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ABSTRACT: 

The use of Sentinel-3 Ocean and Land Color Instrument (OLCI) images in estimating chlorophyll-a (total and class-differentiated)a 

concentration is promising owing to Sentinel-3’s 21 bands. This was investigated for the case of Laguna de Bay (or Laguna Lake), 

Philippines. Field surveys were conducted on 13-17 November 2018 using FluoroProbe, a submersible fluorimeter capable of 

quantifying concentrations of spectral classes of microalgae. These were regressed with reflectance data obtained from 10-day 

composite Sentinel-3 reflectance images as well as ten empirical algorithms (indices) for OLCI. Compared to band reflectance, the 10 

indices yielded stronger correlations, especially with R665/R709, R674/R709, and (1/R665-1/R709)xR754 with the following 

respective correlation values: -0.623, -0.646, and 0.628. Multiple regression results indicates that 48% of the variability of total chl-a 

concentration is explained by five explanatory (reflectance) variables (R412, R443, R560, R681, and R754) with RMSE of 2.814 ug/l. 

In contrast, the two indices R674/R754 and (1/R665-1/R709)xR754 accounted for about 46% of the variability of total chl-a 

concentration with RMSE of 2.475 ug/l. For diatoms and bluegreen microalgae, R560/R665 and (1/R665-1/R709)xR754 constitute 

the models with R2 of 0.21 and 0.435, and RMSE of 2.516 and 2.163 ug/l, respectively. Green microalgal concentration is jointly 

described by three indices: R560/R665, R674/R754, and R709-R754, with R2=0.182 and RMSE=1.219 ug/l. From cryptophytes, the 

model comprising of R560/R665, (1/R665-1/R709)xR754, and R709-R754 produced an R2=0.289 and RMSE=0.767 ug/l. It can be 

said that the empirical algorithms can be used for Sentinel-3 OLCI data providing acceptable estimations of total and spectral class-

differentiated chl-a concentration. 

1. INTRODUCTION

Chlorophyll-a is one of the standard water quality parameters 

monitored in bodies of water. Typically, chl-a concentration is 

measured by water sampling and laboratory analysis and/or 

through in situ measurement using water quality 

checker/instrument at designated sampling stations. There are 

however time-consuming, labor-intensive, and costly (Schaeffer 

et al, 2013). With limited number of sampling stations, it would 

be difficult to describe the temporal and spatial variability of 

large scale lake phenomena (Dörnhöfer and Oppelt, 2016). Due 

to uneven distribution of sampling points and differences in time 

of sampling/field measurement, these may result in unreliable 

water quality assessment (Bresciani et al., 2011). 

Many studies have utilized remote sensing to assess water 

quality, describing its spatial and temporal variability. 

Chlorophyll-a, turbidity, suspended particulate matter, and 

colored dissolved organic matter (CDOM) are the parameters 

commonly mapped and monitored using satellite images, 

particularly those freely available including Landsat images 

(Chen and Feng, 2016, Manzo et al,. 2015, Palmer et al., 2015). 

Recent studies have focused on the use of Sentinel-2 and 

Sentinel-3 data (Toming et al., 2017, Blix et al., 2018, Petus et 

al., 2019). Toming et al. (2017) retrieved water reflectance, 

inherent optical properties (IOPs), and water quality parameters 

including chl-a, total suspended matter (TSM) and CDOM in the 

Baltic Sea using standard Case-2 Regional/Coast Colour 

(C2RCC) processing chain. Blix et al. (2018) used and evaluated 

Sentinel-3 OLCI L2 products, namely, chl-a, CDOM, and total 

suspended matter (TSM) to monitor an optically highly complex 

shallow Lake Balaton. These and other studies estimated total 

chl-a and not the chl-a associated with different classes of 

microalgae. The estimation of the latter is important as 

abundance and proportions/percentages of microalgal classes 

signify or indicate occurrence of particular environmental 

phenomena and issues. 

Laguna de Bay is a multi-use productive lake in the Philippines 

devoted to aquaculture, water supply, and transportation of 

people and goods. The lake supplies significant percentage of 

milkfish and tilapia sold in Metro Manila and provinces 

surrounding the lake. Laguna Lake is already being tapped for 

domestic water supply with water concessionaires abstracting 

hundreds of million liters per day. The lake is eutrophic and turns 

green in color when microalgae blooms occur as a result of high 

nutrient inputs from surrounding watersheds and abundant 

sunlight. Excessive algae may result in fish kills and affect water 

supply from Laguna Lake. Abundance of algae in terms of 

chlorophyll (green pigment) must be mapped and monitored. 

This study investigates the applicability and performance of 

regression models generated from Sentinel-3 OLCI reflectance 

data and indices in estimating chl-a concentration. The 

abundance of phytoplankton is estimated not only through total 

chl-a but also the spectral class-differentiated chl-a 

concentration. 
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2. MATERIALS AND METHODS 

 

2.1 Study Area 

 

Laguna de Bay (more commonly called Laguna Lake) is the 

largest inland waterbody in the Philippines  with a surface area 

of approximately 900 sq. km. (Laguna Lake Development 

Authority, 2017). The lake is shallow with an average depth of 

2.5 m only (Santos-Borja and Nepomuceno, 2003). Primary uses 

of the lake include aquaculture, navigation, and water source for 

domestic use, irrigation, and power generation. 

 

 
 

Figure 1. Laguna de Bay ( Laguna Lake) and surrounding land 

areas. The lake is connected to Manila Bay via the Pasig River 

 

 

 
 

Figure 2. Landsat 8 image (acquired on 13 May 2019) showing 

the spatial variation of “greenness” considered as indication of 

varying levels of abundance of phytoplankton. The red circles 

indicate the water quality monitoring stations of the Laguna Lake 

Development Authority 

 

 

As shown in Figure 1, Laguna Lake is connected to Manila Bay 

through the Pasig River, which serves as the only outlet of the 

lake. During dry season, backflow occurs making the water 

brackish with the intrusion of saline water (Santos-Borja and 

Nepomuceno, 2003). The lake is surrounded by Metro Manila 

and the Provinces of Laguna, Rizal, Cavite, Batangas, and 

Quezon. Its watershed has an area of about 2,980 sq. km. 

(Santos-Borja and Nepomuceno, 2003). Water quality 

degradation has been observed in Laguna Lake due to intensified 

exploitation of the its resources and pollution from industrial, 

household, and agricultural sources (Delos Reyes and Martens, 

1994; Tamayo-Zafaralla et al., 2010). 

 

2.2 Field Surveys 

 

Field surveys were conducted in the lake on 13-17 November 

2018 using FluoroProbe, a submersible fluorimeter capable of 

quantifying concentrations of spectral classes of microalgae. 

FluoroProbe, water quality, and spectral measurements were 

taken at forty-seven (47) stations in the lake (see Figure 3). In 

situ water quality measurements of turbidity, chl-a, conductivity, 

temperature, and pH were conducted using the AAQ multi-

parameter water quality instrument. 

 

2.3 Sentinel-3 OLCI Data 

 

OLCI provides the opportunity and capability to monitor aquatic 

environments utilizing nine (9) spectral bands, which allows to 

retrieve detailed information about the water quality of various 

type of waters (Blix et al., 2018). In this study, 10-day composite 

Sentinel-3 reflectance images were downloaded from the 

Copernicus Global Land Service (CGLS), which is a component 

of the Land Monitoring Core Service (LMCS) of the European 

flagship programme on Earth Observation called Copernicus. 

CGLS “systematically produces a series of qualified bio-

geophysical products on the status and evolution of the land 

surface, at global scale and at mid to low spatial resolution, 

complemented by the constitution of long-term time series” ( see 

https://land.copernicus.eu/global/). This study did not consider 

the Level 2 (L2) products which have been available for the 

public since July 2017.  

 

 

2.4 Correlation and Regression Analysis 

 

The chl-a (total and spectral class-differentiated) concentration 

values were tested for correlation and regressed with reflectance 

data obtained from 10-day composite Sentinel-3 reflectance 

images. downloaded from the Copernicus Global Land Service. 

In addition, ten (10) empirical algorithms (indices) for OLCI 

based on previous studies were also used in the regression 

analysis as listed below: 

 

▪ R560/R665 

▪ R665/R709 

▪ R665/R754 

▪ R674/R709 

▪ R674/R754 

▪ R709/R754 

▪ (1/R665-1/R709)xR754 

▪ (R490 - R665)/R560 

▪ R709 - ((R665 + R754)/2) 

▪ R709-R754 

 

In this study, the reflectance bands In multiple regression, 

variables with the highest variance inflation factor (VIF) are 

eliminated one at a time until all variables have VIF less than or 

equal to 7.5. 

 

 

3. RESULTS AND DISCUSSION 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-17-2020 | © Authors 2020. CC BY 4.0 License.

 
18

https://land.copernicus.eu/global/


3.1 Spatial Variation of Chl-a 

 

As shown in Figure 3, chl-a concentrations were high in the 

central lobe of Laguna Lake. In the west lobe, there are areas 

where the chl-a levels were also relatively high. What is 

noticeable from Figure 3 is the dominance of diatoms in most 

parts of the lake. However, bluegreens were relatively more 

abundant in the central lobe. Green microalgae were 

considerably dominant in some areas of the east lobe of the lake. 

 

 

 
 

Figure 3. Spatial distribution of chl-a (ug/L) as measured using 

FluoroProbe. The size of the pie indicates the total chl-a relative 

to the legend and the colors of the pie sectors indicate the 

percentage of green microalgae, bluegreen microalgae 

(cyanobacteria), diatoms, and cryptophytes.  

 

 

3.2 Spectral Signatures 

 

 

 
 

Figure 4. Spectral signatures obtained at the Laguna Lake water 

quality survey stations shown in Figure 3. Labelled lines are 

significantly different from the rest. 

 

The spectral signatures obtained for each of the stations in Figure 

3 were similar to each except at five (5) stations, namely, A04, 

MT22, VIII, A07, and XVI (Figure 4). These stations can be 

removed in the subsequent regression analysis as optical water 

quality types at these stations were considerably different 

Considering the majority of the spectral signatures, local peaks 

can be observed at R560, R709, and R779. Local dips are located 

at R665, R674, R681, and R760. These peaks and dips might be 

useful in developing indices for spectral class-differentiated chl-

a estimation. 

 

Further examination of the field spectral data at the survey 

stations using factor analysis yielded similar results. The first 

two factors F1 and F2 accounted for 83.47% of the data 

variability. As shown in Figure 5, points representation stations 

A07, XVI, MT22, A04, and VIII are separated clearly from the 

cloud of points representing all other stations. 

 

 

 
Figure 5. Scatter plot of the spectral data obtained for each 

station based on the results of factor analysis. 

 

 

3.3 Correlation Levels 

 

Weak correlations were observed between the microalgal 

concentrations and the band reflectance data (Figure 6). This 

points to the need to utilize in combination these bands. 

However, bands to be included in a model must be carefully 

chosen as multicollinearity will be a problem since most of the 

bands are highly intercorrelated positively.  

 

 

 
 

Figure 6. Correlation diagram for total and spectral class-

differentiated chl-a and Sentinel-3 band reflectance data. 

 

 

The ten (10) Sentinel-3 OLCI indices were more strongly 

correlated with total chl-a concentration (Figure 7). This is 
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especially true for R665/R709, R674/R709, and (1/R665-

1/R709)xR754 with the following respective correlation values: 

-0.623, -0.646, and 0.628. The correlation of these indices with 

the class-differentiated microalgal concentration is shown in 

Table 1. These are generally much lower compared to that of 

total chl-a, indicating the apportioning chl-a contributions to 

microlagal classes is difficult. It should be noted that per 

microalgal class, at least two of the indices turned out to be 

significant at alpha = 0.05. 

 

 
 

Figure 7. Correlation diagram for total chl-a and Sentinel-3 

OLCI indices for chl-a estimation. 

 

 

 
Table 1. Correlation of total and class-differentiated microalgal 

chl-a concentration with selected indices 

 

 

3.4 Total Chl-a Concentration 

 

Multiple regression results indicate that 48% of the variability of 

total chl-a concentration is explained by five explanatory 

(reflectance) variables (R412, R443, R560, R681, and R754) 

with RMSE of 2.814 ug/l. In contrast, the two indices 

R674/R754 and (1/R665-1/R709)xR754 accounted for about 

46% of the variability of total chl-a concentration with RMSE of 

2.475 ug/l. The equations for these two total chl-a models are 

given below. 

 

Model 1:  

Total chl-a = 20.086 – 213.721*R560 – 314.078*R681 + 

409.807*R709 + 304.925*R764 – 176.081*R940  

 

Model 2:  

Total chl-a = 29.968 – 14.302*R674/R754 + 62.278*(1/R665-

1/R709)xR754 

 

3.5 Spectral Class-differentiated Chl-a  

 

For diatoms and bluegreen microalgae, R560/R665 and (1/R665-

1/R709)xR754 constitute the models with R2 of 0.21 and 0.435, 

and RMSE of 2.516 and 2.163 ug/l, respectively. Green 

microalgal concentration is jointly described by three indices: 

R560/R665, R674/R754, and R709-R754. This yielded an 

R2=0.182 and RMSE=1.219 ug/l. For cryptophytes, the model 

comprising of R560/R665, (1/R665-1/R709)xR754, and R709-

R754 produced an R2=0.289 and RMSE=0.767 ug/l.  

 

The relatively lower goodness of fit indicates that estimating 

spectral class-differentiated chl-a concentration from Sentinel-3 

OLCI data is challenging but promising. The low R2 values can 

be attributed to the low resolution of OLCI data. The use of 10-

day composite data is also a limitation as the date of reflectance 

data acquisition may not directly match the date of the actual 

field surveys. Furthermore, more class-differentiated chl-a data 

should be collected to further improve the model. 

 

 

4. CONCLUSIONS 

 

Concentration of spectral microalgal classes can be estimated to 

a certain degree of accuracy using Sentinel-3 OLCI reflectance 

data and indices derived from them. Based on this study, 

bluegreens and cryptophytes are better estimated compared to 

diatoms and greens. The preliminary models showed that the 

following indices are useful of estimating abundance of spectral 

class-differentiated microalgae: R560/R66, (1/R665 – 1/R709) x 

R754, and R674/R754. This study is the first attempt to 
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