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ABSTRACT: 

 

Nitrogen compounds such as nitrates are considered the most important limiting factor for crop productivity. Monitoring the status of 

this element in crops has moved from destructive to non-destructive approaches. Remote sensing with ever evolving technologies has 

taken the lead on different crops across the world. This study assessed the potential of EO-1 data (Hyperion) to estimate nitrate 

concentrations in maize (Zea mays) leaves. The image was captured over the study area after the 11th week of planting. The random 

forest algorithm was useful for band selection to reduce data redundancy in the imagery, and regression analysis for nitrate 

predictions. Maize nitrate concentrations were detectable with key contributing wavebands as 752, 1043, 681, 851, 1820, 762, 862, 

640, 1850, 609, 589, 569 and 650nm. From this list, a subset corresponding to previously identified bands was used to develop 

vegetation spectral ratios. There was improvement in accuracy of predictions from using: all selected wavebands, all developed 

ratios, and selected ratios as independent variables for the model with 752-681 contributing the most to an R2 = 0.90; and RMSEP = 

0.15. Therefore, selected bands of Hyperion to develop ratios could be used to monitor spatial variation of nitrate concentrations in 

maize from canopy level. 

 

 

1. INTRODUCTION 

Crop productivity is challenged among other factors by 

sustainable management regimes which are to be guided by 

timely monitoring of the nutrient status of the plants at critical 

growing stages (Fageria, 2009). Plant nutrient assessment has 

traditionally been done through numerous manual field visits 

through to tedious laboratory work. The process is laboured 

intensive and destructive as the many visits translate to 

collection of plant tissue samples (roots, stems and/or leaves) 

for analysis. Over the years, non-destructive methods have been 

developed and being applied to monitor plant nutrient status 

such as nitrogen. Some of the methods included the use of 

chlorophyll metres to measure the concentration of the pigment 

in plants and relating it to their nutrient status (Blackmer & 

Schepers, 1994). The concentration of the chlorophyll pigment 

is largely nitrogen (N) and usually enhanced through 

fertilisation that is required to be applied not just at the right 

time but also the right amounts required by the different crops 

(Fageria, 2009). The right application is important both for 

economic and environmental reasons. The nutrient variability 

spatially through soil quality is a confounding challenge to the 

right application of fertilizers as it requires a thorough 

assessment of N in the soil and/or crops, for which such 

assessments could be costlier over large areas. The application 

of remote sensing provides potential to rapidly and less costly to 

assess or monitor such nutrient status in not just soils but crops 

alike (Tilling et al., 2007). 

 

The relationship between N and chlorophyll has been 

established (Lee et al., 1999) and has been proven as a linear 

relationship (Houlès et al., 2007; Ziadi et al., 2008; Haboudane 

et al., 2008). The use of remote sensing in assessing N through 

the chlorophyll content at canopy level has been attempted in 

the light of growth stages and other agronomic factors (Strachan 

et al., 2002; Nguyen & Lee, 2006; Nguyen et al., 2006; Chen et 

al., 2010). In a critical review Patane and Vibhute (2014) 

concluded on the concept of this relationship though with 

variations results not just from different techniques applied but 

also different crop biochemical constituents. 

 

Hyperspectral data complexity has seriously challenged the 

management of hyperspectral data and usually overcome by 

selection of most relevant spectral wavelengths or bands 

(Clevers & Jongschaap, 2003; Thenkabail et al., 2004). The 

selectivity is on the basis that sunlight energy reaching 

vegetation surfaces is either absorbed or reflected back with the 

latter (reflectance) measured by a remote sensor at different 

wavelengths (Figure 1). The reflectance is more in the visible 

region (VIS) being influenced by the presence of leaf tissue 

pigments such as chlorophyll that should relate to leaf N status 

(Haboudane et al., 2002; Rodriguez et al., 2005). Chlorophyll a 

and b have been found to relate to the two absorption regions on 

the VIS being the blue (400-500nm) and red regions (600-

670nm). Chlorophyll pigments are harboured in the chloroplast 

 

Figure 1: Hyperspectral curve for a healthy crop leaf (Adapted 

from Ngie et al., 2016) 
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which contains about 75% of total plant N (Lawlor, 2001). 

These absorption regions can serve as a measure of the N or its 

related compounds such as nitrate content in plants where the 

higher the absorption, the higher the chlorophyll content and so 

too will be the N content. In relation to this, hyperspectral data 

has been used over canopies of agricultural fields to characterise 

the variation of the chlorophyll pigment at an accuracy of 92% 

(Gitelson et al., 2005). 

 

In transition from the VIS to the near-infrared (NIR) region is 

the red edge (Figure 1). This is also a region of interest for crop 

biochemical studies. This region lies between the 680-760nm 

and the reflectance have correlated positively to both leaf and 

canopy N status (Barnes et al., 2000; Cho & Skidmore, 2006). 

The next portion on the electromagnetic spectrum is the NIR 

region stretching from 700 to 1300nm and contributes to crop 

nutrient status by the leaf internal structure which reflects high 

energy levels as opposed to the absorptions in the VIS. The 

region lying from the 1300-2500nm is known as the shortwave 

infrared (SWIR) (Figure 1) which has more absorption regions 

as a result of water content in the leaves (Thenkabail et al., 

2004). However, some wavelengths found in the region reflect 

energy accounted for by the protein and starch content in the 

leaves (Murray & Williams, 1987). The visible and near-

infrared region (VNIR) has been described as the chlorophyll 

absorption feature (Kumar et al., 2003). This region shows 

through its reflectance a strong relationship with nitrogen 

content in plants (Mutanga & Skidmore, 2003; Zhao et al., 

2005). However, a contrary situation has been illustrated of a 

weak relationship between the nitrogen content and canopy 

reflectance of crops such as rice under controlled conditions 

(Stroppiana et al., 2006) which have not deterred other recent 

researchers from obtaining success with this region in rice 

nitrogen contents through different sensors (Wang et al., 2013). 

There have also been other studies across other agricultural 

crops with varying but acceptable levels of accuracies (Ngie et 

al., 2014). 

 

The wavelength range characteristics has been investigated as 

and another alternative approach for more efficient and accurate 

modelling or predicting N status in plants. The spectra measured 

from the visible and NIR regions (400-900nm) calibrated for 

plant N status resulted in an R2 of 0.71 with error of prediction 

as 0.38% (Hansen & Schjoerring, 2003). In a similar study 

using spectra measured at the 530-1100 nm the results were 

better having R2 of 0.81 with error of prediction as 0.27% 

(Alchanatis et al., 2005) and a subsequent increase wavelength 

range from 400-2500nm yielded an R2 of 0.89 with prediction 

error of 0.64% (Morón et al., 2007). However, it should be 

noted that some of the differences could have accrued from the 

different analytical methods applied on the data sets or sensors 

used to measure the reflectance. 

 

While some studies applied ratios of the reflectance value 

measured at the red and NIR region to detect plant nutrients 

(Jackson et al., 1981), other utilised single wavebands 

(Stroppiana et al., 2006). Most of the above cited studies have 

made use of reflectance values from single wavebands or 

optimising wavebands that could predict plant nitrogen content. 

It should be noted that one advantage in the use of vegetation 

indices has been the reduction in variations resulting from 

canopy geometry, irradiance and shading. They have also 

assisted in minimizing soil background effect on canopy 

reflectance (Jackson & Huete, 1991). Hence, the selection of 

wavebands for the creation of vegetation indices or ratios as 

input variables into predictive models using space-borne 

hyperspectral studies on biochemical content on field crops 

under irrigated or controlled conditions is relevant than using 

just single wavebands (Jain et al., 2007); (Zhu et al., 2008). 

Also most of these studies have utilised handheld spectroscopic 

devices to measure reflectance to assess N status except for a 

few that have utilised airborne and satellite-borne sensors 

(Huang et al., 2004; Oppelt & Mauser, 2004; Vigneau et al., 

2011).  

 

Hence, this study used EO-1 data through a non-linear 

regression models in assessing nitrate concentrations in maize 

growing under field conditions from canopy level. This is done 

in a subtropical area where moving through the fields can be 

challenged by its terrain. This is done through firstly, a selection 

of wavebands of importance in relation to maize nitrate content. 

Secondly, to use these selected wavebands to develop spectral 

vegetation ratios as input (with varied numbers) into a non-

linear regression. 

  

2. MATERIALS AND METHODS 

2.1 Study area 

 
Figure 2: The experimental field in Bloemfontein within the 

Mangaung-metropolitan municipality, Free State South Africa 

(Insert image from Google Earth 4/10/2014) 

 

The Glen Agricultural College in Bloemfontein in the Free State 

province of South Africa hosted the experimental field (Figure 

2) of about 1.5ha in size and situated around 28°56‘41.37"S, 

26°19‘46.51"E. The area which is about 20km north of the city 

of Bloemfontein receives long mean annual precipitation of 

about 600mm, mean annual maximum and minimum 

temperatures of 25o C and 8o C respectively (Botha et al., 2007). 

Its summers are hot and dry with scarce episodes of rainfall 

while the winters are frosty and cold. The local geology is 

primarily sedimentary rocks that form the basis on superficial 

deposits of rich agricultural soils mostly of sandy clay loamy 

texture (Botha et al., 2007). The cultivation of field crops in 

summer such as maize is done once in a farming season 

between December and July. The cultivation is usually 

supported through flooding-type irrigation schemes. 
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2.2 Field and laboratory analyses 

The field was planted with maize and variable fertilize 

applications into three categories of low, medium and high or 

normal nitrate content. After the 11th week of planting with 

almost fully ground coverage, thirty leaf samples (10 across 

each nitrate category) were randomly collected (noting the 

coordinates of sample point) through excision on the third fully 

expanded leaf on the maize plants. The leaf samples were 

packaged in sampling bags and taken to the laboratory for 

chemical analyses. The samples were oven dried to eliminate 

moisture and the midrib region of the leaves excluded before 

crushing in a pulveriser. A sample solution was prepared from 

the crushed leaves as collected from the field.  

 

The solutions were used to quantify the amount of nitrate in the 

maize leaves through ion chromatography (IC). The IC is a 

technique to analyze solutions containing complex mixtures of 

ions. In addition, it was considered as a rapid and sensitive 

technique for separation of anions. Plant tissue extraction with 

water was preferred since it reduces the challenges that are 

linked with safety, disposal, or masking of ions that might occur 

in extractions with acids as proven with eluent of corn leaf sap 

(Masson et al., 1996). The Dionex™ Potassium Hydroxide 

Eluent Generator Cartridge (EGC-KOH) system was used with 

a flow rate of 0.25mL per minute to analyse the anions and 

results recorded. 

 

2.3 Image acquisition and pre-processing 

Hyperion images were acquired over the study area after tasking 

on the United States Geological Society (USGS) website during 

the period of field visits. A cloud free image was obtained on 

the 2nd of April 2014 on the 171/080 path/row scene. There is 

usually a challenge of illumination to some of the Hyperion 

bands while others suffer from overlaps between the two 

spectrometers and end up without values or reflectance values 

set to zero during the Level 1B pre-processing (Datt et al., 

2003). In reviewing the available bands of the acquired 

Hyperion images, over 44 bands out of the 242 were without 

reflectance values. These consisted of bands 1-7, 56-78 and 

225- 242 with the remaining 196 bands radiometrically 

corrected and calibrated to at-sensor radiance (Beck, 2003; 

Green et al., 2003). 

 

The images were geometrically referenced to a Landsat ETM+ 

image (19 January 2012) which was already georeferenced 

(Universal Transverse Mercator (UTM), zone 35 South). In 

minimising the effects of systematic noise in the image, a de-

streaking algorithm proposed by Datt et al. (2003) was applied 

to reduce the stripping effect. After which the radiance images 

were then corrected atmospherically and transformed to 

reflectance at canopy level using the MOD-TRAN based Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercube 

(FLAASH) algorithm that is built within the Environment for 

Visualising Images (ENVI version 5.0) software package. 

Through derivation of atmospheric properties including water 

vapour, surface albedo and others, FLAASH provides a well-

adjusted input for the atmospheric correction (Thenkabail et al., 

2013). The images were resampled to their initial spatial 

resolution of 30m, the nearest neighbour algorithm was 

performed wherein for an indicator of a good geometric 

correction, the root mean square error (RMSE) considered was 

at less than a pixel (Ferencz et al., 2004). Through the use of the 

collected ground truth points during sample collection, the 

maize canopy reflectance spectra were extracted from single 

pixels for statistical analysis. 

2.4 Statistical analysis 

The relationship between biochemical concentrations in plants 

and their measured reflectance maybe indeed nonlinear 

(Miglani et al., 2008). The nonlinear regression models 

predicted nitrogen concentrations in vegetation with air-borne 

hyperspectral data set at canopy level with higher R2 values than 

the linear models. In predicting sugar cane leaf nitrogen 

concentrations using reflectance values from a space-borne 

sensor, a non-linear model again outperformed the multiple 

linear regression models with higher R2 values (Abdel-Rahman 

et al., 2013). Hence, the choice of applying a non-linear model 

in this study was established and being the random forest (RF) 

ensemble. 

 

The RF is a machine learning nonlinear algorithm that operates 

through two major parameters which include the ntree and mtry. 

The ntree is the number of trees that are to be used in an 

ensemble while the mtry is the number of variables that is being 

chosen randomly at each split. Recursive partitioning is used to 

divide data into regression trees and average the results of all 

trees. The operations are guided by the fact that every 

regression tree is developed to maximum size independently 

without pruning through bootstrapping samples from the 

training (2/3 of total samples) and testing (1/3 of total samples) 

data sets. Regression trees can at each node be combined and 

choosing randomly a subset of input variables (mtry) from 

which to calculate the split (Breiman, 2001).  

 

The out-of-bag (OOB) error estimation derived through data 

predictions that are being considered in each tree is a means to 

evaluate performance of the RF ensemble.  For each variable in 

the regression tree, the OOB error is calculated as the difference 

in mean square error of the data used to develop regression trees 

and that of the OOB. The comparison of the OOB errors to the 

previous or original ones yields values that indicate the 

importance of the variable wherein it shows how the error varies 

when a variable is permuted and all the other variables left 

unchanged (Prasad et al., 2006). However, for the predictive 

model, the accuracy for each run was by measuring the root 

mean squared error of prediction (RMSEP) which is considered 

more stable than the OOB (Abdel-Rahman et al., 2013).  

 

The ensemble has the capability of performing variable of 

importance selection which reduces the high dimensionality in 

hyperspectral data sets and the predictive modelling. The 

process is to select a subset of relevant variables for use in 

model construction. The process is guided by the fact that the 

data contains many redundant wavelengths as identified by its 

low spectral ranges (Thenkabail et al., 2004; Kokaly, 2001). 

The original RF ensemble by Breiman (2001) can perform this 

task of selecting variables but has been criticised for bias 

selection (Strobl et al., 2007). The cforest function was 

introduced with the RF ensemble that performs the selection but 

with minimal bias (Strobl et al., 2009).  

 

3. RESULTS AND DISCUSSION 

3.1 Maize leaf nitrate concentrations  

The maize nitrate concentrations measured in the laboratory 

from leaves collected during field visits that was about 13 days 

(12/03/2014) to the passing of the EO-1 sensor, recorded 

minimum and maximum amounts as 0.2% and 1.4% of total 

anions respectively with standard deviation of 0.3% for the 
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three different fertilization categories. There was no scenario of 

0% nitrate measured for any of the leaves collected which was 

affirmation to the application of N fertilizers during planting 

across the entire field to enable germination of all seeds. The 

categories of fertilization were created after germination 

through top dressing with regulated nitrate amounts. The 

amount of nitrates in the maize leaves measured in the 

laboratory corresponded with the different samples from the 

various categories. 

 

3.2 Hyperion wavelength selection 

The most important 26 wavelengths of the Hyperion image to 

maize nitrate content were identified for this study (Figure 3). 

The wavelengths were from the red region, NIR and the early 

mid-infrared regions of the electromagnetic spectrum. There 

were six wavelengths amongst the 26 selected that appeared 

with high OOB errors and corresponded to those identified in 

previous studies (Thenkabail et al., 2004; (Miglani et al., 2008). 

These included 609, 640, 650, 681, 752 and 1043 that 

corresponded to bands 26, 29, 30, 33, 40 and 90 according. It 

should be noted that the order of these wavelengths here was 

not derived from the OOB error listing as will be seen below 

(Figure 3) but rather sorted according to the values (highest to 

the lowest of the 26).     

 

Figure 3: 26 wavelengths selected for maize canopy nitrate 

content prediction from Hyperion image 

According to Thenkabail et al. (2004) the six identified bands in 

this study belonging to the region 599-650 are relatively 

sensitive to biomass; 671-681 are chlorophyll absorption region; 

742-752 which is the red edge region is sensitive to vegetation 

stress and/or dynamics; and the 1003-1053 is related to plant 

moisture status, biomass and even the leaf area index (LAI) 

which are all functions of the biochemical status of the plants. 

The first three regions have jointly been labelled chlorophyll 

absorption bands and are closely related to nitrogen 

concentration in plants (Huang et al., 2004; Curran, 1989). In 

this study, some of the waveband regions in the most relevant 

(bigger OOB error values) 26, there was the selection of some 

around the protein absorption region at 1648 nm, which is in 

proximity to 1645 identified by Murray and Williams, (1987). 

The 752 nm was also identified by Vigneau et al. (2011) in 

addition to the other studies stated above as important in 

estimating N concentration in wheat plants. 

 

3.3 Development of vegetation spectral ratios and nitrate 

assessment  

The identified six wavelengths were used to develop all possible 

combinations of spectral ratios. This was done on spectra using 

the formula for the normalised difference vegetation index 

(NDVI) (Rouse et al., 1974). Hence, they were NDVI-based 

ratios. All the developed NDVI-based ratios or vegetation 

spectral ratios used as independent variable input into the 

predictive RF model after which there was another selection of 

variables based on their contribution in the permutation (Figure 

4). Once again the results presented are the top most 26 ratios 

ranked by their OOB errors. Those ranked most important were 

created from the red edge bands including the 640, 650, 681 and 

the 752nm.  

 
Figure 4: Selected vegetation-based ratios from 6 X 6 identified 

bands 

The red edge-based ratio (752-681) and others are selected as 

the most important variables in the RF ensemble for nitrate 

content assessment in maize plants. The bands involved are 

related to those in the modified chlorophyll absorption in 

reflectance index (MCARI) that was designed to reduce the 

influence of soil background on photosynthetic active radiance 

(Daughtry et al., 2000). The index has been refined to improve 

sensitivity to the non-photosynthetic materials below crop 

canopy and established the transformed chlorophyll absorption 

in reflectance combined with the optimised soil-adjusted index 

(Haboudane et al., 2002). All these indices were made up of 

bands within the red edge region and have potential in the 

estimation of biochemical content of crops (Miglani et al., 2008; 

Bannari et al., 2008; Wang et al., 2017). The red edge position 

has been proven to be influenced by N concentration in the 

leaves and other critical crop parameters such as water status 

(Schlemmer et al., 2005); (Schlemmer et al., 2013). However, 

the selected variables in this study were nowhere around the 

known water absorption regions (970, 1450 and 1950nm). This 

means there was no influence from water absorption in the 

performance of the models (Figure 4). It would be of interest to 

perform the experiments and vary not just N concentrations but 

other critical parameters like water status since both scenarios 

could occur in a field. 

 

The 752-681 vegetationbased ratio identified in this study, 

though with related wavebands in previous studies did not also 

match some of the ratios or indices reported in the past. In 

assessing the potential of EO-1 in estimating the chlorophyll 

content of wheat through a wide range of chlorophyll indices, 

also realised the most performing index was the normalised 

difference pigment index (NDPI) that is developed from 

reflectance values centred around wavelengths 430 and 680nm 

which belonged to the VIS and red edge region (Bannari et al., 

2008). The NDPI was also identified as best input to the model 

testing potential of the VIS/NIR spectroscopy in predicting 

nitrogen concentrations in pear orchards (Wang et al., 2017). 

The common interest of the above studies and the present one is 

the fact that the wavebands comprising both ratios are from a 
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similar region of the electromagnetic spectrum and the 

difference in specific bands could be attributed to difference in 

leaf structure or conditions under which spectra was collected. 

However, the studies all point in the direction of interest to the 

relationship between nitrogen or chlorophyll concentration in 

plants to spectral performance. 

  

3.4 Maize leaf nitrate prediction 

The prediction of maize leaf nitrate content using the imaging 

spectroscopy from canopy level was done through the RF 

ensemble as a non-linear regression model. The accuracies of 

the predictive models varied not just with the type of 

independent variable added but also the number of these 

variables being added. For instance in comparing the 

performance of the selected spectral bands and the developed 

vegetation spectral ratios, the latter recorded a higher R2 of 0.82 

with an RMSEP of 0.29 whereas the former had an R2 of 0.76 

and an RMSEP of 0.17 ( 

Figure 5(a.) & (b.)).  The implication was that with the selected 

spectral bands of importance in predicting maize leaf nitrate 

content, the error margin was smaller than the unselected 

spectral ratios. 

 

 

 
 

Figure 5: The relationship between measured and the predicted 

maize nitrate concentration through the RF model using: (a.) the 

selected waveband and (b.) all developed ratios – 6 X 6 

wavebands 

 

The selected vegetation spectral ratios also used as independent 

variables for the predictive model illustrated results of better 

accuracy with R2 = 0.86 and RMSEP = 0.12 

(  

Figure 6 (c.)). The results were better than those obtained from 

all the possible vegetation spectral ratios. To further test on 

variable performances, the cforest ranking of the vegetation 

spectral ratios identified a subset of the top 10 most important 

ratios. 

 

 
Figure 6: The relationship between measured and the predicted 

maize nitrate concentration from the RF model using: (c.) 

Selected 25 vegetation spectral ratios and (d.) selected top 10 

ratios 

 

These top 10 ratios were mostly developed from the red edge 

bands with the exception of 1043nm. These 10 vegetation 

spectral ratios outperformed all the other variable sets 

implemented in this study in predicting maize leaf nitrate 

content at canopy level with an R2 of 0.905 but again with an 
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RMSEP of 0.151 

(  

Figure 6 (d.)). The implication of this RMSEP value is that the 

predicted values of maize leaf nitrate content using the 10 ratios 

was further away from the measured amount than with the 26.  

This was quite interesting to realise that while narrowing down 

the variables to selected ones of importance could only get 

better results to an extent. There have been studies showing the 

optimal wavelength or band numbers for studies though on 

discriminating crop types and did show that there is a point of 

asymptote in the number of these wavelengths being 12 

(Thenkabail et al., 2000), 22 (Thenkabail et al., 2004) or 26 

(Miglani et al., 2008). While the first scenario was performed 

on a shorter spectral range (maximum of 1100nm), the recent 

ones were on the full range up to 2500nm. Further research will 

however be required to establish the optimal number of 

variables for predictive models of maize leaf nitrate content 

since that was not within the scope of this study. 

 

4. CONCLUSIONS 

The imaging spectroscopic data from EO-1 Hyperion images 

predicted maize leaf nitrate concentrations from canopy level 

under field condition. This was possible through the dual 

functionality of the random forest algorithm in reducing 

redundancy by selecting variables of importance and regression 

models for predictions. The selections of variable aided in 

improving the accuracy of the models. The spectral vegetation 

ratio developed with bands 752 and 681nm was relevant in 

contributing to the most accurate model for maize leaf nitrate 

concentrations with R2 of 0.90 and RMSEP of 0.15. It 

consolidates the importance of the red edge region in assessing 

plant biochemical status. 

 

ACKNOWLEDGEMENTS  

Acknowledges funding from University of Johannesburg-

Commonwealth scholarship for her degree and the field 

assistance from workers of the Free State provincial department 

of Agriculture and former departmental colleagues (Dr K. 

Abutaleb and Ms. R. Ashimwe) during data collection. Also 

appreciates the inputs from anonymous reviewers to this paper. 

  

 

REFERENCES 

Abdel-Rahman, E.M., F.B. Ahmed and R. Ismail, 2013: 

Random forest regression and spectral band selection for 

estimating sugarcane leaf nitrogen concentration using EO-1 

Hyperion hyperspectral data. Int. J. Remote Sens. 34(2), 712-

728.  

 

Alchanatis, V., Z. Schmilovitch and M. Meron, 2005: In-Field 

assessment of single leaf nitrogen status by spectral reflectance 

measurements. Precis. Agric. 6, 25-39. 

 

Bannari A., K.S. Khurshid, K. Staenz and J. Schwarz, 2008: 

Potential of hyperion EO-1 hyperspectral data for wheat crop 

chlorophyll content estimation. Canadian J. remote sens. 34(1), 

S139-S157. 

 

Barnes, E.M., T.R. Clarke and S.E. Richards, 2000: Coincident 

detection of crop water stress, nitrogen status and canopy 

density using ground based Multispectral data, Proceedings of 

the 5th International Conference on Precision Agriculture. 

Bloomington, MN, USA. 

 

Beck, R., 2003: EO-1 User Guide-Version 2.3. Satellite Systems 

Branch; USGS Earth Resources Observation Systems Data 

Center (EDC): Sioux Falls, SD, USA. 

 

Blackmer, T.M. and J.S. Schepers, 1994: Techniques for 

monitoring crop nitrogen status in corn. Communications in Soil 

Science and Plant Analysis Special Issue: Soil testing and plant 

Analysis: Precision nutrient management part II 25, 1791-1800. 

 

Botha, J.J., J.J. Anderson, D.C. Groenewald, N.N. Nhlabatsi, 

T.B. Zere, N. Mdibe and M.N., Baiphethi, 2007: On-farm 

application of in-field rainwater harvesting techniques on small 

plots in the central region of South Africa. Water Research 

Commission report, Vol. 1, No. TT 313/07, Pretoria, South 

Africa. 

 

Breiman, L., 2001: Random Forests. Mach. Learn. 45(1), 5-32. 

 

Chen, P., D. Haboudane, N. Tremblay, J. Wang, P. Vigneault 

and B.  Li, 2010: New spectral indicator assessing the efficiency 

of crop nitrogen treatment in corn and wheat. Remote Sens. 

Environ. 114(9), 1987-1997. 

 

Cho, M.A. and A.K. Skidmore, 2006: A new technique for 

extracting the red edge position from hyperspectral data: the 

linear extrapolation method. Remote Sens. Environ.101, 181-

193. 

 

Clevers, J.P.G.W. and R. Jongschaap, 2003: Imaging 

spectroscopy for agricultural application. In F. D. van der Meer 

and S. M. de Jong (eds), Image Spectrometry, vol. 3, pp. 157-

199. London: Kluwer. 

 

Curran, P. J., 1989: Remote sensing of foliar chemistry. Remote 

Sens. Environ. 30, 271-278. 

 

Datt, B., T.R. McVicar, T.G. Van Niel, D.L. Jupp and J.S. 

Pearlman, 2003: Preprocessing EO-1 Hyperion hyperspectral 

data to support the application of agricultural indexes. IEEE 

Trans. Geosci. Remote Sens. 41, 1246-1259. 

 

Daughtry, C. S. T., C.L. Walthall, M.S. Kim, E. Brown de 

Colstoun and J.E. Mcmurtrey, 2000: Estimating corn leaf 

chlorophyll concentration from leaf and canopy reflectance. 

Remote Sens. Environ. 74, 229-239. 

 

Fageria, N.K., 2009: The Use of Nutrients in Crop Plants. New 

York: Taylor and Francis 430 pages. 

 

Ferencz, Cs., P. Bognár, J. Lichtenberger, D. Hamar, Gy. 

Tarcsai, G. Timár, G. Molnár, S.Z. Pásztor, P. Steinbach, B. 

Székely, O. E. Ferencz and I. Ferencz-Árkos, 2004: Crop yield 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-109-2020 | © Authors 2020. CC BY 4.0 License.

 
114

http://www.researchgate.net/journal/0143-1161_International_Journal_of_Remote_Sensing
http://www.tandfonline.com/toc/lcss20/25/9-10
http://www.tandfonline.com/toc/lcss20/25/9-10


 

estimation by satellite remote sensing. Int. J. Remote Sens. 

25(20), 4113-4149, DOI: 10.1080/01431160410001698870 

 

Gitelson, A. A., A. Viña, V. Ciganda, D.C. Rundquist, and T.J. 

Arkebauer, 2005: Remote estimation of canopy chlorophyll 

content in crops. Geophys. Res. Lett. 32, L08403 

 

Green, R.O., B.E. Pavri and T.G. Chrien, 2003: On orbit 

radiometric and spectral calibration characteristics of EO-1 

Hyperion derived with an under flight of AVIRIS and in situ 

measurements at Salar de Arizaro, Argentina. Remote Sens. 

Environ. 41, 1194-1203. 

 

Haboudane, D., J. R. Miller, N. Tremblay, P. J. Zarco-Tejada 

and L. Dextraze, 2002: Integrated narrow-band vegetation 

indices for prediction of crop chlorophyll content for application 

to precision agriculture. Remote Sens. Environ. 81, 416-426. 

 

Haboudane, D., N. Tremblay, J. R. Miller and P. Vigneault, 

2008:  Remote Estimation of Crop Chlorophyll Content using 

spectral Indices derived from hyperspectral data. IEEE Trans. 

Geosci. Remote Sens. 46(2), 423-437. 

 

Hansen, P.M. and J.K. Schjoerring, 2003: Reflectance 

measurement of canopy biomass and nitrogen status in wheat 

crops using normalized difference vegetation indices and partial 

least squares regression. Remote Sens. Environ. 86, 542-553. 

 

Houlès, V., M. Guérif and B. Mary, 2007: Elaboration of a 

nitrogen nutrition indicator for winter wheat based on leaf area 

index and chlorophyll content for making nitrogen 

recommendations. Eur. J. Agron. 27(1), 1-11. 

 

Huang, Z., B. J. Turner, S. J. Dury, I. R. Wallis and W. J. Foley, 

2004: Estimating foliage nitrogen concentration from HYMAP 

data using continuum removal analysis. Remote Sens. Environ. 

93, 18-29. 

 

Jackson, R.D. and A. Huete, 1991: Interpreting vegetation 

indices. Prev. Vet. Med. 11, 185-200. 

 

Jackson, R.D., C.A. Jones, G. Uehara and L.T. Santo, 1981: 

Remote detection of nutrient and water deficiencies in 

sugarcane under variable cloudiness. Remote Sens. Environ. 11, 

327-337. 

 

Jain, N., Ray, S. S., Sinph, J. P. and Panigrahy, S., 2007: Use of 

hyperspectral data to assess the effects of different nitrogen 

applications on a potato crop. Precis. Agric. 8, 225-239. 

 

Kokaly, R.F., 2001: Investigating a physical basis for 

spectroscopic estimates of leaf nitrogen concentration. Remote 

Sens. Environ. 75, 153-161. 

 

Kumar, L., K. Schmidt, S. Dury and A. Skidmore, 2003: 

Imaging spectrometry and vegetation science. In F. D. van der 

Meer and S. M. de Jong (eds), Image Spectrometry 3, 111-156 

London: Kluwer. 

 

Lawlor, D.W., 2001: Photosynthesis - Third Edition. Oxford: 

BIOS. 

 

Lee, W., Searcy, S., Kataoka, T., 1999: Assessing nitrogen 

stress in corn varieties of varying color. In: 1999 ASAE Annual 

International Meeting. No. Paper No 99-3034 in ASAE Meeting 

Presentation. ASAE, 2950 Niles Rd., St. Joseph, MI 49085-

9659 USA, Toronto, Ontario Canada. 

 

Masson, P., G. Hilbert and D. Plenet, 1996: Ion chromatography 

methods for the simultaneous determination of mineral anions 

in plant sap. J.Chromatography 752, 298-303. 

Miglani, A. S.S. Ray, R. Pandey and J.S. Parihar, 2008: 

Evaluation of EO-1 Hyperion Data for Agricultural 

Applications. J. of the Indian Soc. Remote Sens. 36, 255-266. 

 

Morón, A., A. Garcìa, J. Sawchik and D. Cozzolino, 2007: 

Preliminary study on the use of near-infrared reflectance 

spectroscopy to assess nitrogen content of undried wheat plants. 

J. Sci. Food Agric. 87(1), 147-152. 

 

Murray, J. and P.C. Williams, 1987: Chemical principles of 

near-infrared technology. In P. C. Williams, & K. Norris (eds.), 

Near infrared technology in the agricultural and food 

industries, pp. 17-37. St Paul, MN: American Association of 

Cereal Chemists. 

 

Mutanga, O. and A.K. Skidmore, 2004: Narrow band vegetation 

indices overcome the saturation problem in biomass estimation. 

Int. J.Remote Sens. 25, 1-16. 

 

Ngie, A., F. Ahmed and K. Abutaleb, (2014): Remote sensing 

potential for investigation of maize production: review of 

literature. South Africa Journal of Geomatics 3(2), 163-184. 

 

Ngie, A., F. Ahmed and K. Abutaleb, (2016): Assessing maize 

foliar water stress levels under field conditions using in-situ 

spectroscopy. Rwanda Journal, Series D, Volume 1, 2016, Life 

and Natural Sciences: Special issue II. 

http://dx.doi.org/10.4314/rj.v1i2S.1D  

 

Nguyen, H.T. and B. Lee, 2006: Assessment of rice leaf growth 

and nitrogen status by hyperspectral canopy reflectance and 

partial least square regression. Eur. J. Agron.  24, 349-356. 

 

Nguyen, H.T., J.H. Kim, A.T. Nguyen, L.T. Nguyen, J.C. Shin 

and B-W. Lee, 2006: Using canopy reflectance and partial least 

squares regression to calculate within-field statistical variation 

in crop growth and nitrogen status of rice. Precis. Agric. 7, 249-

264. 

 

Oppelt, N. and W. Mauser, 2004: Hyperspectral monitoring of 

physiological parameters of wheat during a vegetation period 

using AVIS data. Int. J Remote Sens. 25, 145-159. 

 

Patane, P.  and A. Vibhute, 2014: Chlorophyll and nitrogen 

estimation techniques: A Review. Int. J. Engineering Res. 

Reviews 2(4), 33-41. ISSN 2348-697X. 

 

Prasad, A. M., L.R. Iverson and A. Liaw, 2006: Newer 

classification and regression tree techniques: bagging and 

random forests for ecological prediction. Ecosystems 9, 181-

199. 

 

Rodriguez, D., G.J. Fitzgerald, R. Belford and L. Christensen, 

2005: Detection of nitrogen deficiency in wheat from spectral 

reflectance indices and basic crop eco-biophysiological 

concepts. Aust. J. Agric. Res. 57, 781-789. 

 

Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering, 1974: 

Monitoring vegetation systems in the Great Plains with ERTS. 

In Proceedings of Third ERTS Symposium, Greenbelt, MD, 

December 1974; NASA SP-351-1, pp. 309-317. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-109-2020 | © Authors 2020. CC BY 4.0 License.

 
115

http://dx.doi.org/10.4314/rj.v1i2S.1D


 

Schlemmer, M., A. Gitelson, J. Schepers, R. Ferguson, Y. Peng 

and J. Shanahan, 2013: Remote estimation of nitrogen and 

chlorophyll contents in maize at leaf and canopy levels. Int. 

J..Appl. Earth OBS 25, 47-54. 

 

Schlemmer, M.R., D.D. Francis, J.F. Shanahan and J.S. 

Schepers, 2005: Remotely measuring chlorophyll content in 

corn leaves with differing nitrogen levels and relative water 

content.  Agron. J. 97, 106-112.  

 

Strachan, I. B., Pattey, E. and J.B. Boisvert, 2002: Impact of 

nitrogen and environmental conditions on corn as detected by 

hyperspectral reflectance. Remote Sens. Environ. 80, 213-224. 

 

Strobl, C. A.-L. Boulesteix, A. Zeileis and T. Hothorn, 2007: 

Bias in random forest variable importance measures: 

Illustrations, sources and a solution. BMC Bioinformatics 8(25), 

1-21. doi:10.1186/1471-2105-8-25. 

 

Strobl, C., T. Hothorn and A. Zeileis, 2009: Party on! A New, 

Conditional Variable-Importance measure for random forests 

available in the party package. The R Journal 1/2, 14-17. 

http://journal.r-project.org/archive/2009-2/RJournal_2009-

2_Strobl~et~al.pdf Accessed 15/04/2015. 

 

Stroppiana, D., M. Boschetti, P.A. Brivio and S. Bocchi, 2006: 

Remotely sensed estimation of rice nitrogen concentration for 

forcing crop growth models. Italian Journal of 

Agrometeorology 3, 50-57. 

 

Thenkabail, P.S., E.A. Enclona, M.S. Ashton, B. Van Der Meer, 

2004: Accuracy assessments of hyperspectral waveband 

performance for vegetation analysis applications. Remote Sens. 

Environ. 91, 354-376. 

 

Thenkabail, P.S., I. Mariotto, M.K. Gumma, E.M. Middleton, 

D.R. Landis, F.K. Huemmrich, 2013: Selection of hyperspectral 

narrowbands (HNBs) and composition of hyperspectral two 

band vegetation indices (HVIs) for biophysical characterization 

and discrimination of crop types using field reflectance and 

Hyperion/EO-1 data. IEEE J. Sel. Topics Appl. Earth Observ. 

Remote Sens. 6, 427-439. 

 

Thenkabail, P.S., R.B. Smith and E. De Pauw, 2000: 

Hyperspectral vegetation indices and their relationships with 

agricultural crop characteristics. Remote Sens. Environ. 57, 158-

182. 

 

Tilling, A.K., G.J. O’Leary, J.G. Ferwerda, S.D. Jones, G.J. 

Fitzgerald, D. Rodriguez and R. Belford, 2007: Remote sensing 

of nitrogen and water stress in wheat. Field Crops Research 

104, 77-85. 

 

Vigneau, N., M. Ecarnot, G. Rabatel and P. Roumet, 2011: 

Potential of field hyperspectral imaging as a non-destructive 

method to assess leaf nitrogen content in Wheat. Field Crops 

Research 122(1), 25-31. 

 

Wang, J., C. Shen, N. Liu, X. Jin, X. Fan, C. Dong and Y. Xu: 

Non-destructive evaluation of the leaf nitrogen concentration by 

in-field visible/near-infrared spectroscopy in pear orchards. 

Sensors 2017, 17, 538; doi: 10.3390/s17030538 pg 1-15. 

 

Wang, J., L. Sun,  C. Shi and Q. Tian, 2013: Estimation of rice 

canopy nitrogen concentration by hyperspectral remote sensing. 

IEEE Proceedings of the 2nd International Conference on Agro-

Geoinformatics, 52-55. 

 

Zhao, D., Reddy, K. R., Kakani, V. G. and Reddy, V. R., 2005: 

Nitrogen deficiency effects on plant growth, leaf 

photosynthesis, and hyperspectral reflectance properties of 

sorghum. Eur. J. Agron. 22, 391-403. 

 

Zhu, Y., Yao, X., Tian, Y., Liu, X. and W. Cao, 2008: Analysis 

of common canopy vegetation indices for indicating leaf 

nitrogen accumulations in wheat and rice. Int. J Appl. Earth 

OBS 10, 1-10. 

 

Ziadi, N., M. Brassard, G. Bélanger, A. Claessens, N. 

Tremblay, A. Cambouris, M. Nolin, L.-E. Parent, 2008: 

Chlorophyll measurements and nitrogen nutrition index for the 

evaluation of corn nitrogen status. Agron. J. 100(5), 1264-1273. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-109-2020 | © Authors 2020. CC BY 4.0 License.

 
116

http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Strobl~et~al.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Strobl~et~al.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jingjing%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ling%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chunlin%20Shi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qingjiu%20Tian.QT.&newsearch=true



