests of East (d1,d2,d3,d4) , while 

the classification differences are highlighted by the 

yellow circles.

In the tropical and subtropical broadleaf forests, forests 

weren’t extracted in the FNF product compared with 

the RF product. When it comes to GFC product,some 

non-forest regions weren’t classified ,such as road and 

lake. In the temperate conifer forests of northeast, FNF 

map and GFC map appear large area of forest 

misclassification while RF map seperates forest and 

non-forest well. The reason of this situation may be 

local forest density is sparse and unlikely to be 

discrinible considering the origin image. In the 

temperate conifer forest of southwest, there are 
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different levels of forest misclassification cases in the 

mountain regions of FNF product and GFC product. In 

the temperate mixed forest of east, FNF product has 

serious missorting situations when roads and grassland 

in the city region are divided into forest. Some trees on 

the boundary of forest in the GFC product are classified 

as non-forest. On the contrary, RF product extracts the 

boundary of forest better and reduces the missortting of 

non-forest vegetation in the urban area. In summary, 

the classification accuracy of forest product created by 

random forest algoriothm in the GEE platform is higher 

than those of GFC and FNF.

（a1） （a2） （a3） （a4）

（b1） （b2） （b3） （b4）

（c1） （c2） （c3） （c4）

（d1）    （d2）    （d3）    （d4）

Figure 5. Local comparision of forest detection 
in different partitions

4.4 Area computation

Forest partition Area( Ten 

thousand hectare)

Nonforest 663.1828

Boreal Forests 0.6885

Tropical and Subtropical 

Broadleaf Forests

10195.1802

Temperate Mixed Forests 7491.9180

Temperate Conifer Forests 3691.2586

China 22042.23

Table 5. Forest area in different forest 
partitions.

5.CONCLUSION

This work demonstrates that the classifier trained by 

random forest algorithm extracts China forest cover 

better and achives the overall accuracy of 89.08%. It’s 

not to be ignored that this classifier has better 

performance in the extraction of forest in tropical and 

subtropical broadleaf forests, temperate conifer forests 

and temperate mixed forests. In addition, the process 

speed in the Google Earth Engine platform is high, thus 

the time cost of data download and data selection can 

be saved.

Although this work has attained superior result of forest 

cover extraction ,there are still some challenges 

remained to be solved. For example, due to the cloud 

cover and shadow in the data all the year round, there 

are data deficiency in the classification result. In the 

other hand, there are some salt pepper effect in some 

districts as calculated based on the pixel. So it’s 

neccesary to introduce the method of object-based to 

avoid the misclassification. In addition, there are more 

data could be applied to classify the forest types, such 

as digital elevation model and hyperspectral images.
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