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ABSTRACT: 

 

A series of five land cover maps, widely known as COS (Carta de Uso e Ocupação do Solo), have been produced since 1990 for 

mainland Portugal. Previous to 2015, all maps were produced through photo-interpretation of orthophotos. Land cover and land use 

changes were detected through comparison of previous and recent orthophotos, which were used for map updating, thereby 

producing a new map. The remaining areas of no change were preserved across the maps for consistency. Despite the value of the 

maps produced, the method is very time-consuming and limited to the single-date reference of the orthophotos. From 2015 onwards, 

a new approach was adopted for map production. Photo-interpretation of orthophoto maps is still the basis of mapping, but assisted 

by products derived from satellite data. The goals are three-fold: (i) cut time production, (ii) increase map accuracy, and (iii) further 

detail the nomenclature. The last map published (COS 2015) benefited from change detection and classification analyses of Landsat 

data, namely for guiding the photo-interpretation in forest, shrublands, and mapping annual agriculture. Time production and map 

error have been reduced comparing to previous maps. The new 2018 map, currently in production, further explores this approach. 

Landsat 8 time series of 2015-2018 are used for change detection in vegetation based on NDVI differencing, thresholding and 

clustering. Sentinel-2 time series of 2017-2018 are used to classify Autumn/Winter crops and Spring/Summer crops based on NDVI 

temporal profiles and classification rules. Benefits and pitfalls of the new mapping approach are presented and discussed. 
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1. INTRODUCTION 

The importance of land cover and land use (LCLU) has long 

been recognized, such as in environmental sciences and policy, 

and LCLU mapping is nowadays a well-established activity all 

over the world at a diversity of scales. In Portugal, the national 

mapping agency, Direção-Geral do Território (DGT), produces 

and publishes a LCLU map for the continental territory, widely 

known as COS (Carta de Uso e Ocupação do Solo) (Figure 1). 

This map was first produced for the year of 1990 and updated 

for 1995, 2007, 2010, and 2015. Currently, COS for 2018 is 

under production and its publication is expected by the end of 

2019. 

 

COS is used nationally and internationally by a large spectrum 

of users for numerous purposes, including landscape planning, 

decision-making, reporting obligations, research, education, and 

business. The uptake of COS is related to the fact that it is made 

available freely through an open data policy, and is the most 

detailed product of mainland Portugal in terms of thematic 

content and spatial representation. 

 

The minimum mapping unit (MMU) of COS is 1 hectare 

(Figure 1), and the LCLU nomenclature is based on that of 

CORINE Land Cover (CLC), which constitutes a reference 

LCLU product at European level (Büttner, 2014). The 

nomenclature of COS 2015 includes 48 classes aggregated to 9 

main classes: Artificial land, Agriculture, Pastures, Agro-

forestry, Forest, Shrublands, Bare soil and sparse vegetation, 

Wetlands, and Water. 

 
Figure 1. Subset of COS 2015 over the city of Coruche 

(38°57'30,05"N; 8°31'36,013"W). Background: false 

colour orthophoto of 2015. 

COS has been produced through photo-interpretation of 

orthophotos (spatial resolution of 50 cm and better). LCLU 

changes are normally detected through comparison of previous 

and recent orthophotos. The changes detected are mapped and 

superimposed on the outdated map, thereby producing a new 

map. The remaining areas of no change are preserved across the 

maps for consistency. 

 

The traditional methods used in map production holds several 

problems. Mostly, map production is very time-consuming, 

expensive, and orthophotos provide information only related to 

the specific date of the flight campaigns (while multi-temporal 

data are valuable for accurate photo interpretation of some 

classes, such as annual crops).  
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From 2015 onwards, map production is evolving to include 

(semi)-automatic methods of image analysis applied to Landsat 

and Sentinel-2 data. Therefore, while photo-interpretation of 

orthophotos is still the basis of mapping, additional products 

derived from multi-temporal satellite data are used with three 

main objectives: (i) cut time production, (ii) further detail the 

nomenclature, and (iii) increase map accuracy.  

 

COS 2015 already benefited from change detection analysis of 

Landsat multi-temporal data, namely inter-annual differencing 

of Normalized Difference Vegetation Index (NDVI). This was 

used for guiding the photo-interpretation on detection of 

changes between 2010 and 2015, and classifying 

Autumn/Winter crops and Spring/Summer crops. Here, 

however, the production of the new 2018 map is presented, 

namely the (semi)-automatic methods used to analyze satellite 

data. 

 

First, a change detection method based on inter-annual time 

series of Landsat 8 data is described. This method applies 

thresholding and k-means clustering on image differencing of 

NDVI data of 2015-2018 for detecting changes in forest and 

shrublands. Then, a classification method based on intra-annual 

Sentinel-2 data is presented for annual croplands. This method 

uses expert knowledge and statistics extracted from the intra-

annual time series to distinguish between Autumn/Winter crops 

and Spring/Summer crops. 

 

2. COS PRODUCTION 

COS 2018 is under production and its publications is expected 

by the end of 2019. It will be a map of polygons released in 

vector format with 1 hectare MMU. The technical specifications 

of COS 2018 (Table 1) are similar to the precedent map of 

2015, except the number and name of some classes. The maps 

are, however, compatible as all classes have direct 

correspondence among maps. The differences between 

nomenclatures are not discussed here, but they result from 

collaborative work between DGT and other Portuguese public 

institutions, so COS can serve them better. 

 

Reference year 
1990, 1995, 2007, 2010, 2015 

(and 2018) 

Format Vector (polygons) 

MMU (ha) 1 ha  

Minimum distance 

between lines (m) 
20 m 

Base data 
Orthorectified digital aerial 

images 

Nomenclature Hierarchical classification system 

Production method Visual interpretation 

Geometric accuracy ≥ 5,5m 

Thematic Accuracy target ≥ 85% 

Coordinate reference 

system 
ETRS89/PT-TM06 

Table 1. Technical specifications of COS 

The production of COS 2018 is founded on visual interpretation 

of orthophotos and assisted and complemented with novel 

methods of image analysis. First, photo-interpreters are assisted 

with auxiliary information produced with Landsat 8 data to find 

changes in forest and shrublands. The auxiliary information 

indicates where vegetation loss occurred between 2015 and 

2018, which is indicative of changes, such as new constructions 

or agricultural fields. Photo-interpreters use these auxiliary data 

as alerts deserving careful inspection. The benefit of these alerts 

is that photo-interpreters focus their attention on sites of 

probable change, hence reducing time wasted in inspecting 

areas where vegetation change was not observed from space. 

Because forest and shrubland cover 51% (2015) of mainland 

Portugal, the time needed to detect and map changes across a 

large area is reduced considerably. 

 

Second, photo-interpretation is complemented with analysis of 

Sentinel-2 data to distinguish two main types of annual crops: 

Autumn/Winter crops and Spring/Summer crops. These two 

classes have a strong seasonal variation in terms of vegetation 

cover and status, which a single-date orthophoto misses to 

capture. On the contrary, the temporal resolution of Sentinel-2 

is large and tracks the vegetation cycles typical of annual 

agriculture. Therefore, the photo-interpreters are responsible for 

delimiting the borders of annual agricultural fields without 

making a distinction on the type of annual crops. Later, 

Sentinel-2 data is classified on either Autumn/Winter crops or 

Spring/Summer crops across the agricultural fields identified 

previously. The relative abundance of each of the crop type 

found in the polygons classified as annual crops is used as an 

attribute. The satellite data overcomes the temporal limitation of 

the orthophotos, making it possible to map two classes with 

otherwise insufficient accuracy.  

 

3. METHODS 

3.1 Detection of vegetation loss 

Comparison of remotely sensed data acquired on different dates 

is a simple but effective approach for change detection. Some 

techniques based on this approach, often called differencing or 

layer arithmetic (Tewkesbury et al., 2015; Zhu, 2017), calculate 

descriptive statistics for the difference of vegetation indices 

between two points in time. Then, the descriptive statistics are 

analysed to discriminate change from no-change. This approach 

was used here to analyse differences of NDVI (Tucker, 1979) 

across 2015-2018. 

 

The analysis of NDVI differencing is summarized in Figure 2. 

All available images (Surface Reflectance Level-2 Data 

Products) with cloud cover < 50% and covering mainland 

Portugal (Figure 3a) during summer of 2015-2018 were 

downloaded from EarthExplorer. Phenological differences 

between the years are expected to be small as only images of 

summer are used. All images were processed according to the 

specifications described in the Landsat 8 Land Surface 

Reflectance Product Guide. Specifically, pixels affected by 

clouds, shadow and with invalid values were reclassified as “no 

data”. 

 

 

Figure 2. Methods used detecting vegetation loss. 

The NDVI was calculated from each processed image. Then, 

images were combined to produce composites without gaps 

(“no data”). Therefore, images of the same year (e.g. 2015) were 

combined to produce one composite per year. Each pixel was 

given the minimum NDVI value among all images of the same 

year. 
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Figure 3. Landsat pathrows (a) and Sentinel-2 tiles (b) over 

mainland Portugal. 

The minimum operator was selected for the composites 

production because it selects the NDVI associated with 

potential vegetation loss. For example, if three images are 

available from June, July and August, and a clear cut of forest 

occurs in August, the composite will select the NDVI associated 

with change (the smallest NDVI of August). Other operators 

such as the mean would select a value unrepresentative of 

change. There is one exception thought. For the first year of the 

analysis (2015), the maximum NDVI was selected for the 

composite because 2015 is the baseline of comparison. If the 

minimum NDVI was selected, any change occurring in 2015 

would go unnoticed while comparing it with 2016, in which the 

NDVI will certainly remain small. Using the maximum NDVI 

of 2015 ensures that the removals of vegetation of 2015 are 

detected as compared to 2016. 

 

Differences of NDVI between the years were then calculated 

and analysed based on the assumption that spectral changes 

among years are due to many reasons (e.g., vegetation health), 

but only substantial changes reflect land cover changes. 

Therefore, the difference of NDVI between two years should 

follow a normal distribution as most of the differences observed 

are small (close to zero) and only few marked differences are 

caused by land cover change (Jin et al., 2013; Lu et al., 2004; 

Pu et al., 2008).  

 

The NDVI differences were submitted to two analyses: 

thresholding and clustering. The former relies on a threshold of 

difference. That is, if the difference of NDVI exceeds the 

threshold, a land cover change is expected to have occurred in 

the pixel. Here, a threshold was defined empirically and 

corresponded to -1.5 standard deviations of the average NDVI 

difference (Pu et al., 2008). The second analysis was k-means 

clustering (Hartigan and Wong, 1979). Specifically, the NDVI 

difference was classified in 10 clusters, and those characterized 

by a median difference of < -0.25 were flagged as change. 

Because the analyses are based on relative comparisons between 

pixels, they are sensitive to the range of NDVI as a function of 

the land cover class. Therefore, calculations were done 

independently by strata, which were eucalyptus, pines, other 

forest species, and shrubs, all of them as mapped in 2015. 

 

All pixels associated with change, irrespective of type of 

analysis (thresholding or clustering) and strata, were merged 

together in a single layer to represent the cumulative changes 

identified across the whole period on analysis in forest and 

shrubland. Then changes were submitted to spatial analysis. 

Patches of change were enlarged and contracted by one pixel, 

and only patches >= 5 pixels (4.5 hectares) were retained. This 

step removed noise and extremely small changes. Finally, the 

changes were converted to vector format. 

 

The accuracy of the method was assessed in two different ways. 

First, a set of polygons produced in advanced for COS by the 

photo-interpreters without the help of satellite data were taken 

as reference data. These polygons were labelled as either 

“change” or “no-change”. The first case corresponds to changes 

to be mapped in COS 2018, and the latter corresponds to area of 

no change between 2015 and 2018. Commission and omission 

error were estimated simply by counting the relative number of 

reference polygons that spatially intercepted the alerts. 

 

Second, the accuracy of the method was assessed based on a 

sample of alerts collected across the Landsat pathrow 204032 

(Figure 3a), which were labelled as either “change” or “no-

change” by visual interpretation of orthophotos and satellite 

data. In this case, “change” was interpreted as all obvious 

spectral changes visible in the satellite data associated with 

vegetation loss, regardless if they should correspond to a 

thematic change in COS. Commission error was estimated 

simply by counting the relative number of alerts associated with 

no vegetation loss. No omission error was calculated. 

 

3.2 Classification of crops 

Autumn/Winter crops and Spring/Summer crops normally 

follow a different annual cycle, which satellites can track from 

space. The analysis of temporal profiles of vegetation indices 

can help detect phenological traits of crops such as vegetation 

growth and time of maturation. Temporal analysis of vegetation 

indices are increasingly used for crop monitoring (Belgiu and 

Csillik, 2018; Defourny et al., 2019). 

 

The analysis performed is summarized in Figure 4. All Sentinel-

2 level-2 (L2A) data available with cloud cover < 50%, 

covering mainland Portugal (Figure 3b), and acquired between 

the 1st October 2017 to 30th September 2018 were downloaded 

from the French Theia Land Data Centre (THEIA). The period 

analysed corresponds to the agricultural year relevant for 2018. 

The level 2A data distributed by THEIA corrects the level-1 

data for atmospheric and slope effects using MAJA (Baetens et 

al., 2019). Clouds and their shadows were converted to “no 

data”. All bands were saved with 10 m pixel size without 

resampling methods applied. 

 

 

Figure 4. Methods used for crop classification.  

The NDVI was calculated from each processed image, and the 

entire time series was analysed with the estimation of a set of 

statistical indicators.  For example, extracting the date of the 

maximum NDVI can be important to identify different types of 

crops. Some statistics take into account the entire agricultural 

year, while other statistics were extracted independently for 

each quarter of the agricultural year. 

 

The statistics extracted were then used together with rules 

predefined with expert knowledge to make the particular 

distinction between Autumn/Winter crops and Spring/Summer 

crops. A pixel was classified as Autumn/Winter crop if the 
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maximum annual amplitude of NDVI was >0.4, the mean 

annual value of NDVI was > 0.2 and the mean NDVI observed 

in the third year quarter (April to June) was greater than that of 

the fourth year quarter (July to September). Spring/Summer 

crops were classified if the difference between the maximum 

NDVI of the fourth year quarter and the minimum NDVI of the 

third quarter was > 0.4, combined with the mean annual NDVI 

value being > 0.3.  

 

The rules were assessed by inspecting a large sample of NDVI 

temporal profiles grouped by Autumn/Winter and 

Spring/Summer crops, such as the ones presented in Figure 5. 

Here, we can visualize that the maximum NDVI for 

Autumn/Winter crops is observed at the end of the winter and 

the respective maximum for the Spring/Summer crops at the end 

of Summer. Large amplitude values between the minimum and 

the maximum value throughout the year are also noticeable for 

both types of crop. 

 

 

 
Figure 5. Examples of typical NDVI profiles observed for 

Autumn/Winter crops (top) and Spring/Summer 

crops (bottom). 

The classification was applied only to pixels that fall inside 

polygons identified as annual crops in the visual interpretation 

of orthophotos performed in COS production. Therefore, the 

rules used are under revision while the geometry on COS is not 

closed yet for the entire country. Finally, the polygons will be 

enriched with the relative abundance of each of the crop type as 

an attribute. 

 

The accuracy of the method was assessed by comparing the 

2018 crop map produced to the Land Parcel Identification 

System (LPIS) of the Instituto de Financiamento da Agricultura 

e Pescas (IFAP) in tile T29SND (Figure 3b). LPIS is a 

geographical data set used in the framework of the Common 

Agricultural Policy (CAP) of the European Union for the 

administration and control of payments to farmers. The 

agreement between the classification and LPIS was calculated, 

corresponding to the area of the LPIS’s polygons intersected by 

the crop map of the same class. Commission error was also 

calculated, corresponding to the area of the LPIS’s polygons 

intersected by the crop map of a different class. 

 

4. RESULTS 

4.1 Change detection 

The change detection method produced 148793 polygons used 

as alerts for vegetation loss (Figure 6). When considering the 

polygons produced in advanced for COS as reference (first 

accuracy assessment), around 77% of the “change” polygons 

and 49% of the “no-change” polygons overlap an “alert”. This 

may be interpreted as a crude estimation of 33% omission error 

and 51% commission error. The second accuracy assessment 

undertaken only with alerts in pathrow 204032 found 85% of 

the cases associated with vegetation loss, which corresponds to 

15% commission error.  

 

Commission and omission error were observed to occur mostly 

in small areas of land cover change. Therefore, when using the 

148793 alerts produced operationally in the production of COS, 

they were divided by size and given to the photo-interpreters as 

different layers. Alerts >2 ha were first inspected, than alerts 

from 1 to 2 ha, and finally <1 ha. 

 

 
Figure 6. Alerts produced for vegetation loss in forest and 

shrubland. Two examples of change between 2015 

and 2018 are shown for central and south Portugal. 

 

4.2 Classification 

The intra-annual statistics extracted from Sentinel-2 dataset 

combined with the set of predefined were able to produce two 

classification maps in raster format, one of each for 

Autumn/Winter and Spring/Summer crops (Figure 7).  

 

The classification of Autumn/Winter crops covers 91% of the 

area represented by the polygons of the LPIS of the same class 

(9% omission error), and 39% of the area identified as 

Spring/Summer crop (commission error). On the other hand, the 

classification of Spring/Summer crops reaches 94% of the area 

covered by the same class in LPIS (6% omission error) with 

24% commission error. 
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Figure 7. Classification of annual crops into Autumn/Winter 

crops and Spring/Summer crops. 

 

5. DISCUSSION 

The change detection method produced numerous alerts for 

false changes in vegetation cover, which are expressed by large 

commission error (51%) in the first accuracy assessment based 

on COS polygons. However, this was expected because the 

method was implemented to minimise omission error. 

Commission error is preferred over omission error as the former 

has no negative impact on the accuracy of COS. For example, 

forest clear-cuts occurring as part of the normal cycle of forest 

management are detected as the NDVI drops sharply, but no 

change is mapped as land use remains forest, and a new forest 

patch is expected to follow. The only inconvenient of 

commission error is that photo-interpreters inspect areas of no 

thematic change, wasting some time and hence diminishing the 

effectiveness of the change detection method.  

 

However, it is still important to assess the accuracy of the alerts 

produced. The second accuracy assessment performed in 

pathrow 204032 shows a larger accuracy as commission error 

was only around 15%. The difference between the two 

assessments is that the later considered spectral changes such as 

forest clear-cuts as change in vegetation cover (even if that 

change should not be mapped). 

 

Omission error, on the contrary, impact negatively on mapping 

as real changes may go unnoticed and hence not mapped. 

Omission error was larger than desired (33%) and should be 

reduced. This may be achieved, for example, by improving the 

implementation of thresholding and clustering analyses, which 

were conducted sometimes based on empirical decisions on 

parameterization (e.g., number of clusters in k-means). 

Exploring change detection methods other than these based on 

NDVI differencing is also recommended (e.g. Verbesselt et al., 

2010).  

 

Despite the large omission error of the alerts, the real omission 

error of COS 2018 across forest and shrublands will be certainly 

smaller than 33%. This is because the first accuracy assessment 

performed was a simple spatial overlap operation between the 

alerts and the reference data, which maps thematic changes 

only. Furthermore, the photo-interpreters see beyond the spatial 

extent of the alerts, and hence are able to spot changes not 

flagged automatically.  

 

With regard to the classification of crop types, classification 

problems are expressed mainly by large commission errors. This 

is caused by the fact that the same polygon of LPIS could be 

considered as both Autumn/Winter crop and Spring/Summer 

crop in the accuracy assessment, as long as intersecting the crop 

map of these classes. This was regarded as appropriate to 

simulate the cases in which COS includes different crop types 

in the same polygon, such as in complex cultivation patterns. 

Therefore, a single polygon can include Autumn/Winter and 

Spring/Summer crops, whose abundance is to be included in the 

polygons attributes. 

 

Note that these classification rules are a preliminary approach to 

the technique and will be improved. The rules were initially 

derived analysing the typical temporal profile signature 

observed for these types of crops (Figure 5), and thus they 

disregard less common cases such as the occurrence of multiple 

crops during the crop year. Therefore, alternative rules are 

likely to be implemented to address specific cases. In addition, 

semi-automatic approaches based on supervised classification 

should be tested and adopted. 

 

6. WAY AHEAD 

The methods discussed will be further developed beyond 2018 

to satisfy the production of the future mapping model of COS. 

The latter will be a map of polygons similar to previous maps, 

but enriched with attributes that characterize the polygons. 

While the geometry of the map should continue to be defined by 

visual interpretation of orthophotos, the attributes will be 

produced from raster maps through automatic change detection 

and classification of satellite time series data. 
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