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ABSTRACT: 

 

As one of the important sources of meteorological information, satellite nephogram is playing an increasingly important role in the 

detection and forecast of disastrous weather. The predictions about the movement and transformation of cloud with certain timeliness 

can enhance the practicability of satellite nephogram. Based on the generative adversarial network in unsupervised learning, we 

propose a prediction model of time series nephogram, which construct the internal representation of cloud evolution accurately and 

realize nephogram prediction for the next several hours. We improve the traditional generative adversarial network by constructing 

the generator and discriminator used the multi-scale convolution network. After the scale transform process, different scales operate 

convolutions in parallel and then merge the features. This structure can solve the problem of long-term dependence in the traditional 

network, and both global and detailed features are considered. Then according to the network structure and practical application, we 

define a new loss function combined with adversarial loss function to accelerate the convergence of model and sharpen predictions 

which keeps the effectivity of predictions further. Our method has no need to carry out the stack mathematics calculation and the 

manual operations, has greatly enhanced the feasibility and the efficiency. The results show that this model can reasonably describe 

the basic characteristics and evolution trend of cloud cluster, the prediction nephogram has very high similarity to the ground-truth 

nephogram. 
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1. INTRODUCTION 

Satellite observations of the earth have become an indispensable 

source of information in today's world. Satellite nephogram is 

obtained from weather satellites that describes the cloud 

coverage and earth’s surface features. Satellite nephogram can 

be used to identify different weather systems, determine their 

locations, estimate their intensity and development trend, and 

provide basis for weather analysis and forecast. In regions 

lacking meteorological observation stations, such as oceans, 

deserts and plateaus, the information provided by satellite 

nephogram makes up for the deficiency of conventional 

observation data and play an important role in improving the 

accuracy of prediction. With the rapid development of the 

aerospace industry, satellite nephogram is becoming more and 

more abundant. In addition to monitoring and analyzing the 

real-time cloud information, the movement and evolution of 

cloud clusters on the nephogram has also attracted much 

attention. The remote sensing satellite cloud images is used to 

predict the movement and change of convective cloud clusters 

that is helpful to predict the small and medium-sized severe 

weather such as squall line, rainstorm and thunderstorm gale 

accurately and timely. However, due to the extremely unstable 

convective cloud cluster, there is still no effective dynamic 

tracking and prediction method. How to predict the movement 

trend of convective cloud cluster is also one of the urgent 

problems to be solved in meteorological forecasting. 

 

Big data technology can quickly obtain valuable information 

from various types of massive data. The ubiquitous information 

perception and acquisition terminal has collected a large amount 

of data for us. The continuous progress of cloud computing 

technology has provided us with powerful computing ability. 

Big data is showing its advantages more and more, and its 

application fields are becoming more and more extensive. As a 

very effective means to deal with big data, deep learning has 

been widely studied by scholars at home and abroad. The real 

big data itself is bound to be weakly labeled, or even unlabeled. 

In the current situation that there is huge share gap between 

unlabeled data and labeled data, unsupervised learning has 

greater potential than supervised learning relying on data 

labeling (Le, 2013). 

 

Forecasting the evolution of cloud is challenging due to the 

following aspects： 

(1) Most observed cloud changes are nonstationary, nonlinear 

and irregular. 

(2) Different cloud systems in the same area vary in degree, 

which is difficult to describe accurately by a single model. 

  

At present, the work done in the field of cloud map prediction at 

home and abroad includes: The initial research on nephogram 

prediction is mainly based on the premise that the system 

remains stable (Taravat A, 2015). Cross correlation method, 

time mutation method and others are used for linear 

extrapolation based on the local feature of cloud image and the 

vector relationship between previous and feature cloud 

movements (Stowe L L, 2010). These methods have some 

shortcomings in the prediction of cloud development trend and 

forecast time, which greatly limit the availability of cloud 

forecast. These methods have poor performance in predicting 

cloud trends and the validity of prediction is not satisfied, which 

greatly limit the availability of cloud prediction. MOS method 

is adopted for cloud image prediction. The influence factors of 

atmospheric physical quantities and cloud physical processes 

are considered in the numerical prediction model, which 

represents the development trend and advanced research 

direction of this field (Mackie S, 2010). However, this method 

involves a huge amount of computation and complex technical 

requirements, and lacks of follow-up research and application. 

The CA Cellular Automata model was established by using 
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parameters representing the dynamic and thermal characteristics 

of clouds to predict the development and changes of satellite 

cloud images in the next 12 h, and to explore the applicability of 

the new method for short-term satellite cloud image prediction. 

This method can effectively describe the distribution and 

movement of uniformly distributed cloud clusters, but the 

prediction of scattered cloud clusters and the reduction of 

detailed features are not ideal. 

 

In this paper, a cloud image prediction model is constructed by 

the research of the generative counter network (Goodfellow, 

2014) in unsupervised learning. A large number of continuous 

satellite cloud images are taken as samples for training, so as to 

accurately construct the intrinsic characteristics of cloud image 

evolution and predict the cloud image at several future moments 

(Ranzato, 2014). The basic framework of the model is 

generative adversarial network, which consists of generator and 

discriminator. A generative model 𝐺 that captures the data 

distribution, and a discriminative model 𝐷 that estimates the 

probability that a sample came from the training data rather than 

𝐺. The training procedure for 𝐺 is to maximize the probability 

of 𝐷 making a mistake. This framework corresponds to a 

minimax two-player game. （5）To preserving the long-range 

dependencies of the network and addressing the problem of lack 

of sharpness in the predictions, the original convolutional 

network is improved by multi-scale structure. The original 

samples are sampled in different degrees S1…Sn by multi-scale 

transformation，Batch samples with the lowest resolution S1 

participate in the training to get a set of prediction samples 

first，After ascending sampling, the S2 batch sample has the 

same resolution as the S2 batch sample, which is used together 

as the input of the second training. The discriminative model 𝐷 

takes a sequence of frames, and is trained to predict the 

probability that the last frames of sequence are generated by 𝐺 

(Mathieu M, 2015). This allows the discriminative model to 

make use of temporal information, so that 𝐺 learns to produce 

sequences that are temporally coherent with its input. In order to 

further optimize the prediction results, the model adopts a 

combination of 𝐿𝑝 loss and adversarial loss.  

 

The main contributions of this study include： 

(1) Put forward the new way to predict the cloud nephogram in 

future time. Using the existing nephogram as the samples for 

feature learning, in a short time, with a small number of manual 

operations, it is reliable to predict the cloud movement and 

shape change in several future time. 

(2) It can be used to assist existing meteorological forecasting 

methods, and the model is also applicable to the prediction of 

the spread of some natural disasters and the moving track of 

objects. 

 

 

2. METHOD 

2.1 Overview 

A classic Generative Adversarial Network (GAN) consists of 

two neural networks trained in opposition to each other 

(Goodfellow, 2014). The two adversarially trained models are: a 

generative model 𝐺 that captures the data distribution, and a 

discriminative model 𝐷 that estimates the probability that a 

sample came from the training data rather than 𝐺. The generator 

𝐺 takes a latent variable 𝑧 as input, and outputs sample 𝐺(𝑧). 

The discriminator 𝐷 takes a sample 𝑥 as input and outputs 𝐷(𝑥) 

which represents the probability that it is real (Figure.1). The 

training procedure is similar to a two-player min-max game 

with the following objective function: 
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Where 𝑧 is a noise sample from a prior probability distribution 

𝑝𝑧, and 𝑥 denotes a real image following a certain distribution 

𝑝𝑑𝑎𝑡𝑎. 

 
Figure 1. Generative adversarial networks 

 

The classic model use the convolutional network，alternating 

convolutions and Rectified Linear Units (ReLU). However, 

convolutions only account for short-range dependencies, limited 

by the size of kernels. So we combine multiple scales linearly as 

in the reconstruction process of a Laplacian pyramid (Denton, 

2015). The inputs of the discriminator are a sequence of frames 

and only the last frames are either real of generated by 𝐺, the 

rest of the sequence is always from the dataset. Since the 

discriminator can take use of the temporal information, so that 𝐺 

learns to produce sequences that are temporally coherent with 

its input. The discriminator is a multi-scale convolutional 

network with a single scalar output. 

 

2.2 Generator and discriminator 

To solve the short-term dependency problem, the generator is 

improved to multi-scale (K. Gregor, 2015). Define a series of 

generated network 𝐺𝑘 recursively，S𝑘 is the size of input of 𝐺𝑘, 

in our experiments, we set S1 =8X8, S2 =16X16, S3 =32X32, S4 

=64X64. Let 𝑢𝑘 be the upscaling operator toward size S𝑘. Let Xi 
k, 

𝑌i 
k denote the downscaled versions of 𝑋i and 𝑌i of S𝑘, and 𝐺′ 

𝑘 be 

a network that learns to predict from 𝑋𝑘 and a coarse guess of 

𝑌𝑘. The prediction is calculated by 

 

 ( ) ( ) ( )( )'

1 1
ˆ ,ˆ ˆ
k k k k k k k kY G X u Y G X u Y− −= = +  (2) 

 

The architecture of generator is illustrated in Figure 2. Samples 

are drawn in a coarse-to-fine fashion, commencing with a low-

frequency residual image. The second stage samples the band-

pass structure at the next level, conditioned on the sampled 

residual. Subsequent levels continue this process, always 

conditioning on the output from the previous scale, until the 

final level is reached. With this structure the generator is able to 

produce high-quality sample images that are both qualitatively 

and quantitatively better than other deep generative modeling 

approaches. 

 

The discriminator is a multi-scale convolutional network with a 

single scalar output which representing the probability that the
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sample comes from the true dataset (Mathieu M, 2015). The 

input of  discriminative model 𝐷 is a sequence of frames which 

makes the discriminative model use the temporal information, 

so that 𝐺 learns to produce sequences that are temporally 

coherent with its input. 

 

2.3 Details of adversarial training 

We train 𝐺 and 𝐷 alternately until optimality, and finally 𝐺 

learns the desired cloud transformation and 𝐷 becomes a 

reliable estimator (Karpathy, 2014). 

 

 ( ) ( ) ( ) ( ), log lˆ ˆ ˆ1 og 1b i i i i

i

L Y Y Y Y Y Y= − + − −  (3) 

 

The real input is (𝑋, 𝑌), the corresponding output of the 

discriminant model is 1; Generated input as (𝑋, 𝐺(𝑋)), the 

corresponding output of the discriminant model is 0.  

 

 

 

Therefore, the loss function we used to train 𝐷 is: 
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In order to make the output of the generated model as similar as 

possible to the real input of the discriminating model, we define 

the adversarial loss function as: 

 

 ( ) ( )( )( )
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In order to reduce the difference between predicted results and 

ground truth, combined use 𝐿𝑝 loss, the generator is therefore 

trained to minimize 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑝𝐿𝑝. 

 
Figure 2. Multi-scale architecture. The generator starts with a noise sample 𝑋1 (right side) and use a generative model 𝐺1 to generate 

Ŷ1. Then the images are upsampled (pink arrow) and used as the conditioning variable for the generative model at the next level 𝐺2 

Together with another noise sample 𝑋2, 𝐺2 generates a difference image which is added to up sample Ŷ1 to create Ŷ2. This process 

repeats across two subsequent levels to yield a final full resolution sample Ŷ1. 

 

 

3. EXPERIMENT 

3.1 Datasets 

The dataset used in this paper is based on the water vapor 

satellite nephogram downloaded from the National Satellite 

Meteorological Centre Website. The time series images dataset 

has a duration of one month and an hour interval, and contains a 

total of 720 images. Each image is divided into 80x80 pixels 

samples. Samples at the same geographical location form a 

group of sequential samples. Training data and test data is 

distributed in a ratio of 5:1. 

 

3.2 Implementation detail 

The generative model 𝐺 and discriminative model 𝐷 

architecture are presented in Table 1.The depth of each scale 

network and the size of the convolution kernel are determined 

after continuous adjustment, which can make the whole network 

converge as soon as possible, extract the feature information 

accurately, and ensure the stability of the system. 

 

On the basis of the traditional GAN loss function, we add a 

regularization to restrict the parameters of the model. We use 

the 𝐿2 regularization in this paper, which refers to the square 

root of the sum of squares of the various parameters of the 

model. Its main function is to prevent overfitting. 

 
G G1 G2 G3 G4 

Channels 32 64 32 32 64 32 64 128 256 

128 64 

128 256 512 

256 128 
k-size 3 3 3 3 3 3 3 3 5 3 3 3 3 5 5 5 5 5 5 5 

     
D D1 D2 D3 D4 

Channels 32 32 64 64 64 128 128 64 128 256 64 

k-size 3   5 5 5 5 

FC 256 128 512 256 512 256 512 256 

Table 1. Network architecture 

 

3.3 Quantitative evaluation 

We comprehensively analysed the basic network and improved 

network performance from the loss value, PSNR and SSIM 

value changes, and the similarity on visual effect between the 

generated predicted images and the ground truth images. 

 

3.3.1 Loss value curves and box plots. 

The loss value curves reflect the change of the loss value and 

the trend of the gradual convergence of the model. The box 

plots illustrate the extremum and median of loss value. 
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Figure 3 illustrate that GAN network can converge stably 

during training, and the final loss value of the generator and 

discriminator oscillates above and below a stable horizontal line. 

After the traditional loss function is improved and the 𝐿𝑝 

regularization is added, the convergence value of the network 

will be lower, which indicates that the predicted value and the 

real value are more similar than before the improvement. In the 

fitting process, it is generally preferred to make the weight as 

small as possible and finally construct a model with all the 

parameters relatively small. The model with small parameter 

value has simple structure and can adapt to different data sets. 

For a linear regression equation. If the parameters are small 

enough, the data migration will not affect the results, and the 

whole model has a strong anti-disturbance ability.  

  

  

 

Figure 3. The curves and box plots in each experiment 

 

3.3.2 At the view of classification 

This task can be approximated as a classification task due to the 

small variation amplitude between the graphs at each adjacent 

moment. We tested the performance of the model using two 

metrics that are popular for classification accuracy evaluation, 

overall accuracy (OA) and kappa coefficient (kappa). Both of 

them are calculated  based on confusion matrix. We set up two 

groups of experiments according to whether 𝐿𝑝 regularization is 

used or not, and calculated OA and kappa between the predicted 

results and the ground truth of three groups of samples 

respectively. The statistical result is displayed in Figure.4. 

 

 
 

Figure 4. The OA and kappa with and without 𝐿𝑝. 

 

Among the three groups of results, kappa coefficient of two 

groups is greater than 70% or even as high as 90%, which 

proves that the predicted results have a high similarity with the 

real data, indicating that the model can generate cloud maps of 

the subsequent moments more accurately. The performance of 

the improved model with 𝐿𝑝 regularization is obviously better 

than that of the unimproved model. 

 

3.3.3 PSNR/SSIM 

To evaluate the quality of the image predictions resulting from 

the different tested system, we compute the Peak Signal to 

Noise Ratio (PSNR) between the true frame 𝑌𝑘 and the 

prediction Ŷk : 

( )
( )

1

ˆ

2

0

0

PSNR Y, 10log
1

ˆ

ˆ

Y

N

i ii

max
Y

Y Y
N =

=

−

                    (6) 

 

Where 𝑚𝑎𝑥Ŷ is the maximum possible value of the image 

intensities. The Structural Similarity Index Measure (SSIM) is 

also calculated which ranges between -1 and 1, a larger score 

meaning a greater similarity between the two images (Wang, 

2004).

 Groundtruth1/Output1 Groundtruth2/Output2 Groundtruth3/Output3 

without 𝐿𝑝 
 

      

PSNR : 15.313243 PSNR : 17.666683 PSNR : 15.420183 

SSIM : 0.44188363 SSIM : 0.60298071 SSIM : 0.40908234 

with 𝐿𝑝 
      

PSNR :16.096272 PSNR :19.77556 PSNR :16.680063 

SSIM :0.46346072 SSIM :0.63407075 SSIM :0.4558526 

Table 2. The ground truth images、output images and the value of PSNR and SSIM with and without 𝐿𝑝
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We selected 3 groups of samples to test the trained network, 

predicted cloud images at 5 future moments, and calculated the 

SSIM value and PSNR value between the ground truth images 

and the predicted images, and use them to draw line graphs to 

study the predicted performance trends. The results are listed in 

table 3 and figure 5. We observed the predicted pictures and 

found that the predicted results obtained by different input 

samples were different in quality, but all of them could 

accurately describe the attribute information such as colour, 

position and shape, and with a high consistency in the overall 

structure. Through comparison, it was found that when the loss 

function was added with a regularization, the details in the 

picture were retained more completely, and the sharpness 

between the true frame and the prediction was higher. 

 

We input 4 samples to generate 5 predicted images of future 

moments. With the increase of prediction sequence number, the 

prediction effect gradually becomes worse, PSNR value and 

SSIM value both gradually decrease, which are closest to the 

first prediction result input and have the highest similarity with 

the real image. In general, when the loss function is added to the 

regularization, the network has a better performance, which is 

displayed in Figure3. It is worth noting that the counter loss and 

𝑝 loss are not simply added together, but are reconciled by 

adding coefficient terms respectively. After continuous 

experimental analysis, an optimal combination loss function is 

finally obtained. 

 

 

 

Figure 5. Subsequent PSNR and SSIM line charts at multiple 

moments. 

4. CONCLUSION 

The theory and technology of deep learning have greatly 

promoted the development of many fields of computer vision. 

GAN, however, is not restricted by labeled data and does not 

need too much manual processing, which has become a 

promising research direction in unsupervised learning. We only 

need to collect enough data and input the network structure 

which can adjusted casually, the network can gradually learn the 

internal representation of input data, and generate the similar 

images by training. If the network combines time series 

information, it can also study the link characteristics between 

each frame of the input data, and generate an image similar to 

the subsequent development. Cloud change has the 

characteristics of nonstationary and nonlinear properties, 

irregular, if on the basis of mathematical methods to study 

changing regularity, not only need a lot of calculation, but also 

is difficult to establish universal model, thus the change of the 

cloud of prediction has been the lack of corresponding research. 

But the rapid development of aerospace enterprise, bring us a 

lot of satellite images, for the application of deep learning on 

the cloud prediction and research. At the same time, the deep 

learning framework is flexible, and even when training the same 

network, the selection of the optimal parameters is also effected 

by the sample. Therefore, we can constantly improve the 

network structure, adjust parameters according to the results, 

and finally get an optimized adaptive network. 
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