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ABSTRACT: 

 

Idaho and Lebanon rely on potatoes as an economically important crop. NDVI (Normalized Difference Vegetation Index), GNDVI 

(Green Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and MSAVI2 (Modified Soil Adjusted 

Vegetation Index 2) indices were calculated from PlanetScope satellite imagery for the 2017 growing season cloud free days. Variations 

in vegetation health were tracked over time and correlated to yield data provided by growers in Idaho. Based on ordinary least squares 

regression an Idaho yield forecast model was developed. Vegetation response during the growth stage at which potato tubers were 

filling out was significant in predicting yield for both the Norkotah and Russet potato variety. This corresponded to a week with high 

recorded temperatures that impacted the health status of the crops. The yield forecasting model was validated with a cross validation 

approach and then applied to potato fields in Lebanon. The Idaho model successfully displayed yield variation in crops for Lebanon. 

Spectral indices along with field topography allow the prediction of yield based on the crop type and variety. 

 

 

1. INTRODUCTION 

Agriculture is an important sector in the global economy and is a 

crucial component for fighting hunger and food insecurity. 

According to the United Nations Food and Agriculture 

Organization (2017), the expectation is that the world population 

will reach 10 billion by 2050 and there is a need to produce 

around 50% more food than in 2012. Idaho and Lebanon rely on 

potatoes as an economically important crop. Potatoes are 

responsible for employing 46% of the Idahoan agricultural 

processing workforce (Lewin et al. 2011) while in Lebanon 

potatoes account for 56% of vegetable production in the country, 

mainly in the Bekaa Valley and North Lebanon states (Hatoum 

2005).  

 

Precision agriculture uses information technology to better 

manage crop production by taking into consideration the 

variations within the field to increase profitability and 

sustainability (Zhang 2016). By utilizing remote sensing data 

from satellites systems, farmers can leverage cost-effective 

technologies to mitigate crop threats with targeted approaches for 

grower decision making such as variable rate fertilizer 

application, timely irrigation, early disease detection, and pest 

control. Introducing the concept of precision agriculture plays a 

major role in empowering local farmers and stakeholders by 

educating them about new technologies that have the potential to 

improve their crop productivity and enhance their economic 

sustainability.  

 

New satellite systems have emerged in the past five years that 

have high spatial, temporal (PlanetScope), and spectral resolution 

(Sentinel-2) that have the potential to revolutionize the field of 

precision agriculture by aiding decision making. These advances 

in satellite imagery provide a valuable resource for crop 

monitoring and specifically yield modeling and prediction. 

 

 

__________________________________ 

 
*  Corresponding author 

 

Crop yield forecasting is crucial for farmers as it helps with 

management decisions regarding harvesting, storage, pricing and 

marketing. The availability of satellite imagery with higher 

spatial and temporal resolution provides detailed information 

about crop yield over the duration of the growing season. A 

previous research study assessed the performance of different 

sensors with varying resolutions (5 m for RapidEye, 3 m for 

PlanetScope, 10 m for Sentinel-2 and 30 m for Landsat) for yield 

monitoring and concluded that higher resolution imagery gave 

more accurate results (Burke and Lobell 2017). Regression 

models are commonly used in yield prediction. Linear regression 

uses one variable at a time to explain and predict the yield using 

separate equations for each (Aditya Shastry 2017) assuming that 

there is a linear relation between the yield and the explanatory 

variable, model residuals are almost normally distributed such 

that there is no clustering in the data (Sellam and Poovammal 

2016). In their paper, Rembold et al. (Rembold et al. 2013), used 

linear regression with NDVI (Normalized Difference Vegetation 

Index) from SPOT (Satellite Pour l’Observation de la Terre) 

imagery to explain yield values and obtained an R2 of 0.930 and 

0.799 for the Morocco and Egypt study areas, respectively. Al-

Gaadi et al. (2016) also used linear regression but used Landsat-

8 and Sentinel-2 imagery for computing both NDVI and SAVI 

(Soil Adjusted Vegetation Index). They generated a linear 

regression equation per index per sensor per field and concluded 

that higher resolution imagery yielded better regression models 

where the Landsat-8 imagery resulted in an R2 range between 

0.39 and 0.65 compared to 0.47 and 0.65 for the Sentinel-2 

dataset. While previous studies on modelling yield prediction 

used Landsat (Song et al. 2016) and Sentinel-2 (Al-Gaadi et al. 

2016), this paper offers a new approach utilizing high spatial and 

temporal resolution PlanetScope (3 m, daily) analytical scenes in 

comparison with Sentinel-2A (20 m, 10 days) to monitor potato 

crop health over the 2017 growing season and predict crop yield. 

The most common vegetation indices used for forecasting crop 

yield status are NDVI, Green Normalized Difference Vegetation 

Index (GNDVI), SAVI and Modified Soil Adjusted Vegetation 

Index 2 (MSAVI2). These indices were all tested and compared 

to potato yield data from ten fields (402.98 ha) in an ordinary 
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least squares (OLS) regression approach to choose the best 

performing variable for yield prediction. The critical week for 

each of the different potato varieties corresponded to the potato 

growth stage where tubers are in the process of filling out beneath 

the soil. Using the averaged SAVI and slope values for the critical 

weeks provided the best fit model for predicting yield in the 

Idaho fields. Upon considering the offset in the growing seasons 

between Idaho and Lebanon as well as the potato varieties, the 

adjusted Idaho model was applied to forecast potato yield in 

Lebanon. 

 

2. METHODS 

2.1 Study Areas 

For the purpose of this research, we selected two study areas 

(Figure 1 and Figure 2) that shared topographic, geographic and 

environmental features including related crop threats. Both study 

areas have cold wet winters and hot dry summers and are within 

river plains and part of the North Temperate Zone. The Idaho 

study area is located at a latitude of 43.9º and altitude of 1502 m 

above mean sea level with a wet season from October through 

June with a high average temperature during the 2017 season of 

24ºC. The Lebanon study area is at 10º lower latitude than the 

Idaho study area, located at 33.9º latitude with an elevation of 

872 m above sea level and a high average temperature of 34ºC 

during the 2017 growing season. Moreover, potatoes are the 

dominant crop in both areas. 

 

 
 

Figure 1. Idaho study area showing field locations near Parker, 

Idaho. (WGS 84 - UTM 12N) 

 

 
 

Figure 2. Lebanon study area field locations in the Bekaa 

Valley, Lebanon. (WGS 84 - UTM 36N) 

 

2.2 Satellite Imagery 

The satellite imagery used in this work includes Sentinel-2A and 

PlanetScope data. The USGS (United States Geological 

Services) Earth Explorer online interface allowed open access to 

the Sentinel-2A imagery where the data is freely available to the 

public via the ESA (European Space Agency). The PlanetScope 

imagery operated by Planet, a non-governmental privately-

owned commercial company, was accessible through the Planet 

Application Program Interface using their Education and 

Research Program license. At the time of this study, in the 

summer of 2017, Sentinel-2B imagery was unavailable.  

 

Sentinel-2A is a multispectral imager covering 13 spectral bands 

(443 nm – 2190 nm) at resolutions of 10-20 and 60 m with a five-

day revisit period. The Sentinel–2A imagery was processed using 

ESA’s SNAP software for atmospheric correction using the 

Sen2Cor Plugin. The PlanetScope imagery has four spectral 

bands (455 nm – 860 nm [Blue: 455-515, Green: 500-590, Red: 

590-670, NIR: 780-860]) at a resolution of 3 m with a daily 

revisit. The downloaded PlanetScope imagery is the surface 

reflectance ready product provided by Planet so no further 

atmospheric correction was needed, however, individual bands 

had to be extracted. 

 

After extracting red, green and NIR bands, and atmospherically 

correcting the Sentinel-2A bands (Figure 3), the next step was to 

calculate the various spectral indices that are described below. 
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Figure 3. Satellite imagery processing workflow 

 

 

NDVI (Rouse et al. 1973)  

 
𝜌𝑁𝐼𝑅− 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑
                                      (1) 

 

 

GNDVI (Gitelson, Kaufman, and Merzlyak 1996) 

 
𝜌𝑁𝐼𝑅− 𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑁𝐼𝑅+ 𝜌𝐺𝑟𝑒𝑒𝑛
                             (2) 

 

 

SAVI (Huete 1988)                             

 
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑+𝐿
∗ (1 + L)                            (3) 

 

 
 

MSAVI2 (Qi et al. 1994) 

 

2𝜌𝑁𝐼𝑅+1−√(2𝜌𝑁𝐼𝑅+1)
2−8(𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑)

2
             (4) 

  

 

                               

 

In order to better organize the data, any dates that had multiple 

scenes for the same date were mosaicked to reduce the number 

of scenes for processing further. The final step for processing the 

satellite imagery was running zonal statistics that would be the 

input for the regression models to predict yield. 

 

2.3 Yield Data 

Idaho farmers supported the data analysis by providing 

information for each field that included planting dates and the 

potato variety. The farmers provided yield data from the 2017 

growing season, which was collected using the GK Technology 

for Agriculture yield monitor. The sensor attaches to the 

harvester and records the speed, yield, and pounds per second 

along with the geographic coordinates every 0.8 meters by 10 

meters.  

Based on planting date and potato variety, the Idaho fields were 

sub grouped into three categories (G1, G2, G3) so that fields 

within the same group have a similar growing timeline which 

influences the variables for yield forecasting models depending 

on date and variety. Different planting dates result in offset 

between models while each potato variety has its own growth 

cycle (different maturity periods). 

 

2.4 Yield Forecasting 

A Python script was written to extract all mean values for each 

index and bands red, blue and NIR along with the mean yield 

values for each grid cell making it suitable for running regression 

analysis to explain yield variability within the fields. The Python 

code calculated the average values within each grid cell for every 

date available. This resulted in multiple averaged cells for each 

index by growth week depending on cloud cover. Exploratory 

Regression in ArcGIS Pro helped reduce the number of potential 

explanatory variables for the yield model through several runs. 

Subsets of the explanatory variables included a selection of the 

Green, Red and Near Infrared bands while others used the 

different indices: NDVI, GNDVI, SAVI, and MSAVI2. In 

addition, a subset included a combination of bands with spectral 

indices. From each run, the most significant variables became the 

new subset for the next run. After three exploratory regression 

runs, the variables that had the highest correlations were used for 

input into the Ordinary Least Square (OLS) tool. The resulting 

models were validated using a cross validation leave-one-out 

approach (Figure 4). In addition, slope values were calculated 

and averaged within the fields based on the grid cells using the 

National Elevation Dataset (10m resolution).  

 

 
 

Figure 4. Yield data processing workflow 

 

An incremental spatial autocorrelation approach determined the 

optimal grid size by examining the corresponding z-score of yield 

data. This approach utilizes Global Moran’s I to determine yield 

clustering by measuring spatial autocorrelation based on yield 

points’ location and value. An output of this method is the z-score 

which is the standard deviation returned by Global Moran’s I 

where the peak in z-score corresponds to highest yield clustering 

density. The result of the incremental spatial autocorrelation 

method indicated that an 80x80 m grid size was the peak distance 

for yield value clustering. 
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3. RESULTS 

3.1 Variation of Indices over Growing Season 

All five indices used (NDVI, GNDVI, SAVI, and MSAVI2) 

showed similar variation over the fields throughout the season in 

both Sentinel-2 and PlanetScope data (Figure 5). However, the 

PlanetScope imagery gave a more detailed observation about 

what was happening in the fields along with determining critical 

dates and stages for the growing season due to its higher temporal 

resolution. The PlanetScope dataset corresponded to specific 

dates regarding plant emergence, row closure and full maturity in 

addition to dates with higher temperatures and increased 

evapotranspiration rates.   

 

 

 
Figure 5. Variation of NDVI over the 2017 growing season 

Sentinel-2A vs. PlanetScope for Idaho fields 

 

In both the Sentinel and Planet imagery for all the fields, NDVI 

and SAVI increase gradually during the season to reach a peak 

value of 0.9 and then decrease to around 0.8 (Figure 5). However, 

the limitation of Sentinel-2A availability due to cloud cover 

resulted in fewer data points between critical times over the 

growing season. PlanetScope imagery gave a more detailed 

interpretation of the variation between the weeks and the fields. 

For Lebanon, the cloud free Sentinel-2A dataset consisted of 10 

dates, representing only 10 weeks during the growing season. 

While with PlanetScope there was imagery for 50 available dates 

for the same time period with an average of 4 or 5 images per 

week and covered the entire growing season. For Idaho, cloud 

free Sentinel-2A imagery consisted of 5 dates, representing only 

5 growth weeks. For PlanetScope there was 22 available dates for 

the same time period with minimum of 2 images per week to 

provide average weekly vegetation response over most of the 

growing season.  

 

3.2 Idaho Yield Models 

The dependent variable, yield, was tested individually against 

each of the average weekly indices along with field slope. For all 

fields’ groups, the different vegetation indices allowed the 

explanation and prediction of yield values. With access to only 

Sentinel-2A (Sentinel-2B was unavailable for the 2017 growing 

season), there were only five cloud free Sentinel-2A images, 

representing 5 growth weeks (weeks 1, 3, 7, 11, and 13) which 

was not sufficient to test a regression model. On the other hand, 

there were 24 available PlanetScope dates, covering 14 growth 

weeks, which was enough for building the yield forecasting 

model. The model calculated R2 values by growth week over the 

entire growing season for each index plus slope. The best-fitting 

model corresponding to growth week was identified for each 

potato variety. 

 

 
Figure 6. Russet potato fields yield model results 

 

The Russet potato variety yield prediction model (Figure 6) with 

SAVI response during week 12 as the most significant for yield 

prediction. The model obtained has an R2 value of 0.44 and 

follows the equation of: y = 0.4435x + 281.6  

 

 
Figure 7. Norkotah potato fields yield model results 

 

The Norkotah potato variety yield prediction model (Figure 7) 

with SAVI response during week 10 as the most significant for 

yield prediction. The model obtained has an R2 value of 0.57 and 

follows the equation of: y = 0.570x + 248.8  

 

3.3 Growth Degree Days and SAVI 

Potatoes are an irrigated crop and water is a crucial element in 

the productivity of the fields. Although irrigation rate was 
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unavailable for this study, we retrieved precipitation and 

temperature records (Figure 8) to relate to indices’ and yield 

values. A better understanding of these weather variables 

provided vital information related to critical weeks in the growth 

stages has the potential to help farmers with irrigation decisions.  

 

In addition to the relationship between SAVI and yield, there was 

also a relationship between SAVI and GDD (Growth Degree 

Days). The correlation coefficient between SAVI and averaged 

weekly GDD (Equation 1) values for the individual fields was 

between 0.45 and 0.67 (Figure 9).  

 
Figure 8. Precipitation and Temperature during the 2017 

growing season provided by U.S. Bureau of Reclamation 

Agrimet weather station. 

 

 
Figure 9. The variation of SAVI and GDD for the 2017 range of 

critical growth weeks (6 to 13) 

 

 

Growth Degree Days: 

 

(MaxAirTemp+MinAirTemp)/2 – Base Temp           (6) 

 

[Base Temp = 50F] 

 

3.4 Yield Forecasting in Lebanon 

The regression model derived from the Idaho data predicted yield 

for fields in Lebanon. Due to the difference in potato variety, the 

approach was to calculate yield using the different models. 

Though the Idaho model used averaged values of the variables 

within a fishnet cell size of 80m x 80m, the fishnet used to predict 

yield in the Lebanon data was 32m x 32m. The reason for that 

choice is the fact that the Lebanese farmer gave an approximation 

of the yield to have had a range of 3 ton to 5 ton per 1,000 m2. 

Hence, a 32m x 32m cell grid is the closest approximation to what 

the farmer provided. 

 

 
 

 
 

Figure 10. Predicted yield values in kg/1000m2 (A) and the 

corresponding slope values in degrees (B) 

 

 

The micro topography of the fields affected the predicted yield 

values due to the variation in slope leading to uneven irrigation. 

The results obtained from the yield model were verified 

qualitatively by showing the farmer the yield variation within the 

fields and confirming with his records. The farmer also 

mentioned that there are three sprinklers every 100 meters and as 

the yield values are clustered in a 100-meter neighborhood this 

could potentially show the positions of the installed sprinklers.  
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Figure 11. Variation of NDVI over the 2017 growing season 

Sentinel-2A vs. PlanetScope for Lebanon fields 
 

 

4. DISCUSSION/CONCLUSION  

 

Over the past five years, new offerings of satellite imagery are 

providing high spatial and temporal resolution data that advances 

opportunities for monitoring crops and predicting yield. The high 

resolution and daily return frequency of PlanetScope allows 

farmers to apply precision agriculture practices that take in to 

consideration the variation within the field as opposed to the 

assumption that variables such as microtopography and soil types 

within the field are uniform. The higher spatial resolution of 

PlanetScope is particularly valuable with smaller fields such as 

those in Lebanon where fields are usually small in size as most 

of the fields are inherited from father to sons and thus get 

subdivided when passed from generation to another. With each 

spectral band delivering specific information about the plants 

based on the reflectance signature, combining slope data with 

vegetation index values – particularly SAVI or NDVI daily, 

growers can rapidly respond to crop health threats. Vegetation 

indices provide information about the health status of the crop 

and can help with decision making regarding adding nutrients 

and water to plants when needed based on the index value. 

Further, our study demonstrated that SAVI values averaged by 

week from PlanetScope imagery revealed the growth stage and 

growth week that was the most critical for impacting potato yield. 

Though the critical week varied between potato varieties (ranging 

between week 10 and 12), it corresponded to when the tubers 

where filling, while the later weeks that corresponded to the crops 

reaching full maturity had no role in forecasting yield. On the 

contrary, as the crops reached full row closure and continued to 

mature before harvesting showed a decrease in the correlation 

between the indices and yield values.  

 

Our study also highlighted the importance of frequent satellite 

revisit periods. With only 5 cloud free image dates across the 

entire 2017 growing season in Idaho with no dates during the 

critical growth weeks as indicated by PlanetScope and Sentinel 

2B data not yet available, Sentinel 2A alone was insufficient to 

identify critical growth stages or plant response to predict yield. 

With PlanetScope’s daily revisit there was a minimum of 2 cloud 

free images available per week for Idaho. The Lebanon study 

area had an even larger number of available PlanetScope images 

due to more cloud free days (50 over the growing season 

compared to Idaho’s 24) that provided a more frequent 

observation period of crop variation over the growing season.  

The graphs from the PlanetScope imagery clearly corresponded 

to the different stages of growth for potato plants within the study 

area. As the plants started to emerge around week 4, the indices 

increased gradually to show a slight peak. The maximum peak 

within the graphs represented the full maturity of the crops, 

indicating that they were ready for harvest. A significant drop in 

the curves also appeared at week 9. This drop indicated high 

stress levels in the crops related to high recorded temperatures.  

 

Norkotah potato variety crops reached full maturity two weeks 

earlier than the Russet crops. This was evident by the difference 

in the critical growth week based on the correlation values and 

the regression models for the two varieties where the critical 

week for Norkotah groups was week 10 while the critical week 

for the Russet group was week 12. All the regression models 

indicated that SAVI, along with average slope, best explained 

and predicted yield. The indices’ values of the weeks beyond 

week 12 showed a decreased relationship to yield and thus not 

considered a good indicator for yield prediction. SAVI proved to 

be a better indicator of yield over NDVI due to the limitation of 

NDVI and its relationship with the leaf area index. The variable 

L in the calculation of SAVI takes into consideration the soil 

within the fields unlike NDVI and this is crucial in fields with 

early season soil exposure between plants. 

 

Access to high resolution and accurate yield data collected from 

the GTK sensor installed on potato harvesters in Idaho (0.8 m x 

10 m) coupled with high resolution PlanetScope imagery (3 m) 

facilitated the development of a yield forecasting model that was 

suitable to apply in another region (Lebanon) with smaller fields. 

With agricultural lands being passed down between generations 

through inheritance, mainly in developing countries such as 

Lebanon, yield prediction models for smaller fields are a global 

need and an essential tool towards food security and 

sustainability. This model can be modified for other crop types at 

any given geographic location. The key information for adapting 

this model and applying to other crops is identifying the critical 

week as it differs between crops and varieties of the same crop as 

demonstrated for the Norkotah and Russet potato varieties within 

this research.  
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