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ABSTRACT 

Drought affects all human activities and ecosystems. Nearly 40 percent of the world’s population inhabit Drylands, and they 

depend on agriculture for their food, security and livelihoods. Among the remote sensing indices developed, the Land 

Surface General Drought Index (LSGDI) was recently proposed.  This paper proposes an improved model of LSGDI to face 

the issue of drought in semi-arid and arid regions. The experiment was conducted for the Maga’s floodplain, in North-

Cameroon. The method uses satellite images of Landsat in 1987, 2003 and 2018, for January and March or April, 

corresponding to the middle and the end of the dry season. A Vegetation Moisture Index (VMI) and a Normalized 

Difference Soil Drought Index (NDSoDI) are both developed. On an orthogonal plan, their projections give a drought line 

that expresses the improved LSGDI (LSGDI2) as the root sum square of the NDSoDI and the VMI. The LSGDI2 results are 

ranged in [0.09 – 0.14] interval, which is used to define the threshold and ease the qualifiers for drought classes. The visual 

patterns easily match the sandy areas of the original Landsat images with the highest values, while the vegetation and water 

areas match the lowest values. Compared with the LSGDI and Second Modified Perpendicular drought Index (MPDI1), the 

new index reflectance values are higher. Finally, although LSGDI2 curve’s evolution follows the NDSoDI one at 94%, the 

new spectral index values depends on the both components, helping to map highest values of drought and moisture in 

Maga’s floodplain, for a sustainable rice culture expansion.   
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1. INTRODUCTION 

Drought refers to an extended period, i.e. a season, a 

year, or several years, of deficient rainfall, relative to the 

statistical multi-year average for a region (Graham, S. 

2000). Although there are dozens of definitions covering 

meteorological and hydrological aspects, this study 

addresses the agricultural effects of drought, in terms of 

the risk of low soil moisture and crop needs in the semi-

arid regions. This affects all human activities and 

ecosystems, and more than 2 billion people, nearly 40 

percent of the world’s population (White and Nackoney, 

2003), inhabit Drylands. These populations depend on 

agriculture for their food, security and livelihoods. Over 

the years, Earth Observation (EO) sciences have been 

efficient in spatializing drought areas. Spectral indices 

are among the most important approaches. 

From the vegetation moisture view, the Normalized 

Difference Vegetation Index (NDVI) and its derivatives 

such as the Soil Adjusted Vegetation Index (SAVI) and 

the Modified Adjusted Vegetation Index (MSAVI), 

based on the red and near infrared (NIR) wavelengths, 

were developed to monitor the vegetation cover and 

stage of growth. The Normalized Difference Water Index 

(NDWI) (Gao, 1996), the Anomaly Vegetation Index 

(AVI), the Vegetation Condition Index (VCI) (Kogan, F., 

1995), and the Vegetation Health Index (VHI) (Kogan, 

F., 1997), help with assessing vegetation stress and 

health. Further, the Normalized Difference Drought 

Index (Gu, Y. et al., 2007) was used to assess the 

covered land surface dryness.   

From the perspective of soil drought or moisture, the 

Normalized Multi-band Drought Index (NMDI) (Wang, 

L. and Qu, J.J., 2007) and the Perpendicular Drought 

Index (PDI) (Qin, Q. et al., 2008) were developed. The 

PDI was modified through the MPDI (Ghulam A., et al., 

2008) and the MDPI1 (Li, Z. and Tan, D., 2014).  

The main goal of this paper is to assess the land surface 

drought, through another spectral model that assesses the 

covered and the uncovered land dryness. Its gives a 

second technical approach of the Land Surface General 

Drought Index, LSGDI (Ngandam Mfondoum and 

Gbetkom, 2019), for sustainable agriculture expansion in 

arid and semi-arid regions.  

2. METHODOLOGY 

2.1. Research location  

The research was conducted on the site of Maga’s 

floodplain, located between latitudes 10º37' - 10º54' N, 

and longitudes 14º40' - 15º10'E, in northern-Cameroon 

(Central Africa). It is an artificial floodplain extended on 

1560 hectares and more than 200000 hectares with its 

surroundings, where a project of irrigated rice cultivation 

was launched in 1985 to promote national production. 

According to the national bioclimatic map, Maga’s 

floodplain belongs to the Sudano-sahelian or semi-arid 

zone (Figure 1). Yearly, the rainfall is around 500 mm, 

and temperatures vary between 15º and 41º Celsius. 

Natural vegetation is made of savannah that exposes the 

soil. The soil is loamy, clay and alluvial, characterized by 

sediments deposits. Several types of soil degradation 

have been identified, modelled and mapped (Ngandam 

Mfondoum, A.H. et al., 2016; Ngandam Mfondoum, 

A.H. and Gbetkom, P.G., 2019; Gbetkom, P.G. et al., 

2019). However, there is still a need for EO support to 

anticipate the risk of increased silting, salinization and 

sodisation during the irrigated rice project’s expansion 

planned by Cameroon’s government. 

 

Figure 1. Maga’s Floodplain, the study area 

2.2. Data acquisition and pre-processing 

The data used is from the Landsat sensors Thematic 

Mapper (TM) of 1987, Enhanced Thematic Mapper plus 

(ETM+) of 2003 and Operational Land Imager (OLI) of 

2018 (Table1). They were downloaded from the United 

States Geological Survey website and displayed under 

false colour composite SWIR2-NIR-Red (Figure 2).  

Table 1. Landsat images information 
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Figure 2. Landsat images in SWIR2-NIR-Red colour  

Pre-processing help to minimize the effects of sensor, 

solar, atmospheric and topographic distortions. The 

images used are Level-1 products, which are delivered as 

digital numbers, DNs. Bands blue, green, red, near 

infrared, and both shortwave infrared were stacked. 

Applying the Cosine Solar TAUZ (COST) radiometric 

calibration model to the stacked image, the DNs were 

converted from at-sensor radiance to top-of-atmosphere 

(TOA) reflectance via solar correction, and rescaled from 

64-bit to 8-bit. Atmospheric corrections and haze 

reduction have helped to remove other noises and then 

approximate values of surface reflectance. The last step 

concerned the topographic correction to lower altitude 

artifacts. 

2.3. Experiment design 

Ngandam Mfondoum and Gbetkom (2019) assume that 

balancing the moisture of the vegetated area with the 

dryness of the bare soil, is necessary to learn about the 

general drought retrieved from remote sensing 

techniques. They propose the Land Surface General 

Drought Index (LSGDI) as a normalized difference 

written as follows:  

LSGDI = 1 −
NDSoDI−VMI

NDSoDI+VMI
                                          (1) 

Where the NDSoDI is the Normalized Difference Soil 

Drought Index and the VMI is the Vegetation Moisture 

Index. The subtraction of the normalized difference from 

1 is suggested in order to: i) invert the values of soils 

from lower to higher values in the VMI; ii) keep highest 

values of the soil drought in the NDSoDI. 

2.3.1 The Vegetation Moisture Index (VMI) 

This index utilizes as entries the NDWI (Gao, B-C., 

1996) and the SAVI (Huete, A.R., 1988).  

NDWI =
NIR−SWIR1

NIR+SWIR1
                                         (2) 

SAVI =
(NIR−Red)

(NIR+Red+L)
∗ (1 + L)                            (3) 

The NDWI is sensitive to changes in liquid water content 

and in spongy mesophyll of vegetation canopies (Gao, 

1996). Its values usually exhibit a quicker response to 

drought conditions than NDVI (Gu et al., 2007). In 

sparse vegetation cover conditions characterizing semi-

arid zones, the SAVI is most suitable to assess vegetation 

cover and stages of growth and for adjusting the 

background soil reflectance through constant L value.  

Spectral space plot between the NDWI and the SAVI for 

the main land cover categories, i.e. sandy soil, other soil, 

water body and rice crops, shows that they are highly 

correlated by the vegetation (Figure3). However, while 

the other objects values are decreasing for the SAVI in 

the order [Sandy soil-Other soil-Water body], for the 

NDWI, the order is [Water body-Sandy soil-Other soil].  

 

Figure 3. The spectral relation between NDWI (X axis) 

and SAVI (Y axis) 

GAO (1996) notices that the soil background and snow 

cover effects are not masked in the NDWI. Therefore, to 

keep only the vegetation moisture as high values, the 

water body’s values would be lower by subtracting the 

blue wavelength values from the sum of the SAVI and 

the NDWI, as follows: 

VMI =
(NDWI+SAVI)−Blue

(NDWI+SAVI)+Blue
                         (4) 

When visually compared to the NWDI and the SAVI, the 

VMI shows more efficiency in keeping vegetation 

moisture, lowering surface water, and being more 

sensitive to vegetation, soil features and sediments 

deposits at the lake’s bottom (Figure 4).  
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Figure 4. Visual patterns. Left-right and top-down: 

Landsat image, NDWI, SAVI and VMI. 

2.3.2 The Normalized Difference Soil Drought Index 

(NDSoDI) 

Its computation is based on the spectral behaviour of 

soils according to their moisture. Lobell and Asner 

(2002) have demonstrated that the soil reflectance varies 

according to its moisture through the following 

exponential model: 

 R = f х Rdry + (1 − f) х Rdryexp (−c х ⍬)                (5) 

Where R is the soil reflectance at a particular 

wavelength, ⍬ is the volumetric soil water content, Rdry 

is the reflectance of dry soil (at ⍬ = 0.0), c describes the 

rate of soil reflectance change with moisture, and f is the 

ratio of the saturated to dry reflectance.  

A local spectral library was constructed. Figure 5 shows 

the land surface reflectance variation of the four training 

samples types of soils according to their predicted 

moisture.  

 

Figure 5. Reflectance of the four types of soils dryness  

 

The evolution the "two periods" moving average trend 

lines built for each type of soil delimits the suitable 

electromagnetic spectrum wavelengths between the 

middles of the green and the SWIR2 (black square), 

while the most suitable is the SWIR1 (green square ). 

These lines also highlight the Red-NIR’s slope (green 

brace) as the transition between the first period going 

from the SWIR2 to NIR and the second period going 

from the NIR to the green. From the green to the blue, 

there is no trend change, signs of end of the slope. 

Complementary analysis is made through the reflectance 

space between bands, sampling the four major land cover 

objects, i.e. sandy soil, other soils, water body and 

vegetation. Plots between the blue, the red and the 

SWIR1 bands in the six periods of the study. The 

example of April 2018 (Figure6) let shows that, in the 

blue-red feature space, the decreasing correlation order is 

[Sandy soil-Other soil-Water body-Rice crops], water 

body and rice crops being too close in values. The blue-

SWIR1 and the red-SWIR1 plots show the same order, 

i.e., [Sandy soil-Other soil-Rice crops-Water body].  

   

Figure 6. Features spaces. Left’s plot - Blue (X axis) Red 

(Y axis); Middle’s plot - Blue (X axis) SWIR1 (Y axis); 

Right’s plot - Red (X axis) SWIR1 (Y axis) 

The reflectance differences among water and sandy soils 

spectral curves are also to be noticed between in the three 

concerned wavelengths (Figure 7).   

 

Figure 7. Reflectance curves for April 2018 
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From these views, it is assumed that, sand and soil 

features would be highlighted, when adding the red and 

SWIR1 bands, showing a strong positive convergence 

along a soil slope. The moisture would be assessed by 

subtracting the blue band and adjusting the water and soil 

reflectance values. The adjustment factor’s values are 

settled according to the reflectance difference between 

the sand’s spectral curve, which has the highest bare soil 

reflectance, and the water body’s curve, in the blue, the 

red and SWIR1 bands for each month. 

Table 2. Adjustment factor’s values (L) 

1987 2003 2018 Average 

Jan. Mar. Jan. Mar. Jan. Apr. 

0.49 0.38 0.47 0.44 0.23 0.24 0.375 

The average for the six periods is 0.375≈0.4. However, 

considering the high difference values between years, the 

L value of each month is used. The NDSoDI is then 

written as follows: 

NDSoDI =
(Red+SWIR1)−Blue

(Red+SWRI1)+(Blue+∑𝐿)
(1 + ∑𝐿)                 (6) 

Where ∑L is the sum of the differences between the 

sandy soil and the water body curves in the blue, red and 

SWIR1 bands. The highest values describe soil dryness 

and the lowest values its moisture, as shown on figure 8.  

 

Figure 8. NDSoDI visual patterns  

Accordingly, this index can be called the Soil Adjusted 

Moisture Index (SAMI) when the lowest values are to be 

considered. 

2.3.3 The improved Land Surface General Drought 

Index (LSGDI2) 

From the above reasoning, it is hypothesized that adding 

the drought of the land vegetated area with the one of the 

bare soil will provide better information regarding 

general droughts.  When combining the VMI and 

NDSoDI spectral space, dry and wet surfaces can be 

represented on x-y orthogonal axes to locate the LSGDI2 

(Figure 9).  

 

Figure 9. LSGDI2 on the VMI-NDSoDI orthogonal plan 

The moisture square includes the water body in both 

VMI and NDSoDI lower values, and its diagonal, the 

moisture line, separates two triangles representing the 

both indices areas of influence. The value needed equals 

to the triangles right angles projection, named the 

drought line, and corresponding to the LSGDI2. 

According to Pythagorean Theorem, it should be 

expresses as the square root of sum of squares of the 

NDSoDI and the VMI, such as: 

LSGDI2 = √NDSoDI2 + VMI2 ∗ 0.1                         (7) 

The value 0.1 helps adjusting the values below 1, to ease 

the interpretation of the results.  

3. RESULTS AND DISCUSSIONS 

3.1 Dynamic ranges and visual patterns appraisal 

The LSGDI2 global range dynamics are between 0.097 

and 0.137 ≈ 0.14 for the studied period (Figure10). The 

difference with the LSGDI is that from the obtained 

values, it is easy to affect qualifiers to classes of drought. 

Therefore, the resulting image was reclassified and the 

thresholds were defined, using the five descriptors from 

Palmer’s drought severity classification: [Exceptional 

drought – Extreme drought – Severe drought – Moderate 

drought – Abnormally drought].  With maximums of 

0.137 and 0.134 respectively in January and March, 2003 

was the drier year. It could be predicted that all values 

from 0.13 and above (≥ 0.13) are classified "exceptional 

drought", and those below 0.1 (0.9) are classified 

"abnormally drought" or moist areas.  

Moreover, the visual patterns compared with the original 

Landsat images demonstrate that highest values 

correspond to sand and lower values to water body and 

rice crops (Figure 10).   
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Figure 10. Visual patterns of the LSGDI2 

3.2 Reflectance efficiency and its statistical impact  

A comparison was run with the LSGDI and the MDPI1 

(Li, Z. and Tan, D., 2014). As reminding, MDPI1 

processing also assesses the soil and vegetation 

moisture/drought in one algorithm:  

 MDPI1 = √PDI2 + PVI2                            (8) 

The three indices values were resampled in the interval 

[0 – 1] to ease the comparison. After that, fifteen (15) 

pixels were sampled on each stretched image, with 

correspondence in all the five (05) classes of drought. It 

appears that LSGDI2 reflectance neatly enhances those 

given by the MDPI1 and LSGDI (Figure 11).  

 

Figure 11. Reflectance of the three indices for April 2018 

A statistical analysis with each class confirms the 

LSGDI2 efficiency in detecting drought, by varying 

comparatively to visual patterns interpretation and the 

two others indices (figure 12). For instance, its 

"Abnormally drought" class areas for January 2003 and 

April 2018, are respectively 1/6 (16716 ha / 92976 ha) 

and 1/7 (9658 ha/69257 ha), less than LSGDI ones. 

Concerning the MDPI1, its areas for the "Exceptional 

drought" class values has been almost the same, i.e. 

around 52680 hectares during the six periods (Figure 12).    

 

Figure 12. Compared areas statistics for the three indices  

3.3 Drought and moisture informative analysis 

LSGDI2 values come from both the NDSoDI and VMI. 

It appears on fifteen (15) sampled points that LSGDI2 

curve is distinct from its two components’ ones 

(Figure13). Therefore, they both contribute to the model.  

 

Figure13. LSGDI2, NDSoDI and VMI for April 2018 
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Nevertheless, the LSGDI2 and NDSoDI curves have the 

same evolution. On fifteen (15) pixels sampled, fourteen 

(14) have exactly the same behaviour, i.e. 94%. 

Moreover, a linear regression model (Figure 14) shows 

that NDSoDI contribute at 90% (R2=90.3 to the model, 

versus 10% (R2=0.07) for the VMI.   

  

Figure 14. Regression of LSGDI by NDSoDI (left) and 

VMI (right) 

4 CONCLUSIONS  

The aim of this paper was to improve the LSGDI, 

formerly assessed as a normalized difference. The main 

methodology point has been to sum the vegetation 

moisture and the soil drought, both assessed through the 

VMI and the NDSoDI, to express the general drought. 

The proposed LSGDI2 appeared to be the square root of 

sum of squares of the two previous. The analysis of its 

results shows that its reflectance values in each class of 

drought is higher than MDPI1 and LSGDI.      
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