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ABSTRACT: 

Laguna Lake, the Philippines’ largest freshwater lake, has always been historically, economically, and ecologically significant to the 

people living near it. However, as it lies at the center of urban development in Metro Manila, it suffers from water quality degradation. 

Water quality sampling by current field methods is not enough to assess the spatial and temporal variations of water quality in the lake. 

Regular water quality monitoring is advised, and remote sensing addresses the need for a synchronized and frequent observation and 

provides an efficient way to obtain bio-optical water quality parameters. Optimization of bio-optical models is done as local parameters 

change regionally and seasonally, thus requiring calibration. Field spectral measurements and in-situ water quality data taken during 

simultaneous satellite overpass were used to calibrate the bio-optical modelling tool WASI-2D to get estimates of chlorophyll-a 

concentration from the corresponding Landsat-8 images. The initial output values for chlorophyll-a concentration, which ranges from 

10-40μg/L, has an RMSE of up to 10μg/L when compared with in situ data. Further refinements in the initial and constant parameters 

of the model resulted in an improved chlorophyll-a concentration retrieval from the Landsat-8 images. The outputs provided a 

chlorophyll-a concentration range from 5-12μg/L, well within the usual range of measured values in the lake, with an RMSE of 

2.28μg/L compared to in situ data.  

 

1. INTRODUCTION 

1.1 Laguna Lake  

Laguna de Bay is the largest freshwater lake in the Philippines 

and the third in South-East Asia with an area of approximately 

900 km2. The lake has been historically, economically, and 

ecologically significant to the communities surrounding it. 

Laguna de Bay lies at the center of urban development in Metro 

Manila, and it suffers from water quality degradation due to 

intensified exploitation of the its resources along with decades of 

industrial, household, and toxic pollution (Delos Reyes and 

Martens, 1994; Tamayo-Zafaralla et al., 2010). 

The Laguna Lake Development Authority is a body mandated to 

address these problems and aim to improve the lake’s ecological 

state along with its 21 major tributary rivers. With the increasing 

conflict regarding water use, allocation, and preservation of the 

lake, LLDA is expected to have a comprehensive resource 

management and monitoring system (Nauta et al, 2003). 

Implementation of sustainable management strategies should be 

supported by frequent monitoring (Gray and Shimshack, 2011). 

However, sampling and analysis used by field-based monitoring 

programs are labor, cost, and time intensive (Schaeffer et al, 

2013). Traditional sampling methods may also produce unevenly 

distributed sampling points. Data acquired at various times in a 

day may result to inaccuracies in water quality assessment 

(Bresciani et al., 2011). In situ measurements can also hardly 

capture the temporal and spatial variability of large-scale lake 

phenomena (Dörnhöfer and Oppelt, 2016). 

 

Figure 1. Water quality monitoring stations in Laguna Lake and 

its tributaries (Source: LLDA) 

Water quality monitoring by the Laguna Lake Development 

Authority are based on 9 sampling stations inside the bay and 

take measurements once a month (Figure 1). There are instances 

wherein not all 9 stations are sampled in one day. Even when the 

sampling is completed within a day, the water quality values are 

not directly comparable from station to station considering 

variations within the day. While it is critical to monitor the water 

quality of an area efficiently and effectively, conventional 

methods of monitoring produce numerical outputs that are too 

technical that only few people can understand the implications 

(Chen, 2009). Also given the extensive area of the lake, the 
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limited number of sampling points is not enough to create a visual 

output that would be easily comprehensible (Khattab and Merkel, 

2014). Adding frequent sampling stations would also require 

considerable efforts in terms of time, labor, and money. These 

would still be insufficient to detect the changes of the spatial and 

temporal coverage compared to a detailed map that could be 

produced from satellite images.  

Remote sensing addresses the need for a synchronized and 

frequent observation, it provides an efficient way to obtain bio-

optical water quality parameters (i.e. chlorophyll-a, CDOM, 

SPM) over large areas. Remote Sensing is a very useful 

measurement tool than can greatly help water management 

authorities (Chen and Feng, 2018).  

Furthermore, free and readily downloadable satellite images 

from recently launched sensors such as Landsat 8 offer spatial 

and radiometric resolutions that are suitable for inland water 

applications (Palmer et al., 2015; Manzo et al., 2015). 

1.2 Bio-Optical Modeling of Inland Waters 

Modelling a relationship between water quality parameters and 

remote sensing reflectance is a tedious process that requires a 

deep understanding of hydrologic optics, along with repeated site 

sampling and simulations that require high computing resources. 

(IOCCG, 2006) Fortunately, there are already established bio-

optical models that have been widely used especially for inland 

water applications. However, parameters for such models can 

change regionally and seasonally, thus local calibration and fit 

tuning of the parameters are needed to get good water quality 

estimate from the satellite images (Gege, 2014). 

Due to the presence of multiple constituents at different 

compositions, remote sensing for monitoring inland quality has 

been far less common compared to its application to open oceans. 

The complex interaction among water constituents is often 

intensified by anthropogenic actions, which creates uncertainty 

in the models designed for inland waters. Within the same inland 

aquatic system, different regions can still be dominated by 

different constituents (Ogasharawa, 2015). 

1.3 Bio-Optical properties and Inherent Optical Properties 

According to Morel (2001), remote sensing of inland waters is 

based on the optical properties of the constituents in the water. 

These optical properties are divided into two categories, namely, 

Apparent Optical Properties (AOPs) that depend on the medium 

and directional structure of the ambient light field, and Inherent 

Optical Properties (IOPs), which depend only on the medium 

itself and independent of the light field (Preisendorfer, 1976). 

Properties such as absorption (a) and scattering (b) coefficients 

vary on the composition of the medium or constituents itself 

(Mobley, 2001). 

Absorption properties of water constituents (e.g., algal and non-

algal particles) are the most commonly used parameters since the 

components in the water can either absorb the light in a specific 

part of the electromagnetic spectrum and contribute to the color 

of the water seen by sensors. There are a lot of studies reporting 

the absorption coefficients from inland waters and most are for 

sites in USA, China, and South Africa. (Ogashawara, 2017).  

Since IOPs vary not only across geographic regions but also 

within the same site, the complexities are said to be mainly due 

to the spatio-temporal variability of the water constituents within 

the same lake. The dominant constituent at the water column may 

not only change spatially across short distances, but also across 

seasons and even daily (Gege, 2014). The variability in 

composition of constituents and associated IOP’s in an aquatic 

system affect the magnitude and shape of the Remote sensing 

reflectance (Rrs). The variations in the Rrs are related to the 

variations in IOPs locally at each site (Mobley, 2001). 

1.4 Inversion of Bio-Optical Models 

The forward process in water color optics, is that if the 

parameters such as particle size, index of refraction of water, 

distribution of particles, and properties of the dissolved materials 

are known, the radiance distribution or spectrum of those specific 

parameters can be simulated by the forward solution of the 

radiative transfer equation. The inverse modelling, which is used 

in remote sensing of water bodies, retrieves the Inherent Optical 

Properties from the radiance and distribution spectrum. From 

these IOP’s, the contribution of constituents such as dissolved 

matter, particulates from the water spectra can be retrieved 

(IOCCG, 2006). A simplified diagram of this is shown in Figure 

2. 

 

Figure 2. Diagram of inverse radiative transfer elements from 

Ocean Color Algorithms Working Group Report 5 (IOCCG, 

2006) 

Inversion of these known relationships determine 

biogeochemical parameters from the radiance spectrum 

inversion, however, is inexact and rely on approximations. The 

inversion is a two-step process: retrieval of IOP’s from radiance, 

then the retrieval of biogeochemical parameters from these IOPs. 

Both are inexact procedures, which is why spectral inversion 

must be done with caution and data from field missions (IOCCG, 

2006). 

Semi-analytical models such as that of Albert and Mobley (2003) 

and Albert (2004) that are implemented in the Water Color 

Simulator software rely on the inversion of the Radiative 

Transfer Equations to establish the relationship among the 

Remote-sensing reflectance (AOP) and IOPs.  

There are existing software that implement these inversion of 

semi-analytical models, such as the most commonly used for 

inland waters which is the Water Color Simulator (WASI) 

software by Peter Gege (2003). The WASI Software tool is 

developed for analyzing and simulating common types of spectra 

and allows quantitative analysis of multispectral and 

hyperspectral images of water bodies. It makes use of the models 

developed by Albert and Mobley in 2003 and is optimized for 

inland water applications but can be also applied for oceanic and 

coastal applications. The two most recent versions WASI 4 and 

WASI 5 includes the 2D module which applies the spectral 

inversion models (Figure 3.0) to remote sensing reflectance 

values in satellite images. This additional component of the 

software called WASI-2D applies the inverted parameters to 

atmospherically corrected satellite images and outputs them as 

estimated water quality concentration maps (Gege, 2014). 
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Figure 3. Spectral inversion interface of WASI- Water color 

simulator 

Another example of software implementation of bio-optical 

models applied to satellite image is the BOMBER software by 

Giardino, et al. (2012), but it and differs in the implemented bio-

optical models. The BOMBER software also lacks the individual 

spectral matching simulation and the option to select specific 

parameters to fit.  

2. METHODOLOGY 

The bio-optical modelling workflow consists of 2 major parts as 

shown in Figure 4. The first part is the processing of the field 

reflectance spectra and assessment of the field acquired IOP 

spectra. The values outputted from the spectral processing were 

used as initial inputs and constant parameters when running 

WASI-2D. The second one consists of the application of the bio-

optical model inversion on the satellite images incorporating the 

said values. 

 

 

Figure 4. Workflow for the inversion using WASI 

2.1 Data and Field Surveys  

To acquire ground truth values for verification and aid for the 

inversion process, a 5-day field mission on the Laguna Lake were 

done for the Dry Season last November 13-17, 2018. The field 

team acquired data for forty-eight (48) points across the lake. 

This was done concurrent with different satellite overpass of 

Landsat 8, Sentinel 2 and Sentinel 3. 

 

Figure 4. Field Validation Points for Laguna Lake (November 

13-17, 2018) 

Instruments used in the fieldwork include an Ocean Optics VIS-

NIR Spectrometer (for obtaining reflectance spectra), a 

Fluoroprobe (submersible fluorometer), and a CLW Infinity 

Optical Sensor, which measures turbidity, and chl-a. The 

Fluoroprobe also measures microalgal class concentrations in 

addition to the total chl-a concentration.  

The satellite image used for the bio-optical inversion is a cloud, 

cloud shadow, and land masked Landsat 8 image. Masking non-

water pixels before running WASI-2D is crucial as spectral 

inversion may fail. The initial fit parameter input for a pixel takes 

on the value of the final fit values of the previously processed 

pixel. 

 

Figure 5. Cloud and cloud shadow masked Landsat 8 image 

from December 18, 2018 

2.3 Field Spectra and Satellite Image Inversion using WASI 

Since spectral inversion can result in an infinite combination of 

different fit parameters, some of the constant parameter values 

must be set in accordance to the properties of the water body. 

This can be done with the spectral inversion of sample spectral 

signatures of Laguna Lake waters. Before proceeding with the 

inversion process with WASI, a spectral smoothing using the 

Savitzky-Golay smoothing filter was applied to the spectral 

signature data using a python script (Figure 6). 
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Figure 6. Field sample spectral data smoothing using Savitzky-

Golay filter 

Initial WASI run gave values and results that do not fall within 

the field acquired values for chlorophyll. This is due to one 

spectral shape not necessarily corresponding to a unique set of 

water quality parameters for the same sun illumination patterns. 

Therefore, incorporation of a constant value or setting of initial 

parameters, as well as different fit tuning settings were tested out 

to improve model performance. In situ Chlorophyll-a 

measurements was used as a constant to help guide the inversion 

model that this is the baseline or field acquired value, so it would 

set the initial simulated spectra closer to the actual field value. 

 

 

Figure 7. WASI 2-D Interface 

Tests for which parameters would be fit and constant as well as 

setting adequate parameter ranges and initial values were done 

to get optimal results. 

3. RESULTS AND DISCUSSION 

Out of the 48 points gathered from the field mission, only 27 were 

useful for ground truth assessment. An inevitable disadvantage 

of using optical satellite imagery are cloud covers, as the data 

underneath the clouds will be irretrievable and masked out. The 

chlorophyll-a concentration output of the best performing run is 

shown in Figure 8 below.  

The first few runs of the WASI software were overapproximating 

the values up to 40 μg/L. These yielded a low R2 value of 0.16 

and an RMSE of up to 10 μg/L. Aside from the low 

correspondence to field data, the resulting fit values for CDOM 

were at 0. For these initial runs, the contributions for sky radiance 

specifically the parameter gdd (fraction of sky radiance due to 

direct solar radiation) were fit and the C_Mie (concentration of 

non-algal particles of type II) was set at a constant value of 0. 

Fitting the gdd correction for sky glint might be affecting the 

scale of the fit spectra thus affecting the estimation of 

chlorophyll-a. 

 

Figure 8. Chlorophyll-a map output from Landsat 8 processing 

in WASI 

Limiting the range of the fit parameter in the program settings 

and setting the gdd as a constant based on the inverted field 

spectral values improved the results. Addition of the C_Mie 

parameter as a fit also resulted in better approximations for 

chlorophyll-a and gave reasonable values for CDOM. Different 

runs of the WASI software testing out optimum fit tuning 

(residuals and maximum iterations) and parameter settings which 

brought the values within the range of the field monitored values 

were done.  
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Figure 9. Assessment of Inverted and Field Observed 

Chlorophyll-a values 

The best run yielded an R2 of 0.32 with an RMSE of 2.28 μg/L, 

an improvement to the initial runs. The fitted parameters for the 

best performing run were chlorophyll-a (C[0]), suspended 

particulate matter type I (C_X), suspended particulate matter type 

mie (C_Mie), and colored dissolved organic matter (C_Y). SPM 

Type 1 (C_X) was tested out as a constant value but it did not 

yield good approximations compared to when it is fit along with 

C_Mie. The upper left portion of the output image produced 

inconsistent values for all the runs. This may be due to the 

presence of haze or thin cloud cover that were not masked out 

during pre-processing.  

Other parameters such as illumination were kept constant based 

on the satellite overpass situation and values inverted from field 

spectral data. Water temperature was also set at a constant of 

28.5°C. Assessment of SPM and CDOM fit performance were 

not done because of the limitations in the available ground truth 

data.  

4. CONCLUSION 

Setting up the WASI software incorporating field inverted 

spectra values to the fit tuning and parameter settings improved 

the fit performance of the bio-optical models. The inversion of 

the models on Landsat 8 fitting chlorophyll-a gave an R2 of 0.32 

with an RMSE of 2.28 μg/L. The outputs of WASI-2D were able 

to give a visual of the spatio-temporal variation of the 

chlorophyll-a concentration from a Landsat 8 image. 

SPM and CDOM performance show promising results but 

inconclusive. Further work relating the turbidity field data to 

SPM and Fluoroprobe outputs to CDOM should be done to assess 

the other fit parameter outputs of WASI.  
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