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ABSTRACT: 
 
The accurate acquisition of land surface reflectance (SR) data determines the accuracy of ground objects recognition, classification 
and land surface parameter inversion using remote sensing data, which is the basis of remote sensing data application. In this study, a 
Control No-Changed Set (CNCS) radiometric normalization method is proposed to realize spectral information transformation of 
multi-sensor data, which is based on the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD), and includes automatic 
selection and step-by-step optimization of no-change pixels. The No-Changed set (NC) is obtained by selecting the original no-
change pixels between the target image and the reference image according to the linear relationship. In the obtained original no-
change regions, IR-MAD rules with iterative control are used to fix the final no-change pixels, after regression modeling and 
calculation, the normalized images are obtained. The method is tested on multi-images from multi-sensors in three groups of 
experiments (GF-1 WFV and Landsat-8 OLI, GF-1 PMS and Sentinel-2 MSI, and Landsat-8 OLI and Sentinel-2 MSI) with different 
landcover areas. The results of radiometric normalization are evaluated qualitatively and quantitatively. The data of the three groups 
of experiments have a high correlation (correlation coefficient r values > 0.85), indicating that they can be used together as 
complementary data. The Root Mean Squared Error (RMSE) values calculate from the NC between the reference and normalized 
target images are much smaller than those between the reference and original target images. The radiometric colour composition 
effects, and the typical ground objects spectral reflective curves of the reference and normalized target images are very similar after 
radiometric normalization. These results indicate that the CNCS method considers the linear relationship of the no-change pixels and 
is effective, stable, and can be used to improve the consistency of SR of multi-images from multi-sensors.  
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1. INTRODUCTION 

The accurate acquisition of land surface reflectance (SR) data 
determines the accuracy of ground objects recognition (Zhang 
et al., 2015), land cover classification(Friedl et al., 2010) and 
land surface parameter inversion(Nazeer et al., 2017) using 
remote sensing data, which is the basis of remote sensing data 
application. At the same time, the variety of remote sensing 
satellites is increasing, which makes the remote sensing data 
resources multi-source. However, the response to the ground 
reflection spectrum of different satellite sensors is inconsistent, 
resulting in differences in SR acquired by different satellites. 
Therefore, it is necessary to improve the consistency between 
data by spectral radiometric normalization before multi-source 
data joint application. There are many methods about 
radiometric normalization at present: Dark Set-Bright Set 
Normalization (DB)(Hall et al., 1991), Pseudo-invariant Feature 
(PIF)(Schott et al., 1988), Automatic Scattergram-controlled 
Regression (ASCR)(Elvidge et al., 1995), and Iteratively 
Reweighted MAD (IR-MAD)(Canty and Nielsen, 2008), etc. 
Previous studies have evaluated the various radiometric 
normalization methods over different types and times of land 
covers images. For example, Lin et al. (2015) utilized principal 
component analysis to determine the major axis of the 
bitemporal image scatterplot and to extract PIFs with the 
determined major axis. In Zhong et al. (2016), a hierarchical 

regression method is proposed to reduce the radiometric 
differences for multitemporal images, which consists of 
extraction of the pseudo-invariant features (PIFs) and 
optimization of normalization parameters. Zhou et al. (2016) 
presented the utilization of normalized difference water index 
(NDWI) to select the original PIFs, and statistical rules with 
iterative control were used to fix the final PIFs. Recently, Syariz 
et al. (2019) proposed a constrained orthogonal regression, a 
common radiometric level located between bitemporal images is 
selected as the reference, which enforces pixel spectral 
signatures to be as consistent as possible during radiometric 
normalization while band regression quality is preserved. But 
these radiometric normalization methods do not involve the 
physical mechanism of remote sensing, and do not fully 
consider the influence factors such as atmosphere, so it is often 
impossible to obtain high-precision SR, which is not conducive 
to quantitative parameter inversion of multi-source remote 
sensing data.  
 
In this study, a method is proposed to normalize radiometric 
using IR-MAD to Control No-Changed Set (CNCS). This 
normalization method is based on the regression modelling 
using invariant pixels known as No-Changed set (NC) from the 
target image and the reference image, which is a better approach 
than using global or half of the image pixels for radiometric 
normalization (Yang et al., 2000). To select the NC, the 
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preliminarily no-change pixels are selected through 
scattergrams used in automatic scattergram-controlled 
regression, which is the conventional linear regression method. 
The final no-change pixels are acquired through the regularized 
IR-MAD rule on the preliminarily selected NC, then using 
orthogonal regression, and a normalized target image is 
obtained. The objectives of this study are: 
 
1. Reduce the complexity of atmospheric correction. For the 
target image with unsatisfactory atmospheric correction effect, 
the SR can be improved by reference image with better accuracy.  
 
2. Radiometric normalization is used to further improve the 
consistency of radiometric information from multi-sensors 
remote sensing images.  
 
In this paper, GF-1 Wide Field of View (WFV) and Landsat-8 
Operational Land Imager (OLI), GF-1 Panchromatic 
Multispectral Sensor (PMS) and Sentinel-2 Multi-Spectral 
Instrument (MSI), Landsat-8 OLI and Sentinel-2 MSI are taken 
as examples to carry out three groups of experiments. 
 
The remainder of this paper is organized as follows: Section 2 
describes the proposed method. Section 3 shows the 
experimental data. Section 4 presents the experimental results, 
and Section 5 provides the conclusions and future works. 
 

2. METHODOLOGY 

This study proposes a CNCS radiometric normalization method 
based on the Iteratively Reweighted Multivariate Alteration 
Detection (IR-MAD). This method does not require the image 
to have both dark and bright features, and can eliminate the 
influence of large sample noise on the radiometric correction 
results. The proposed method consists of four main steps, 
namely, preliminary extract NC, final screening NC, orthogonal 
regression, and radiometry transformation, which will be 
described in Sections 2.1, 2.2, and 2.3, respectively. Among 
them, Section 2.2 is the focus of this study.  
 
 

2.1 Preliminary Extract NC 

General relative radiometric normalization methods assume that 
radiometric relationships between the corresponding bands of 
target image and reference image are linear, and rectify the 
target image to a reference image through a linear 
transformation (Biday et al., 2010). The common form for linear 
radiometric normalization is given by  
  

 i iy = ax +b  (1)

 
where yi is the digital number (DN) of band i in the reference 
image; xi is the DN of band i in the target image; and a, b are 
normalization coefficients for band i. 
 
First, the no-change pixels are selected from the reference 
image and the target image, and then the normalization 
coefficients are calculated, and finally radiometry 
transformation. 
 
Elivdge et al. (1995) proposed the ASCR in relative radiometric 
normalization. The ASCR procedure locates the centers for land 
and water data clusters using the near-infrared (NIR) target 
image data versus reference image data scattergrams to establish 

an initial regression line, and then determine the NC. However, 
not all images have land and water conditions at the same time. 
Therefore, the CNCS differs from the ASCR method in that the 
former does not need the land and water data clusters on the 
scattergrams to determine the NC. It is on the scattergrams of 
the red and NIR bands, the orthogonal regression method 
(which is introduced in 2.3) is used to determine the initial 
regression baseline, and then further filters the no-change pixels 
to solve the NC. Solving the initial regression line is shown in 
Figure 1. 
 

 
Figure 1. Determine the No-Change set (NC) from  

the scattergrams 
 
HVW in the Fig. 2 is the restriction condition of NC, controlled 
by HPW, and HPW is the vertical width of one side of the NC. 
HPW, HVW and NC have the following relationship (Elvidge 
et al., 1995): 
 

 21NC NCa HVW = HPW  (2)
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Where a is the slope of the initially estimated axis determined 
by orthogonal regression. Once the HVW is determined, the 
initial NC can be determined by Equation (3), where y1 and y2 
are SR values of red band and NIR band of the reference image, 
respectively; x1 and x2 are SR values of red band and NIR band 
of the target image, respectively; and ai and bi are coefficients 
determined by orthogonal regression. 

 
The NC determined by the linear transformation roughly 
represents a "pseudo-invariant" pixel set, that is, a pixel whose 
radiation characteristics hardly change (Seo et al., 2017). 
 

2.2 Final screening NC 

The quality of the no-change pixels affect the result of 
radiometric normalization, and further optimization of the no-
change pixel is required in the NC. Use the following rules to 
find sample data that can be used for regression (Canty and 
Nielsen, 2008): Set the initial weight of each pixel as 1, 
calculate the mean vector and the variance matrix in each 
iteration, and calculate each MAD variate with the method of 
canonical correlation analysis; the weight of the pixels are 
updated according to the newly calculated MAD variates, and 
the weight range is [0,1]; the no-change pixel has a large weight, 
and after several iterations, the weight of each pixel tends to be 
stable; by comparing the weight with the threshold, it is 
possible to determine whether a pixel is a no-change pixel or 
not. 
 
The formulas for updating weights are: 
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Where i is the variance of band i, and Z is a random variate 

introduced by iterative assignment, which represents the sum of 
the standard MAD variates squares, obeys the chi-square 
distribution with degree of freedom N (band number), and is 
weighted by chi-square distribution probability density function. 

rP ( no change )  represents the iteration weight, and a fixed 

threshold t can be set (for example, t=0.95 can be set to obtain a 
good result). When rP ( no change ) >t, the pixel can be assigned 

a label “no-change”. This is described in detail in Canty and 
Nielsen (2008). 
 
There are many (correlated) variables during the iteration, the 
solutions to the coupled generalized eigenvalue problems may 
become unstable due to (near) singular variance covariance 
matrices causing small changes in the data to lead to 
dramatically different solutions. Therefore, Nielsen(2007) 
added regularization (also known as penalization) in the 
iterative process to avoid the weight generated being too large, 
and affect the judgment of the no-change pixels. In this study, 
regularization parameter is also added when solving the 
covariance matrices: 
 

 11 1 111
Var     (7)

 22 2 222
Var     (8)

 
Where λi is a regularization parameter, whose range is [0~1), 
and Ωi is a diagonal matrix of N×N. 
 
2.3 orthogonal regression, and radiometry transformation 

Orthogonal regression method based on geometric distance is 
adopted (Leng et al., 1988). Suppose there are k data points 

1i i iP( x , y ),i k  in the two-dimensional plane, the regression 

analysis is to obtain a straight line L as shown in formula (1) 

i iy = ax +b by some criterion. Minimize 
1

k

ii
D d( P ,L )


 , 

where id( P ,L )  is the geometric distance from point Pi to L. In 

orthogonal regression, a can be estimated according to  
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Where x  and y  is the mean of x, y, respectively. And b can 

calculated according to a, that is b y ax  . 
 

After obtaining the NC in Section 2.2, the regression equation 
can be established in the NC for relative radiometric 
normalization from the above equations.  
 

3. DATA AND PRE-PROCESSING 

Sentinel-2 Level-2A are bottom of the atmosphere (BOA) 
reflectance products, which can be produced by Sen2cor, a 
processor for Level-2A data released by European Space 
Agency (ESA)(Louis et al., 2016). It is also available through 
the URL https://scihub.copernicus.eu/dhus/#/home, and can be 
downloaded the Level-2A data in China region since December 
2018. 
 
Landsat-8 OLI Level-2 Surface Reflectance data are generated 
from the Land Surface Reflectance Code (LaSRC). LaSRC 
makes use of the coastal aerosol band to perform aerosol 
inversion tests, uses auxiliary climate data from MODIS and 
uses a unique radiative transfer model (Badawi et al., 2019). 
LaSRC is regarded as the most accurate for Landsat-8 OLI 
atmospheric correction, and Level-2 data can be freely 
downloaded at https://earthexplorer.usgs.gov/.  
 
GF-1 has no relevant SR products released. The DN images are 
downloaded from China Center for Resource Satellite Data and 
Applications (http://www.cresda.com/CN/). DN images need to 
be pre-processed with atmospheric correction to obtain SR 
products. In this study, atmospheric correction of GF-1 images 
are performed based on ARCSI (Atmospheric and Radiometric 
Correction of Satellite Imagery) (Clewley et al., 2014). 
 
As the resolution of the three satellites are inconsistent, 
resampling processing is needed before radiometric 
normalization to make the resolution of target image consistent 
with that of reference image. 
 
In the experiments, three satellite images that contain various 
landscapes are used for relative radiometric normalization in 
four bands of blue, green, red and NIR, which verified the 
feasibility and performance of the proposed method. The 
properties of satellites are tabulated in Table 1. 
 

Table 1. Overview of the main parameters of  
the multiple sensors 

Sensor Spectral range (μm) 
Resolution 

(m) 
Revisit 

periods(day) 
Band1(blue)：0.45-0.52 
Band2(green)：0.52-0.59 
Band3(red)：0.63-0.69 

GF-1 
WFV 

Band4(NIR)：0.77-0.89 

16 2 

Band1(blue)：0.45-0.52 
Band2(green)：0.52-0.59 
Band3(red)：0.63-0.69 

GF-1 
PMS 

Band4(NIR)：0.77-0.89 

8 3~5 

Band2(blue)：0.45-0.51 
Band3(green)：0.53-0.59 
Band4(red)：0.64-0.67 

Landsat-8 
OLI 

Band5(NIR)：0.85-0.88 

30 16 

Band2(blue)：0.46-0.52 
Band3(green)：0.54-0.58 
Band4(red)：0.65-0.68 

Sentinel-2 
MSI 

Band8(NIR)：0.79-0.90 

10 10 

 
The experiments are divided into three groups, Dataset 1, 
Dataset 2 and Dataset 3, and all groups included three sets of 
experiments. Landsat-8 OLI is selected as the reference image 
in Dataset 1 and 3, and Dataset 2 selects the Sentinel-2 MSI as 
the reference image. The study area images should be selected 
on the same date as much as possible to ensure that the remote 
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sensing images are less affected by the atmosphere. However, 
because different satellites have different revisit periods and 
swaths, it is difficult to obtain different satellite images of the 
same date and transit at the same time. In this study, the date 
difference between the target image and the reference image is 
no more than seven days. Three study areas, comprising various 
landscapes, including desert, agricultural crop, and urban area, 
are selected as shown in Table 2-4 for method evaluation. 
 

Table 2. GF-1 WFV and Landsat-8 OLI study areas 

WFV4 OLI WFV3 OLI WFV2 OLI 

Dataset 1 

   

Path, row 137 , 032 123 , 037 122 , 033 

Acquisitions date 
20180512, 

20180512 

20180409, 

20180408 

20180924, 

20180924 

Image size 500×500 500×500 500×500 

 
Table 3. GF-1 PMS and Sentinel-2 MSI study areas 

PMS1 S2B PMS1 S2B PMS1 S2A 

Dataset 2 

   

Path, row 021 , 090 599 , 105 052 , 081 

Acquisitions date 
20181213, 

20181216 

20181128, 

20181128 

20180807, 

20180807 

Image size 500×500 500×500 500×500 

 
Table 4. Sentinel-2 MSI and Landsat-8 OLI study areas 

S2B OLI S2A OLI S2B OLI 

Dataset 3 

   

Path, row 126 , 029 122 , 038 123 , 032 

Acquisitions date 
20181225, 

20181230 

20180417, 

20180420 

20181118, 

20181121 

Image size 500×500 500×500 500×500 

 
4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 The process of selecting NC 

Taking the reflectance of the target image band as the X-axis 
and that of the reference image band as the Y-axis, the red and 
NIR band of the target image and the reference image 
respectively generate a scattergram to determine the initial 
regression line and extract NC. Taking Dataset 1 as an example, 
the NC scatterplots from step-by-step selection process for 
Dataset 1 are displayed in Figure 2. The black dots in the figure 
represent all the pixels of the image, the blue dots are the 
initially extracted NC, the yellow dots are the last extracted NC, 
the green lines represent the initial regression line, and the red 
lines represent the final fitted line. It should be noted that the 
SR values of the experimental images here are all scaled by 
10,000 times. 
 
These scattergrams have some common characteristics: The no-
change pixels gradually converge, and the number of points in 
the last scatter diagram decreases, and are distributed along a 
straight line; the slope of the principal axis varies slightly from 
the second to the third time; the variation range of scattergrams 
gradually decrease, and all points are slightly evenly distributed. 

These characteristics indicate the effectiveness and stability of 
the method in the selection of NC. 
 

Table 5. Quantitative validation of desert study area 
RMSE 

Type Group Band 
Slope 

(a) 

Intercept 

(b) Before After 
r 

blue 0.496 -582.591 2902.016 9.711 0.980 

green 0.515 -259.834 2689.402 13.485 0.981 

red 0.558 -374.429 2887.102 13.289 0.990 

Dataset 1 

(WFV4 and 

OLI) 
NIR 0.553 -193.524 2843.463 14.231 0.992 

blue 4.405 -1562.813 437.6416 15.325 0.994 

green 4.161 -1792.187 898.047 20.603 0.995 

red 3.882 -1917.920 1391.316 30.328 0.995 

Dataset 2 

(PMS1 and 

S2B) 
NIR 3.629 -1672.024 1699.054 41.131 0.994 

blue 0.691 421.698 133.165 11.753 0.976 

green 0.850 396.980 167.842 12.717 0.993 

red 0.843 323.132 78.175 15.392 0.996 

Desert 

Dataset 3 

(S2B and OLI) 

NIR 0.846 345.674 174.273 16.008 0.997 

 
Table 6. Quantitative validation of agricultural crop study area 

RMSE 
Type Group Band 

Slope 

(a) 

Intercept 

(b) Before After 
r 

blue 1.765 -843.482 356.120 20.992 0.857 

green 1.272 -419.039 219.996 13.022 0.963 

red 1.177 -209.879 141.956 11.596 0.972 

Dataset 1 

(WFV3 and 

OLI) 
NIR 1.601 -1723.864 624.098 42.485 0.989 

blue 0.676 -667.739 1292.754 12.433 0.998 

green 0.683 -511.636 1203.032 14.155 0.998 

red 0.719 -564.539 1153.685 18.082 0.999 

Dataset 2 

(PMS1 and 

S2B) 
NIR 0.754 -893.043 2348.282 23.918 0.999 

blue 0.832 -3.841 105.102 10.733 0.995 

green 0.732 195.700 56.784 11.026 0.995 

red 0.724 209.097 92.115 17.290 0.997 

Agricultura

l crop 

Dataset 3 

(S2A and 

OLI) 
NIR 0.683 856.039 309.409 66.33 0.990 

 
Table 7. Quantitative validation of urban area study area 

RMSE 
Type Group Band 

Slope 

(a) 

Intercept 

(b) Before After 
r 

blue 0.881 -12.823 103.002 40.559 0.982 

green 0.985 -74.506 90.613 36.662 0.989 

red 1.086 -132.531 65.014 25.453 0.996 

Dataset 1 

(WFV2 and 

OLI) 
NIR 1.374 -665.786 242.263 35.079 0.998 

blue 0.789 -988.000 1557.496 24.153 0.998 

green 0.705 -585.814 1362.544 25.686 0.997 

red 0.707 -508.159 1295.387 14.796 0.999 

Dataset 2 

(PMS1 and 

S2B) 
NIR 0.740 -763.092 1728.091 34.370 0.997 

blue 0.533 336.150 196.223 29.447 0.974 

green 0.636 351.022 230.765 21.171 0.994 

red 0.669 327.021 221.335 20.915 0.996 

Urban 

area 

Dataset 3 

(S2B and OLI) 

NIR 0.735 350.426 234.809 29.657 0.997 

 
4.2 Qualitative and quantitative parameters statistical 

analysis 

To measure the overall differences, two-thirds of the sample 
points in the NC are regression fitted, and the rest are used as 
validation data to quantify the results of the radiometric 
normalization. Table 5-7 list the normalization coefficients for 
each band for the three group experiments. All of the 
experiments are quantitatively evaluated using the root-mean-
square error (RMSE) and correlation coefficient (r). RMSE is 

defined as 2

1
1 N '

k ki
RMSE ( y y )N 

  , where '
ky  is the SR 

value of target image band k after radiometric normalization, 

ky  is the SR value of reference image band k, and N is the 

number of samples. And r is defined as  
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(a1) (a2) 

 

(b1) (b2) 

 

(c1) (c2) 

Figure 3. Radiometric normalization results of Dataset 2. First column:
original target image (left) and reference image (right). Second column: 
normalization result image of proposed method (left) and reference image
(right). 

 

 
Figure 4. Comparison of spectral reflective curves of the ground objects before and after normalization 
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'
k k

'
k k

' Cov( y ,y )
k k Var [ y ]Var[ y ]

r( y , y )  . From Table 5-7, it can be seen 

that the RMSE of the normalized image is smaller than that 
before radiometric normalization, and the r values of the bands 
exceed 0.857, and the highest r is 0.999, which shows that 
CNCS method can effectively reduce the radiometric 
differences between the target image and the reference image, 
and the correlation between the target and reference data is 
closer after radiometric normalization.  
 
In addition, from the normalization coefficients, we can see the 
difference of SR products of different satellite sensors. In the 
desert area, the slope coefficients of GF-1 WFV and Landsat-8 
are much less than 1, and the slope coefficients of GF-1 PMS 
and Sentinel-2B are much greater than 1, indicating that the 
ARCSI atmospheric correction method is not effective enough 
in desert area. This is due to the ARCSI method uses the dark 
dense vegetation approach to retrieve aerosols for atmospheric 
correction, while there is a lack of sufficient vegetation in the 
desert area.  
  
The result of radiometric normalization is qualitatively 
evaluated by visual comparison. The normalized image is 
compared with the reference image, if the color and brightness 
of the two images are very similar, the normalization effect is 
better. Only the visual comparison results of Dataset 2 are listed 
here. The image colour composition effects of the normalized 
target images are more similar to those of the reference images 
than to those of the original target images. The radiometric 
differences between the original target and reference images are 
greatly reduced. These results are observed for all landcover 
areas from Figure 3.  
  
Due to the radiometric distortion and the characteristics of 
different sensors, the spectral reflective curve characteristics of 
the ground objects are very different. One of the purposes of 
CNCS is to eliminate or reduce these differences. The more 
similar the spectral reflective curves of the ground objects are, 
the closer the spectral characteristics of the ground objects are, 
and the variation of the spectral curve can indicate the effect of 
relative radiometric normalization to a certain extent. It can be 
seen from Figure 4 that the spectral reflective curve of the 
radiometric normalized image is closer to the reference image, 
indicating that the radiometric normalization is effective.  
 
It can be seen from the above results that although the 
atmospheric correction effects of different satellite images are 
not the same, the CNCS relative radiometric normalization 
method can improve the SR accuracy of the target image based 
on the reference image with better atmospheric correction effect. 
The purpose of reducing the complexity of atmospheric 
correction and improving the radiation consistency of multi-
source images is achieved.  
 

5. CONCLUSIONS 

A Control No-Changed Set (CNCS) radiometric normalization 
method is proposed. To validate the method under as many 
different conditions as possible, three groups of experiments 
with different landscape types are carried out. The results show 
that the NC selection method is consistently effective. The 
results of the three groups of experiments using the CNCS 
method are that: (1) The RMSE values calculated from the NC 
between the reference and normalized target images are much 
smaller than those between the reference and original target 
images, and the r values of each band are close to 1; (2) 

Visually comparing the results, the differences in the image 
edge of different landscapes (desert, agricultural crop, and 
urban area) are significantly reduced, the colour composition 
effects of the images after radiometric normalization are very 
similar; (3) After radiometric normalization, the spectral 
reflective curves of the typical ground objects are close to the 
reference images, indicating that the radiometric normalization 
is effective. 
 
The uncertainties in the results are primarily caused by two 
factors. First, the uncertainties may have been caused by image 
registration errors. The geometrical registration errors are nearly 
one or two pixels, which would cause a mismatch of the no-
change pixels locations between the original target and 
reference images. Second, the spectral range differences and 
spectral response differences among multiple sensors will affect 
the result of atmospheric correction, resulting in differences of 
reflectivity of the same ground object on different images. In 
near future, the spectral range differences and spectral response 
differences among multi-sensor will be studied. 
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