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ABSTRACT:

Up to date geospatial data provide the foundation for the development of smart and connected communities. While high-resolution 2D 
imagery is becoming widely available at less than monthly intervals and several infrastructure layers (e.g., roads, building footprints) 
are updated on a continuous basis, digital surface models (DSM) are generated less frequently and become quickly obsolete in rapidly 
developing regions. We present a methodology for continuous and efficient updates of DSM based on automated change detection from 
high-resolution satellite imagery that is used to develop UAS deployment plan, data acquisition, and DSM generation for targeted areas. 
The resulting UAS-derived DSM is then seamlessly fused with existing (usually lidar-based) DSM. We demonstrate our methodology 
in a rapidly developing watershed in the Triangle Region, North Carolina. The change detection maps were created using pixel-
based classification methods on monthly composite data generated from PlanetScope satellites (3m resolution) as input for UAS flight 
planning, data acquisition, and processing. In future work a GRASS GIS script using a moving window resampling process will create 
flight areas to resample the change detection output into 10 acres flight areas for the UAS flight planning software, and a plugin for 
WebODM will be developed using GRASS GIS to enable seamless updates to centralized repositories of DSM.

1. INTRODUCTION

Rapid urbanization is changing the form and function of commu-
nities all over the world. It is predicted that 68% of the world’s
population will live in urban areas by 2050, and already 82% of
North Americans live in urban areas in 2018 (2018 Revision of
World Urbanization Prospects |Multimedia Library - United Na-
tions Department of Economic and Social Affairs, n.d.). Accu-
rate, up to data digital surface models (DSM) are essential for
urban planning, especially in rapidly growing regions. DSM are
among the most important data layers especially for vegetation
management, view obstruction, solar radiation and cast shadows
analysis, stormwater management as well as parks and recreation
planning. At the pace urbanization is occurring, DSM datasets
quickly become out of date limiting the accuracy DSM based
products. Current methods to update statewide or countywide
DSM at scale are costly because they require aircraft and Li-
DAR systems. These costs prohibit flight frequency producing
DSM with low temporal resolution. To improve the temporal
resolution of DSM datasets this study proposes a new method
for rapid DSM updates. Automated change detection from high-
resolution satellite imagery is used in order to deploy unmanned
aerial systems (UAS) to update centralized DSM datasets. Plan-
etScope satellites provide high spatial (3m) and temporal (near
daily) resolution multispectral (red, green, blue, near infrared)
imagery (Marta, 2018) which can be used as input for per-pixel
post-classification change detection to create a change detection
map product, which identifies the temporal staleness of existing
land cover data and indirectly indicates also the need for update in
DSM datasets (Taubenböck et al., 2012, Jensen, 2015). Our paper
describes the research focused on the process to create change de-
tection maps that provide sufficient information about the change
that it can be used for flight planning and UAS deployment to
enable seamless DSM updates.

Figure 1: Crabtree Creek Watershed (376.25 km2) in the Re-
search Triangle, North Carolina, USA.

2. STUDY AREA AND DATA

To develop and test our approach, we selected a study area in
the Crabtree Creek watershed (376.25 km2) in the Research Tri-
angle region of North Carolina in the United States (Figure 1).
The area was chosen because of the rapid urbanization occurring
in the two counties that make up the watershed. Between 2010
and 2018 Wake County’s population grew 21.2% and Durham
County’s population grew 17.3% (U.S. Census Bureau Quick-
Facts: Durham County, North Carolina; North Carolina; Wake
County, North Carolina; UNITED STATES, n.d.). As a conse-
quence, the watershed experienced extensive new development
including both commercial and residential buildings and updates
to transportation infrastructure.
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The data used in this study consisted of 3m resolution 4-band
multispectral images (blue, green, red and near-infrared) from the
PlanetScope constellation (Marta, 2018). PlanetScope temporal
resolution is daily, however, this study does not require such a
high temporal resolution because of the limited amount of surface
change occurring in any given day. Instead, the images used for
this study were captured on three cloud-free ( 1% cloud coverage)
days across three months; February 14, 2019 (7 images), March
14, 2019 (9 images), and April 15, 2019 (6 images) and contain
100% area coverage. Mosaics of each image data set were created
and clipped and masked to the study area bounds.

3. METHODS

Detecting change in remotely sensed images is a problem with
multiple solutions depending on what type of change needs to be
detected and what change information is important (Chen et al.,
2012, Jensen, 2015). These change detection methods include
analog, binary, thematic, and can be based on either pixel or ob-
ject classifications (Jensen, 2015). Analog change detection pro-
duces useful visualizations of change on an image, but fail to pro-
vide quantitative results; Binary change detection produces good
results but is only applicable if understanding the type of change
is not important, while thematic change detection designates the
from-to change based on predetermined classes (Jensen, 2015).
Another consideration when deciding which type of change de-
tection method to use is whether the change is best represented
on a pixel by pixel basis or if object-based detection methods
capture the desired change. Selecting a change detection method
for a problem is also dependent on the data sources resolution,
which can restrict what types of algorithms are available. In this
study analog, binary, and thematic based change detection meth-
ods were evaluated to determine which method works best for
identifying land cover change at the level of detail required for
the development of UAS flight plans for DSM fusion.

3.1 Analog Change Detection

Analog change detection methods were used to provide visual
clues into which image bands provided the most useful imper-
vious surface change detection information for the study area.
Near-infrared (NIR) and the calculated normalized difference veg-
etation index (NDVI) bands were both used to create analog change
detection maps (Jensen, 2015, Lunetta et al., 2006). The NIR
analog change map was created by placing the NIR band from
February in the red memory bank and the NIR band from April
in the blue and green memory banks of the displayed RGB image.
The same method was used to generate the NDVI analog change
detection map with the NIR band replaced with NDVI (Figure 2).

3.2 Binary Change Detection

Review of the analog change detection maps revealed that the
NIR band was a good candidate for image differencing to extract
binary change information. A statistical threshold was set for
±3σ of the mean extracting areas of significant spectral change
(Morisette and Khorram, n.d., Rosin, 2002, Jensen, 2015). The
resulting change detection map contained three classes; Class -
1 contained pixels that changed from noise, Class 0 contained
no change, and class 1 contained land cover change (Table 1).
The classes were then masked to exclusively contain class one
generating a land cover change detection map (Figure 3).

Figure 2: [Top Row] uses the near-infrared (NIR) band from
February and April NIR (RGB(Feb NIR, Apr NIR, Apr NIR)
to generate a change detection map showing new construction.
[Bottom Row] uses NDVI from February and April in RGB mem-
ory banks RBG(Feb NDVI, Apr NDVI, Apr NDVI) to show dis-
turbances in vegetation.

Class Thresholds Change Type

-1 [Min, µ - 3σ] Change (Noise)
0 [µ - 3σ, µ +3σ] No Change
1 [µ + 3σ, Max ] Land Cover Change

µ = -0.26, 3σ = -0.009

Table 1: Change thresholds set after band differencing the near-
infrared band between February 2019 and April 2019 in the Crab-
tree Creek watershed, NC.

3.3 Thematic

Thematic change detection methods allow for detailed from-to
data to be derived when evaluating multitemporal datasets (Jensen,
2015). This study used supervised classification of multiple com-
posite images to perform a per-pixel post-classification compari-
son to extract thematic change (Rokni et al., 2016, Jensen, 2015).
Due to a dearth of object-based classification methods currently
implemented in Google Earth Engine, no object-based classifica-
tion methods were attempted (Shelestov et al., 2017). Instead, a
pixel-based method was implemented using a random forest.

3.3.1 Classification Supervised and unsupervised classifica-
tion methods provide algorithms that enable thematic change de-
tection in remote sensing data. The classification methods can
be pixel or object-based both of which are applicable for change
detection. Supervised learning classification methods require the
development of training data and predefined classes and allow
for the easy interpretation of the resulting classification. Un-
supervised learning techniques require no training data and can
identify previously unknown patterns in data. However, classes
derived through unsupervised learning can be difficult to interpret
and may not reflect the desired patterns of change. In this study,
a random forest (Homer et al., 2015, Gislason et al., 2006) imple-
mented in Google Earth Engine was used classify the images of
the study area from February 2019 and April 2019 independently
into six categories; water, roads, buildings, forest, grass, and bar-
ren. The random forests were set to generate 250 trees, each im-
age mosaic contained 6 features (band); Red, green, blue, near-
infrared, NDVI, and NDWI. Other features combinations using
gray-level co-occurrence (GLCM) derived texture statistics such
as second moment, contrast, and correlation bands were removed
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Figure 3: The purple patches in the left image represent the land-
cover change (new construction at construction site) detected us-
ing binary change detection from image differencing and statis-
tical thresholds set to select pixels greater than 3 std between
February 2019 and April 2019 in Raleigh, NC using PlanetScope
3m multispectral data.

from the model after inspecting feature importance. However,
it is important to note that random forest feature importance is
approximated in Google Earth Engine by using the results of a
single classification and regression tree (CART) because no cur-
rent method is provided to view the trees generated by the random
forest.

3.4 Future Work: Flight Planning for DSM Fusion

3.4.1 Flight Planning Once areas of change are detected, op-
timized UAS flight areas are generated using a GRASS GIS (GRASS
Development Team, 2019) script that uses moving window re-
sampling to generate 10 acre polygons extracted from the change
detection maps, which are then imported into DroneDeploy (www.
dronedeploy.com) UAS flight planning software (Reckling and
Mitasova, 2018). The flight plan is then used to acquire overlap-
ping imagery and generate updated orthoimagery and point cloud
using structure from motion (Figure 4).

Figure 4: Flight area generated by using a GRASS GIS script,
which utilizes a moving window resampling method to generate
10 acre polygons displayed in the DroneDeploy flight planning
software.

3.4.2 Fusion With the captured data, OpenDroneMap (ODM)
will be used to reconstruct the new DSM through WebODM user
interface (www.opendronemap.org). This new, very high reso-
lution DSM will then be seamlessly integrated with existing DSM
or DEM products using smooth fusion method (Petrasova et al.,

2017) to avoid any artifacts caused by misalignment along DEM
edges. This workflow will be automated and accessible as a We-
bODM plugin (Figure 5).

Figure 5: Generated orthoimagery and 3D model using structure
from motion from UAS flight data, prepared for fusion in We-
bODM using the WebODM Fusion Plugin.

4. RESULTS

The classification map for the February image mosaic had a val-
idated overall accuracy of 97% and a kappa of 96% and the clas-
sification of the April image mosaic had a validated overall accu-
racy of 98% and a kappa of 97%. The confusion matrices show
that the grass and barren classes for both classifications contained
the greatest amounts of misclassification (Figure 6).

Figure 6: Validated accuracy assessments of random forest clas-
sification for February 2019 (left) and April 2019 (right) image
mosaics.

With the classified land cover map from February and April, a
per-pixel post-classification comparison was performed by join-
ing the two classified images together to generate a thematic (from-
to) matrix (Figure 7). The change detection maps classes were
reduced to five class; No Change, Natural to Impervious, Imper-
vious to Natural, Anything to Water, and Natural. The resulting
change detection maps show a large amount of change due to
variations in the image and seasonal effects on vegetation (Fig-
ure 8).
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Figure 7: Thematic (from-to) changes from the classification out-
puts of random forests ran on images from February 2019 and
April 2019.

Figure 8: Results from post classification pixel class change
comparison between February and April 2019. Red indicates a
change from a class to road, building or barren (impervious sur-
face).

5. DISCUSSION

The current results from the post-classification change compari-
son between the classified February and April land cover maps
contain too many changes that are related to variation in image
quality and seasonal variation of vegetation. By comparing the
number of pixels indicating a change from the post-classification
change detection map (5% change) to the near-infrared change
detection map (0.2% change) it shows that the post-classification
change detection is overestimating the total amount of change.
To improve the results of the post-classification change detec-
tion map a Hidden Markov Models (HMM) can be used to post-
process the resulting classification in order to stabilize temporal
pixel variation helping to identify noise from actual land cover
change (Sulla-Menashe et al., 2019, Abercrombie and Friedl, 2016).
Currently, no such method exists within Google Earth Engine, so
the method will either need to be developed or data moved to an-
other platform to perform the pixel stabilization. Other methods
can also be explored to directly detect changes in DSM by using
the minor variations in the PlanetScope constellation view an-
gle to create a temporal DSM dataset (Ghuffar, 2018). Once the

change detection process is finalized an automated process can
be developed using both Planet and Google Earth Engine APIs
to create a dataset that will prioritize UAS deployment plans to
update DSM.

6. CONCLUSION

As urbanization and climate change continue to affect areas at an
increasingly rapid rate the need for DSM datasets with high tem-
poral resolution will become increasingly important. The method
described in this paper provides a good starting point for the con-
tinued development of an optimized change detection methodol-
ogy to enable flight planning for UAS to seamlessly update cen-
tralized DSM datasets. The current results provide a map of bi-
nary change detection which is limited in its ability to describe the
thematic changes occurring across the landscape and a temporal
per-pixel post-classification comparison of two land cover maps
that overestimates the total amount of true land cover change. In
future work that post-classification comparison can be improved
by using a greater amount of temporal images to stabilized the
pixels uses Hidden Markov Models to reduce the total amount of
change detected from minor variations in the classified results.
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Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A. and
Dech, S., 2012. Monitoring urbanization in mega cities from
space. Remote Sensing of Environment 117, pp. 162–176.

U.S. Census Bureau QuickFacts: Durham County, North Car-
olina; North Carolina; Wake County, North Carolina; UNITED
STATES, n.d.

APPENDIX

Google Earth Engine Code https://code.earthengine.google.
com/038bdf4571b6cd76929053f98c6f19b8

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-155-2020 | © Authors 2020. CC BY 4.0 License.

 
159




