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ABSTRACT: 

Smallholder agriculture provides 90 % of primary food production in developing countries. Its mapping is thus a key element for 

national food security. Remote sensing is widely used for crop mapping, but it is underperforming for smallholder agriculture due to 

several constraints like small field size, fragmented landscape, highly variable cropping practices or cloudy conditions.  In this study, 

we developed an original approach combining remote sensing and spatial modelling to improve crop type mapping in complex 

agricultural landscapes. The spatial dynamics are modelled using Ocelet, a domain-specific language based on interaction graphs. The 

method combines high spatial resolution satellite imagery (Spot 6/7, to characterize the landscape structure through image 

segmentation), high revisit frequency time series (Sentinel 2, Landsat 8, to monitor the land dynamic processes), and spatiotemporal 

rules (STrules, to express the strategies and practices of local farmers). The method includes three steps. First, each crop type is defined 

by a set of general STrules from which a model-based map of crop distribution probability is obtained. Second, a preliminary crop type 

map is produced using satellite image processing based on a combined Random Forest (RF) and Object Based Image Analysis (OBIA) 

classification scheme, after which each geographical object is labelled with the class membership probabilities. Finally, the STrules 

are applied in the model to identify objects with classes locally incompatible with known farming constraints and strategies. The result 

is a map of the spatial distribution of crop type mapping errors (omission or commission) that are subsequently corrected through the 

joint use of spatiotemporal rules and RF class membership probabilities. Combining remote sensing and spatial modelling thus provides 

a viable way to better characterize and monitor complex agricultural systems. 

1. INTRODUCTION

The ESA (European Spatial Agency) Sentinel 2 (S2) mission 

provides free imagery with an unprecedented combination of 

high spatial (10-60m), temporal (5 days) and spectral (13 bands) 

resolutions, having promising applications in land use/cover 

characterization and crop monitoring (Drusch et al., 2012). A 

study carried out on 12 contrasted agricultural sites around the 

world showed that image time series acquired at a decametric 

resolution are adapted to field crop characterization for the 

majority of intensive agricultural systems (Inglada et al., 2015). 

However, methods usually used in northern countries are not 

efficient in the context of smallholder tropical agriculture. In such 

complex systems, the small size of fields and the landscape 

fragmentation are significant constraints to crop characterization 

using remote sensing. To overcome these limitations, studies 

proposed OBIA (Objects Based Image Analysis) approaches to 

improve crop identification (Peña-Barragán et al. 2011), or 

combined with high-resolution time series, very high resolution 

imagery and auxiliary spatialized data (i.e. Digital Elevation 

Model; Lebourgeois et al., 2017). However, limitations remain 

for a crop characterization in smallholder agriculture areas.  

To improve current approaches, several studies combine remote 

sensing with other disciplines. For example, the number of papers 

where remote sensing is coupled with neural networks or deep 

learning is increasing. They integrate satellite data, and 

environmental or socio-economic data (called hereafter context 

data) as inputs into the network, in order to extract essential 

variables for each class. However, these researches have mainly 

focused on cultivated areas with relatively large fields, a large 
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number of ground truth points, and have not, or only slightly, 

been applied to smallholder agricultural areas. 

Only a few studies focused on the combination of remote sensing 

and expert rules or spatial modelling. Bailly et al. (2018) 

highlight that taking into account the spatio-temporal structures 

of fields improves small objects classification. Two main 

approaches can be used for modelling agro-systems. The first one 

consists in using expert knowledge to create crop rotation models 

(e.g. Dury et al. 2012). To do so, it is necessary to understand the 

economic, social and environmental stakes of these 

agroecosystems and therefore to rely on experts in these 

disciplines. The second consists in using machine learning 

methods (such as deep learning and neural network) to free from 

the limitations of expert knowledge. The direct integration of 

context data into the classifier allows the latter to learn 

automatically from the ground truth data. Nevertheless, this 

approach is particularly suitable to address one issue at a time, 

such as for crop rotation in Bailly et al. (2018) and with a large 

and diversified dataset.  

To go beyond traditional approaches in remote sensing, this 

research aims at investigating the complementarity of remote 

sensing and spatio-temporal modelling to study:  

• How can spatial modelling help converting remote sensing

data into more reliable thematic products?

• How can remote sensing provide evidence of the landscape

processes expressed as formalized knowledge in models?

Such an approach is expected to be useful for a better 

understanding of complex fragmented and heterogeneous 
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landscapes, such as those shaped by smallholder tropical 

agriculture in developing countries. To illustrate our method, we 

describe its application for the characterization of smallholder 

agriculture in Madagascar Highlands. This agricultural landscape 

is an interesting case study because of its high complexity that 

led to mapping difficulties when remote sensing approaches were 

used alone, as shown in Inglada et al., (2015) and Lebourgeois et 

al. (2017).  

 

The approach is divided into three main parts: the first one 

concerns remote sensing data processing (producing a first land 

use map), the second one focuses on the spatio-temporal 

modelling (based on the implementation of spatio-temporal rules 

expressing farmers’ strategies and practices), and the last one on 

the combination of remote sensing and spatio-temporal 

modelling (for obtaining a more agriculturally consistent map).  

 

2. STUDY AREA AND DATA 

2.1 Study Area 

Our study area is 20 km x 30 km in size and is part of the JECAM 

network (Joint Experiment for Crop Assessment and Monitoring, 

www.jecam.org). It is located, close to Antsirabe, the 

administrative center of Vakinankaratra (coordinates: 19°31’56” 

to 19°51’32”S, 46°57’24” to 47°13’14”E) in Madagascar 

Highlands. This area is characterized by complex heterogeneous 

and predominantly agricultural landscapes. Within the cropland, 

the complexity is mainly due to the very low average area 

cultivated per household (ranging from 0.1 to 0.5 ha, according 

to Sourisseau et al. (2016)).  There is also a large variety of crop 

types with different crop calendars, and the practice of 

intercropping is widespread. Moreover, the landscape is 

fragmented by the presence of natural vegetation between the 

fields that is phenologically synchronized with the crops. The 

primary growing season occurs during the rainy season, from 

November to April, constraining the acquisition of optical cloud-

free satellite images. The crops are diversified, but rice and maize 

dominate. They are cultivated under rainfed (in slopes and 

plateaus) or irrigated conditions (mainly lowland rice paddies). 

 

2.2 Data 

For this study, we used several types of data: (i) both high spatial 

resolution and high revisit frequency time series satellite data, (ii) 

ground truth data, (iii) agro-environmental and socio-economic 

knowledge data on the farmers’ strategies (for the spatio-

temporal rules definition), and (iv) auxiliary data (for the rules 

implementation). 

 

2.2.1 Remote sensing data and pre-processing: The remote 

sensing dataset corresponds to (i) one very high spatial resolution 

SPOT 6 image, and (ii) a high spatial resolution (10m-30m) time 

series of 37 Sentinel 2 and 9 Landsat 8 images, for the period 

between October 1st, 2017 and April 29th, 2018, corresponding to 

the main growing season. 

 

The SPOT 6 image was acquired on February 14th 2017 around 

the peak of the growing season. The image was ortho-rectified, 

converted to Top Of Atmosphere reflectance and pansharpened 

using the open-source Orfeo ToolBox (OTB; Grizonnet et al., 

2019) to obtain multispectral images at 1.5 m spatial resolution. 

Sentinel-2 image time series (Donadieu, L’Helguen, 2016)   were 

acquired from THEIA website (https://theia.cnes.fr). 

These images are provided in surface reflectance, and with a 

cloud mask, thanks to the MAJA (MACCS ATCOR Joint 

Algorithm) processing chain (Hagolle et al., 2017). Then, 

additional preprocessing steps were performed using the 

MORINGA chain (Gaetano et al., 2019). The functions used in 

MORINGA include: a) the automatic resampling (with bicubic 

interpolation) of S2 20 m bands to 10 m resolution, b) a multi-

temporal gap-filling (Inglada et al., 2017), and c) a co-registration 

of S2 and L8 time series on the SPOT 6 image used as a reference. 

 

Data  Spatial 

resolution / 

scale 

Temporal 

resolution  

Data source  

Satellite data 

SPOT 6 1.5 Once CNES / Airbus 

Defense & Space 

Sentinel 2 10 m  Every 5 

days 

ESA 

Landsat 8  30 m  Every 16 

days 

NASA / USGS 

Auxiliary data 

 Altitude 1 arc second  Once SRTM v3.0 Global 

1 arc second 

Slope 1 arc second  Once Computed from 

SRTM v3.0 Global  

Landform 

(TPI) 

1 arc second  Unique Produced from 

SRTM v3.0 Global  

Pedology Area at 

Madagascar 

scale 

Unique Riquier (1968) 

Hydrology 1 arc second  Unique Hydrological 

modelling (GRASS 

GIS) 

Fokontany Municipality 

scale 

Unique Personal 

communication 

Table 1. Satellite and auxiliary data used in the study. 

 

2.2.2 In situ data on land use: A ground truth database on 

actual land use was built during field surveys around the peak 

growing season (beginning of February to end of March 2018).  

GPS waypoints were recorded following an opportunistic 

sampling approach. Waypoints were chosen according to their 

accessibility (but some parts of the area could not be reached due 

to heavy rains affecting the road conditions), and the size of the 

object (at least 20 * 20 m, so that they can be identified on 

satellite images). We recorded land uses according to a modified 

version of the JECAM nomenclature (see http://jecam.org/wp-

content/uploads/2018/10/JECAM_Guidelines_for_Field_Data_

Collection_v1_0.pdf) to better take into account the specificities 

of tropical agriculture. In the case of intercropping, we recorded 

the main and the second crop in the field. Once the waypoints 

were acquired, the boundaries of each field were digitized on the 

SPOT 6 image, and the class labels (and other attributes) were 

joined to the polygon database. Additional non-cropland 

polygons were also added from photo-interpretation of the SPOT 

6 image for easily recognizable classes such as built-up surfaces, 

water bodies, wetlands, mineral soils, or natural forests. At the 

end, 2170 polygons were obtained (1759 crop and 511 non-crop). 
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2.2.3 Knowledge on farmer strategies and practices:    Our 

approach aimed at integrating agronomic, environmental or 

socio-economic expert knowledge that express farmer strategies 

and practices. To do so, three sources of information were 

considered: (i) documents (research papers, books, reports, 

technical documents, territorial analysis, etc.) describing the 

agricultural functioning of the region, (ii) interviews of a set of 

experts with different backgrounds (agronomy, geography or 

socio-economy), (iii) semi-directive interviews of farmers, local 

officials or persons involved in rural development. These last 

interviews were conducted at the Fokontany 

(municipality/village) scale using a questionnaire. The questions 

of the surveys concerned the local agricultural practices (crop 

calendars, cropping constraints and spatial distribution), and the 

socio-economic context that has an impact on farmer strategies.  

 

2.2.4 Auxiliary Data: These include existing spatial 

information such as altitude, slope and crop calendars. The full 

list of auxiliary data used is given in Table. The topographic 

position index (TPI) was used to generate the local and global 

topography using a multi-scale grid from the digital elevation 

model (Weiss, 2001) . The hydrological network was modelled 

with GRASS GIS (GRASS Development Team, 2017) to obtain 

an active network for the rainy season.  

 

3. METHODOLOGY 

The overall approach involves remote sensing data processing, 

spatio-temporal modelling and their combination (Figure 1). It is 

divided into five steps:  

(i) A preliminary RS-based crop type map is produced using 

satellite image processing based on a combined OBIA and 

Random Forest (RF) classification scheme. Each object is 

labelled with its corresponding class membership 

probabilities, i.e. the probability that the object pertains to 

each of the classes (hereafter referred to as CMVPsat, for 

class membership vector of probabilities based on satellite 

image processing).   

(ii) Each crop type is defined by a set of general spatio-temporal 

rules (STrules) that are formalized from the analysis of 

knowledge gathered on farmer strategies and practices.  

 

(iii) The STrules are implemented in a modelling platform to 

produce a model-based map of crop distribution probability 

(CMVPrule for STrules-based class membership 

probabilities) of each object.  

(iv) Possible misclassified objects are detected following 

specific rules.  

(v) The membership probability of the selected objects is 

recalculated (to obtain a corrected class membership vector 

probabilities, CMVPcorr) to produce a corrected and more 

agriculturally consistent land use map (Figure 1). 

 

3.1 Remote sensing 

The preliminary land use map was produced from remote 

sensing. This involved the following steps: (i) segmentation of 

the very high spatial resolution (VHSR) image into homogeneous 

objects, (ii) extraction of spectral and textural features from 

satellite images and other products (DEM), and (iii) training and 

validation of a Random Forest classifier which was then applied 

to the whole study area. For this study, all steps were performed 

using the MORINGA processing chain (Gaetano et al. 2019), 

which uses OTB and Gdal functions driven by Python scripts.  

 

Figure 1: Framework of the method. The processes are presented in red color. CMVPsat corresponds to class membership vector 

probabilities obtained after random forest (RF) classification of satellite images. CMVPrules refers to the same vector obtained after 

spatio-temporal rules (STrules) implementation in the model.  Finally, CMVPcorr presents the redefinition of the class membership 

vector probabilities from the two previous ones using fusion methods.  
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3.1.1 OBIA: According to the OBIA approach (Blaschke et 

al., 2014), the segmentation of the VHSR image aimed at 

producing objects delineating the boundaries of agricultural 

fields, or at least groups of homogeneous fields to characterize 

the landscape structure. This segmentation determines the 

landscape structure of the study area, i.e. the boundaries of the 

“entities” that will be used during the complete workflow. The 

Baatz and Schäpe segmentation algorithm (Baatz and Schäpe, 

2000) implemented in OTB was used with the following 

parameters: 0.7 for the homogeneity criteria, 0.5 for the spectral 

homogeneity and the threshold was fixed at 200. 

 

3.1.2 Feature extraction: Satellite features were extracted for 

each entity of the ground truth database to build a learning 

database. This step involved the extraction of the following 

features: (i) reflectance from the Sentinel-2 and Landsat-8 time 

series (471 features), (ii) spectral indices from the same time 

series (267 features), (iii) textural indices from the Spot 6 

panchromatic image (6 features), and (iv) altitude and slope from 

the digital elevation model (2 features). Those features were 

chosen according to a previous study by Lebourgeois et al. 

(2017). Concerning the spectral indices, we computed the most 

common ones: NDVI (Rouse et al., 1974), NDWI (Gao, 1996), 

MNDWI (Xu, 2006), MNDVI (Jurgens, 1997), Brightness Index, 

and RNDVI (Jorge et al., 2019) for each image of Sentinel-2 and 

Landsat 8. Haralick textures (Haralick et al. 1973) were 

computed using mean and correlation for internal textures and 

contrast as edge texture. Two windows were chosen (7 pixels and 

14 pixels) to traduce the diversity of fields organisation???. 

SRTM-30m (“SRTM V3.0, 1 arcsec”) (NASA JPL, 2014) was 

used to extract altitude and to compute slope. 

 

3.1.3 Classification: In the final step of the remote sensing 

approach, the objective was to obtain a land use map and to 

extract and a class membership vector of probabilities for each 

object (CMVPsat). This vector is useful for understanding the 

probabilities distribution between classes, and in the following 

steps, for redefining class membership probabilities for selected 

objects. The Random forest (RF) algorithm (Breiman, 2001) is 

widely used in remote sensing (e.g. Lebourgeois et al., 2017; 

Debats et al., 2016) and has been shown to outperform other 

classifiers in benchmark studies (e.g. Fernández-Delgado et al., 

2014; Inglada et al., 2015). The RF classifier was used to produce 

a land-use classification based on the learning database at the end 

of the growing season. The main output, the class membership 

vector of probabilities (CMVPsat), was extracted for each object. 

 

3.2 Spatio-temporal modelling 

The model was built with the Ocelet Modelling Platform (OMP, 

www.ocelet.org). OMP allows the spatial modelling of a system 

and their dynamics (Degenne and Lo Seen, 2016) using both 

raster and vector data. Ocelet is based on the concept of 

interaction graphs to describe how entities composing a system 

(e.g. fields, rivers, weather, municipality) are inter-connected. 

Each entity is characterized by a number of properties that can 

evolve through time with the application of interaction functions. 

3.2.1 Formalization and selection of STrules: The 

knowledge of farmer strategies and practices gathered during 

literature review and interviews was formalized so that crop type 

can be described by a set of general spatio-temporal rules 

(STrules). The spatial rules can concern distances or intersection 

with specific entities (such as roads, villages, markets and 

hydrographic network) or zones (such as soil map units, altitude 

and slope classes). The temporal rules can be linked to the 

cropping calendars or rainfall regime during the growing season, 

or the previous crop rotation on the same field. The spatio-

temporal rules for each crop type were selected according to the 

following criteria: (i) the rule should be representative of the 

whole study area, (ii) the rule should be frequently mentioned by 

the persons interviewed or in the documents, (iii) the rule must 

be consistent with agronomic knowledge and observable in the 

field, and (iv) the data must be available for the rule to be applied. 

A crop type can be defined by exclusive rules (e.g. maximum 

distance from a point) or optional rules (e.g. generally in fertile 

soil). The assignment of an entity to a given class must comply 

with all exclusive rules and part (or none) of the optional rules. 

 

3.2.2 Implementation: In the model, the landscape structure 

of the system is based on the segmentation produced during step 

3.1.1, which provide the boundaries of the entities. For each crop, 

rules are then implemented in the OMP at the entity level to 

produce a map giving the probability of presence of the 

corresponding crop in the study area. From this step onwards, the 

application of all the rules will define a class membership vector 

of probabilities for each entity, based on formalized knowledge 

on farmer strategies (referred to as CMVPrule for STrules-based 

membership probabilities).    

 

3.3 Redefinition of class membership probabilities 

Traditional evaluation methods used in remote sensing to validate 

a classification are based on the computation of indices such as 

overall accuracy, Kappa, F-score (Labatut, Cherifi, 2012) or the 

quantity and allocation disagreement (Pontius, Millones, 2011). 

These methods can be derived from confusion matrices, giving 

the number of well-classified and misclassified ground truth 

occurrences per class. These methods allow evaluating the results 

of a given classifier, but only ground truth information. Other 

entities are not evaluated. This step proposes a spatial evaluation 

of the remote sensing classification with respect to farmer 

strategies (expressed through STrules in the model), and to 

redefine class membership probabilities to obtain more consistent 

agricultural maps. 

 

When comparing the CMVPrule to CMVPsat for the whole study 

area, a map can be generated highlighting areas or entities where 

the rules disagree, and for which corrections are required. For a 

given entity, in order to decide which of the two probability 

vectors is more reliable, other information such as the number of 

satellite acquisition for an object during the growing season, the 

set of expert rules concerned, or the confidence value obtained 

during the random forest vote are used. Then, to redefine class 

membership, various fusion methods can be used such as fuzzy 

logic, average between CMVPsat and CMVPrule, or rules 

weighting. 

 

4. RESULTS 

In the following sections, we give examples of STrules used and 

present three main outputs of the approach. Based on the 

application of STrules for each entity in the model, probabilities 

of presence of each crop type were mapped. This map was 

combined with the map produced during the remote sensing step 
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to create a disagreement map. The final output of the method was 

a new land use map with an associated class membership 

probability for each object. 

 

4.1 Spatio-temporal rules 

Literature review and interviews allowed determining a set of 

STrules for each crop. The type of dominant rules can differ 

between crops. For example, some crops are strongly dependent 

on economic rules (e.g. good connection to markets) while other 

crops are more constrained to a given biophysical environment 

or linked to a specific crop calendar. 

 

Examples of different exclusive and optional rules are given  

below for three crop classes of the study area: 

 

Market gardening:  

Exclusive rules:  

R1. Less than 30 minutes by truck or less than 15 km from 

markets (the presence of market gardening is strongly linked to 

the presence of markets). 

R2. Distance from villages less than 150 m (to avoid steals 

because market gardening is a high-value crop). 

Optional rules: 

R3. The field is usually in fertile soil (sandy soil, recent alluvial 

soil). 

R4. The field could be irrigated or close to a watercourse.  

R5. The slope can be between 0% and 7%. 

 

Irrigated rice:  

Exclusive rules:  

R1. The field must be in an irrigated lowland or in the riverbed.  

R2. The parcel must be close to a watercourse. 

R3. The crop calendar spreads from 11/21 to 12/20 (for 

transplantation phase) and harvest occurs from 04/20 to 05/10. 

Optional rules: 

R4. The field is frequently in a hydromorphic soil.  

 

Maize: 

Exclusive rules: 

R1. The field is located in poor soil. 

R2. The crop calendar is 10/20 - 12/30 (seeding) and 02/20 - 

04/30 (harvest) for an intermediary cycle and 10/20 - 12/10 

(seeding) and 03/20 - 05/10 (harvest) for a long cycle (most 

common). 

Optional rules: 

R3. The crop is frequently in intercropping with rainfed rice or 

soya (to be implemented, this rule thus relies on the probabilities 

of presence of rainfed rice and soya) 

R4. Maize is frequently present in the livestock sector, which 

corresponds to slopes or plateaus. 

 

4.2 Map of probabilities 

The maps of probabilities are the result of STrules 

Implementation in the model. 

Figure 2 shows the irrigated rice probability map in the study 

area. For each crop, the same map of probability of presence can 

be computed based on STrules as defined during step 3.3.1. For 

irrigated rice, this map highlights high probabilities of presence 

around watersheds and lowlands. In the center of the map, the 

Ambohibary lowland mainly consists in rice and market 

gardening crops. On plateaus and slopes, the probability of the 

presence of irrigated rice is low as expressed by STrules. 

 

Maps of probabilities allow to analyze and understand the 

possible spatial distribution of the crop in the landscape, and to 

identify the main underlying explanatory factors of this 

repartition. 

 

 
 

Figure 2. Map of probability for irrigated rice from spatio-

temporal modelling (STrules implementation). 

 

4.3 Disagreement map 

A comparison between CMVPsat and CMVPrule (see 3.4) 

allowed producing a disagreement map. This map highlights the 

entities where remote sensing and STrules seem to be in 

disagreement. These disagreements mean that either the expert 

rules or the classifier are not accurate for the concerned entities . 

Assuming that the STrules have been verified by experts and 

were found to be consistent, this map thus allows the 

spatialization of remote sensing image classification errors.  

 

The spatialization of the classification errors can also help to 

identify production basins or specific zones where remote 

sensing has more difficulties to discriminate between crop types. 

These maps support the analysis of the possible factors limiting 

the success of remote sensing approach in such context. In our 

study case, the disagreement map presented in Figure 3 shows 

remote sensing classification errors for maize, irrigated rice, 

rainfed rice and market gardening.. Majority of irrigated rice is 

well classified with a predominance in lowlands, but a part of 

market gardening and other “minor” crops (e.g. cassava, taro, 

etc.) in lowlands is misclassified. For these minor crops, the 

weakness of the learning set, leading to an overlearning of the RF 

classification algorithm can explain the disagreement . In the 

North-East part of the map, an important area is misclassified. 

This inaccessible zone had no ground truth data (used in the 

learning of the RF classification algorithm) to represent its land 

use variability, and few auxiliary data to support STrules. 

Consequently, few entities reached an agreement in this zone. A 

photo-interpretation of this place showed that, except near 

watercourses, a majority of natural vegetation and rainfed crops 

were present. In the South-East of the map, another large 

disagreement area is identified. In this place, ground truth and 

auxiliary data were present in sufficient quantity. Disagreements 

are related to the important misclassification of market gardening 

and orchards with other rainfed crops. An analysis of CMVPsat 

showed that all these crop types had a very close membership 

probability. . 
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Figure 3. Map showing the disagreements between rule-based 

(CMVPrule) and remote sensing-based (CMVPsat) class 

assignment for rice, maize and market gardening. 

 

From this first result, an analysis of the type and characteristics 

of the entities where a disagreement is found (the type of crop 

assigned according to CMVPsat and CMVPrule, and values of 

probability of presence of each crop for the same entity) can be 

performed to improve the understanding of processes and the 

characterization of such complex system. 

 

4.4 Corrected map 

The main output of the method is a new modified land use map, 

more consistent with agricultural strategies and practices of the 

region. An example of a corrected map, produced after the 

redefinition of probability values by averaging CMVPsat and 

CMVPrule for each entity in disagreement, is presented in Figure 

4. In Madagascar highlands, a first comparison with ground truth 

data showed that this method allowed better discrimination of 

rainfed crop types. This crop type is challenging to characterize 

due to the very small field sizes and the high level of 

fragmentation of the rainfed cropland area, as shown previously 

in Lebourgeois et al. (2017). 

 
 

Figure 4. Zoom on land use maps obtained using the remote 

sensing approach, before (a) and after (b) the redefinition of 

CMVP values of each entity for which rule-based and remote 

sensing-based class assignment differs for main crops. 

 

5. CONCLUSION AND OUTLOOKS 

This work proposes a new framework in which remote sensing 

and expert knowledge on farmer practices and strategies are used 

in a spatio-temporal modelling approach to produce more 

agriculturally consistent crop type maps in complex agricultural 

systems. The method has the originality of combining remote 

sensing and modelling with knowledge from human and social 

sciences that reflect farmers’ behaviour. Such approach can help 

to improve (i) the understanding of processes driving land use 

distribution in complex agricultural areas such as in smallholder 

farming systems and (ii) the accuracy of crop type maps in 

regions where traditional remote sensing approaches present 

limitations.  

 

This approach is also being currently tested in the same study 

area with a new set of satellite images with higher spatial and 

temporal resolutions (Pléiades instead of SPOT6/7 for the very 

high spatial coverage, and addition of Venμs data in complement 

of the Landsat-8 / Sentinel-2 time series), building on the same 

set of STrules. An analysis of the model sensitivity to the 

integration of each spatio-temporal rule will also be performed. 

Beyond its application to the complex smallholder agricultural 

landscape of Madagascar Highlands, the approach proposes a 

generic framework that explicitly brings rich thematic expert 

knowledge into the analysis of satellite time series data. Such a 

framework can certainly be adapted to other regions of interest or 

thematic applications (e.g. biodiversity). However, in a broader 

perspective, this method can be considered as a first attempt to 
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combine knowledge-driven and data-driven approaches for 

extracting useful information from one of the most abundant 

sources of geographical data that are earth observation satellites.  

 

 

ACKNOWLEDGEMENTS 

This study was conducted as part of the SAMSAM project funded 

by CNES, the French Space Agency (TOSCA APR 2017). This 

work was also supported by the French National Research 

Agency under the Investments for the Future Program, referred 

to as ANR-16-CONV-0004. The authors would like to thank 

Eloise Rasoamalala and Valérie Andoniaina for their 

contributions to the field surveys, and the researchers of SPAD, 

the CIRAD platform in partnership on “Highland production 

systems and sustainability in Madagascar”. 

  

REFERENCES 

Baatz, M., Schäpe, A., 2000. Multiresolution Segmentation: an 

optimization approach for high quality multi-scale image 

segmentation. Angewandte Geographische Informations-

Verarbeitung XII, 12–23. 

 

Bailly, S., Giordano, S., Landrieu, L., Chehata, N., 2018. Crop-

Rotation Structured Classification using Multi-Source Sentinel 

Images and LPIS for Crop Type Mapping. IGARSS 2018 - 2018 

IEEE International Geoscience and Remote Sensing Symposium, 

IEEE, Valencia, pp. 1950–1953. 

https://doi.org/10.1109/IGARSS.2018.8518427 

 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., 

Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, 

H., van Coillie, F., Tiede, D., 2014. Geographic Object-Based 

Image Analysis – Towards a new paradigm. ISPRS Journal of 

Photogrammetry and Remote Sensing 87, 180–191. 

https://doi.org/10.1016/j.isprsjprs.2013.09.014 

 

Bontemps, S., Arias, M., Cara, C., Dedieu, G., Guzzonato, E., 

Hagolle, O., Inglada, J., Matton, N., Morin, D., Popescu, R., 

Rabaute, T., Savinaud, M., Sepulcre, G., Valero, S., Ahmad, I., 

Bégué, A., Wu, B., De Abelleyra, D., Diarra, A., Dupuy, S., 

French, A., Ul Hassan Akhtar, I., Kussul, N., Lebourgeois, V., Le 

Page, M., Newby, T., Savin, I., Verón, S.R., Koetz, B., Defourny, 

P., 2015. Building a Data Set over 12 Globally Distributed Sites 

to Support the Development of Agriculture Monitoring 

Applications with Sentinel-2. Remote Sensing 7, 16062–16090. 

https://doi.org/10.3390/rs71215815 

 

Breiman, L., 2001. Random forests. Machine learning 45, 5–32. 

Debats, S.R., Luo, D., Estes, L.D., Fuchs, T.J., Caylor, K.K., 

2016. A generalized computer vision approach to mapping crop 

fields in heterogeneous agricultural landscapes. Remote Sensing 

of Environment 179, 210–221. 

https://doi.org/10.1016/j.rse.2016.03.010 

 

Degenne, P., Lo Seen, D., 2016. Ocelet: Simulating processes of 

landscape changes using interaction graphs. SoftwareX 5, 89–95. 

https://doi.org/10.1016/j.softx.2016.05.002 

 

Donadieu, J., L’Helguen, C., 2016. SENTINEL-2A L2A 

Products description (Technical note). CNES, Direction du 

Centre Spatial de Toulouse. 

 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., 

Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., 

Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. 

Sentinel-2: ESA’s Optical High-Resolution Mission for GMES 

Operational Services. Remote Sensing of Environment 120, 25–

36. https://doi.org/10.1016/j.rse.2011.11.026 

 

Dury, J., Schaller, N., Garcia, F., Reynaud, A., Bergez, J.E., 

2012. Models to support cropping plan and crop rotation 

decisions. A review. Agronomy for Sustainable Development 32, 

567–580. https://doi.org/10.1007/s13593-011-0037-x 

 

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 

2014. Do we Need Hundreds of Classifiers to Solve Real World 

Classification Problems? Journal of Machine Learning Research 

15, 3133–3181. 

 

Gaetano, R., Dupuy, S., Lebourgeois, V., Le Maire, G., Tran, A., 

Jolivot, A., Bégué, A., 2019. The MORINGA Processing Chain: 

Automatic Object-based Land Cover Classification of Tropical 

Agrosystems using Multi-Sensor Satellite Imagery. ESA Living 

Planet Symposium (LPS 2019), Milan, Italy. 

 

Gao, B., 1996. NDWI—A normalized difference water index for 

remote sensing of vegetation liquid water from space. Remote 

Sensing of Environment 58, 257–266. 

https://doi.org/10.1016/S0034-4257(96)00067-3 

 

GRASS Development Team, 2017. Geographic Resources 

Analysis Support System (GRASS) Software. Open Source 

Geospatial Foundation. 

 

Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., 

Cresson, R., 2017. Orfeo ToolBox: open source processing of 

remote sensing images. Open Geospatial Data, Software and 

Standards 2. https://doi.org/10.1186/s40965-017-0031-6 

 

Hagolle, O., Huc, M., Desjardins, C., Auer, S., Richter, R., 2017. 

MAJA Algorithm Theoretical Basis Document. 

https://doi.org/10.5281/zenodo.1209633  

 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural 

Features for Image Classification. IEEE Transactions on 

Systems, Man, and Cybernetics SMC-3, 610–621. 

https://doi.org/10.1109/TSMC.1973.4309314 

 

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, 

D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., Koetz, 

B., 2015. Assessment of an Operational System for Crop Type 

Map Production Using High Temporal and Spatial Resolution 

Satellite Optical Imagery. Remote Sensing 7, 12356–12379. 

https://doi.org/10.3390/rs70912356 

 

Jurgens, C., 1997. The modified normalized difference 

vegetation index (mNDVI) a new index to determine frost 

damages in agriculture based on Landsat TM data. International 

Journal of Remote Sensing 18, 3583–3594. 

https://doi.org/10.1080/014311697216810 

 

Labatut, V., Cherifi, H., 2011. Accuracy Measures for the 

Comparison of Classifiers. The 5th Inter-national Conference on 

Information Technology. Amman, Jordanie. 

 

Lebourgeois, V., Dupuy, S., Vintrou, E., Ameline, M., Butler, S., 

Bégué, A., 2017. A Combined Random Forest and OBIA 

Classification Scheme for Mapping Smallholder Agriculture at 

Different Nomenclature Levels Using Multisource Data 

(Simulated Sentinel-2 Time Series, VHRS and DEM). Remote 

Sensing 9(3), 259. https://doi.org/10.3390/rs9030259 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-35-2020 | © Authors 2020. CC BY 4.0 License.

 
41

https://doi.org/10.1109/IGARSS.2018.8518427
https://doi.org/10.1016/j.isprsjprs.2013.09.014
https://doi.org/10.3390/rs71215815
https://doi.org/10.1016/j.rse.2016.03.010
https://doi.org/10.1016/j.softx.2016.05.002
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1007/s13593-011-0037-x
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1186/s40965-017-0031-6
https://doi.org/10.5281/zenodo.1209633
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.3390/rs70912356
https://doi.org/10.1080/014311697216810
https://doi.org/10.3390/rs9030259


 

NASA JPL, 2014. U.S. Releases Enhanced Shuttle Land 

Elevation Data. NASA  Jet Propulsion Laboratory  (JPL). 

http://www.jpl.nasa.gov/news/news.php?release=2014-321 (28 

October 2019). 

 

Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. 

Object-based crop identification using multiple vegetation 

indices, textural features and crop phenology. Remote Sensing of 

Environment 115, 1301–1316. 

https://doi.org/10.1016/j.rse.2011.01.009 

 

Pontius, R.G., Millones, M., 2011. Death to Kappa: birth of 

quantity disagreement and allocation disagreement for accuracy 

assessment. International Journal of Remote Sensing 32, 4407–

4429. https://doi.org/10.1080/01431161.2011.552923 

 

Riquier, J., 1968. Carte pédologique de Madagascar. One mosaic 

of 3 map sheet. Scale of 1 :1 000 000. ORSTORM.   

 

Rouse, W., Haas, R.H., Schell, J., Deering, D., 1974. 

Monitionring Vegetation Systems in the Great Plains with ERTS. 

Third Earth Resources Technology Satellite-1 Symposium, 

Technical presentations, section A, vol. I, National Aeronautics 

and Space Administration, Washington, DC, 309–317. 

 

Sourisseau, J.-M., Rasolofo, P., Bélières, J.-F., Guengant, J.-P., 

Ramanitriniony, H.K., Bourgeois, R., Razafimiarantsoa, T.T., 

Andrianantoandro, V.T., Ramarijaona, M., Burnod, P., 

Rabeandriamaro, H., Bougnoux, N., 2016. Diagnostic Territorial 

de la Région du Vakinankaratra à Madagascar (Prospective 

territoriale sur les dynamiques démographiques et le 

développement rural en Afrique subsaharienne et à Madagascar). 

AFD. 

 

Weiss, A.D., 2001, Topographic position and landform analysis. 

Poster presentation, ESRI User Conference, San Diego, 

California, USA. 

 

Xu, H., 2006. Modification of normalised difference water index 

(NDWI) to enhance open water features in remotely sensed 

imagery. International Journal of Remote Sensing 27, 3025–

3033. https://doi.org/10.1080/01431160600589179 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W11, 2020 
PECORA 21/ISRSE 38 Joint Meeting, 6–11 October 2019, Baltimore, Maryland, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W11-35-2020 | © Authors 2020. CC BY 4.0 License.

 
42

https://doi.org/10.1016/j.rse.2011.01.009
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1080/01431160600589179



