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ABSTRACT: 

 

Climate teleconnections show remote and large-scale relationships between distant points on Earth. Their relations to precipitation are 

important to monitor and anticipate the anomalies that they can produce in the local climate, such as flood and drought events 

impacting agriculture, health, and hydropower generation. Climate teleconnections in relation to precipitation have been widely studied. 

Nevertheless, the spatial association of the teleconnection patterns (i.e. the spatial delineation of regions with teleconnections) has been 

unattended. Such spatial association allows to characterize how stable (heterogeneity/dependent and statistically significant) is the 

underlying spatial phenomena for a given pattern. Thus our objective was to characterize the spatial association of climate 

teleconnection patterns related to precipitation using an exploratory spatial data analysis approach. Global and local indicators of 

spatial association (Moran’s I and LISA) were used to detect spatial patterns of teleconnections based on TRMM satellite images and 

climate indices. Moran’s I depicted high positive spatial association for different climate indices, and LISA depicted two types of 

teleconnections patterns. The homogenous patterns were localized in the Coast and Amazonian regions, meanwhile the disperse 

patterns had a major presence in the Highlands. The results also showed some areas that, although with moderate to high 

teleconnection influences, had a random spatial patterns (i.e. non-significant spatial association). Other areas showed both 

teleconnections and significant spatial association, but with dispersed patterns. This pointed out the need to explore the local 

underlying features (topography, orientation, wind and micro-climates) that restrict (non-significant spatial association) or reaffirm 

(disperse patterns) the teleconnection patterns.  
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1. INTRODUCTION 

Climate teleconnections show remote and large-scale 

relationships between distant points on Earth, that produce 

anomalies and variability in the surface climate and precipitation 

of a region (Carleton, 2003; Z. Liu & Alexander, 2007). Their 

influences on local climate are highly variable across large 

geographic areas (Kiem & Franks, 2001). Therefore, certain 

teleconnections can only be detected in certain regions or in 

certain periods of time. One of the most studied climate 

teleconnections has been ENSO - El Niño South Oscillation 

(Diaz, Hoerling, & Eischeid, 2001), which arises from the 

atmosphere-ocean interaction in the tropical Pacific and it is 

measured with several indices, such as the sea surface 

temperature (SST) in the regions Niño 1+2, 3, 4 and 3.4, as well 

as indices derived for pressure gradients in the Pacific (SOI) and 

multivariate indices (MEI).  

In Ecuador, the warm phase of ENSO named “El Niño” mainly 

affects the coastal region of the country with intense 

precipitations and floods causing infrastructure damage, 

economic losses and increased incidence of diseases. Thus, it is 

important to identify climate teleconnections that influence a 

certain region in order to monitor and anticipate the anomalies 

that they can produce in the local climate. For instance, in the 

case of precipitation, these anomalies are related to flood and 

drought events impacting agriculture, health, risk management 

and hydropower generation. 

Climate teleconnections in relation to precipitation have been 

widely studied since the beginning of the 20th century, e.g. 

(Ångström, 1935). In Ecuador, nevertheless, the most studied 

teleconnection has been ENSO, through the SST on Niño1+2 

region (Bendix & Bendix, 2006; Bendix et al., 2011; Morán-

Tejeda et al., 2015; Pineda et al., 2013; Vuille, Bradley, & 

Keimig, 2000). However, beyond the Niño1+2 region, other 

types of teleconnections have been poorly studied. In addition to 

the lack of systematic exploration of the different climate 

teleconnections in Ecuador, there is also the limitation that 

mainly the Coast region of the country was approached. Less 

studies had focused on the Highland (Andes) and Amazonian 

regions.  

From a methodological perspective, it is usual to apply 

correlation methods in order to show the degree of association 

among precipitation and climate indices (Fierro, 2014; Liu, 

Chen, & DaMassa, 2018). Nevertheless, the spatial association 

of these bivariate correlations has been less studied. Spatial 

association is related to two key spatial characteristics: 

heterogeneity and dependence (de Smith, Goodchild, & Longley, 

2018). Spatial heterogeneity refers to the global variation of a 

phenomenon over the whole study area, and how it is expected to 

vary across locations. In contrast, spatial dependence refers to 
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the persistence of a phenomenon at the local level despite the 

global variation, and it is related to the fact that an observation in 

one location is also similar to other observations in the nearby 

locations. Such similarity will decay with the increase of the 

distance (Orellana & Wachowicz, 2011). The spatial association 

is measured by mean of indicators of spatial autocorrelation 

(Bivand & Wong, 2018). By integrating the concept of spatial 

association in the characterization of climate teleconnection 

patterns, i.e. its spatial delineation, it is possible to address the 

following issues: How strong is the spatial association of 

teleconnections in a given region? How homogeneous or disperse 

are the teleconnection spatial patterns? Where teleconnections 

might be interacting with local climate drivers? 

Teleconnection studies have focused on studying the correlation 

at discrete locations, this is at points where rain gauges are 

deployed, which in turn produce only a partial and discrete 

knowledge of the teleconnection pattern. In this context, 

precipitation products with exhaustive spatial continuity such as 

those obtained from satellites, become an essential source for 

precipitation estimations. There is a wide diversity of satellite 

precipitation products (Maggioni, Meyers, & Robinson, 2016; 

Salio et al., 2015); among them, the Tropical Rainfall 

Measurement Mission (TRMM) is one of the most used products 

because it offers historical records since 1998 (Huffman et al., 

2007). For the particular case of Ecuador, TRMM showed an 

adequate representation of the seasonality of precipitation 

(Ballari, Castro, & Campozano, 2016; Ochoa et al., 2014), 

although with some limitations to represent precipitation along 

the eastern escarpments of the Andes. TRMM has been corrected 

and downscaled for Ecuador from its native 27km resolution to 

5km (Ulloa et al., 2017). This corrected product is a unique 

opportunity for studying spatial patterns of climate 

teleconnections in Ecuador. 

The objective of this study is to characterize the spatial 

association of climate teleconnections patterns related to 

precipitation using an exploratory spatial data analysis approach. 

Specifically, by using global and local indicators of spatial 

association (Moran’s I and LISA) to detect spatial patterns of 

teleconnections on TRMM satellite images.  

 

2. STUDY AREA AND MATERIALS 

Ecuador is one of the tropical countries located in South America 

(Figure 1). It receives an annual precipitation of 2300 mm/year, 

which favoured the formation of dense and every-green rainforest 

present in the Amazonian region (east) and in the lowlands of 

Pacific Coast (north-west). Additionally, Ecuador is crossed 

north to south by the Andes highlands, which creates a highly 

variable topography and micro-climates.  

 

Figure 1. Study area and main climate regions of Ecuador: Coast, 

Highlands (Andes) and Amazon. 

 

2.1 Downscaled precipitation satellite data 

The main dataset consists on the monthly precipitation satellite 

imagery from TRMM 3b43 V7 (27km), for the period of 2001 – 

2011. The downscaling method consisted in two step. First, the 

original available data was bilinear resampled up to 5km. Then, 

it was applied regression kriging with the in-situ stations and 

auxiliary variables related to cloud properties, normalized 

vegetation index and soil moisture (Ulloa et al., 2017). This 

downscaling procedure, from one side, corrected the TRMM 

bias, and from the other side added further variability in the data 

with the auxiliary environmental factors, incorporating 

atmospheric and land variables.  

Following the terminology of R software (Ihaka & Gentleman, 

1996) and its “raster” package (Hijmans, 2017), the product is 

represented as a rasterbrick, where each raster layer shows the 

precipitation of a specific month. Additionally, each pixel in the 

rasterbrick contains the precipitation time series at such a 

location. Linear trend was removed from time series using the 

“Detrend” function from “SpecsVerification” library (Siegert, 

2017).  

 

2.2 Climate indices 

The evolution and occurrence of teleconnections is monitored by 

using different climate indices (Hanley et al., 2003; Kiem & 

Franks, 2001). Although there is no agreement on which index 

best captures the teleconnections (Hanley et al., 2003), the index 

representativeness has been linked to certain geographic areas. 

Following (Córdoba-Machado et al., 2016; Fierro, 2014; Liu et 

al., 2018), we selected the climate indices used in this study 

(Table 1). The temporal period was 2001 to 2011, and lineal 

trend was also removed. The indices were obtained from 

https://www.esrl.noaa.gov/psd/data/climateindices/list/, and 

http://www.jamstec.go.jp/frsgc/research/d1/iod/e/elnmodoki/abo

ut_elnm.html. 

 

Table 1. Climate indices for teleconnection exploration. 

Index Description 

Pacific Ocean 

soi Southern Oscillation Index is based on the 

atmospheric pressure difference between Tahiti 

and Darwin  

mei Multivariate ENSO Index combines oceanic and 

atmospheric variables. 

modoki Niño Modoki is a coupled ocean-atmosphere 

phenomenon in the tropical Pacific, associated 

with strong anomalous warming in the central 

tropical Pacific and cooling in the eastern and 

western tropical Pacific. 

niño1+2 It measures the SST in the region 0-10S, 90W-

80W eastern Pacific (close to Ecuador and Peru). 

niño3 It measures the SST in the region 5N-5S, 150W-

90W in Pacific ocean. 

niño3.4 It measures the SST in the region 5N-5S, 170W-

120W in Pacific ocean. 

niño4 It measures the SST in the region 5N-5S, 160E-

150W in Pacific ocean. 

oni Oceanic Niño Index located in 5N-5S, 170W-

120W Pacific Ocean (same region as Niño3.4). 

tni Trans Niño Index is the difference in normalized 

SST anomalies between Niño1+2 and Niño4 

regions. 

np North Pacific Index is the areal-weighted sea level 
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pressure over the region 30N-65N, 160E-140W. 

pna Pacific North American teleconnection index is 

one of the most prominent modes of low 

frequency variability in the Northern Hemisphere 

extra-tropics. 

Atlantic Ocean 

ammsst Atlantic Meridional Mode describes SST in the 

meridional variability in tropical Atlantic ocean. 

amon The Atlantic Multi-decadal Oscillation is a 

coherent mode of natural variability in the North 

Atlantic ocean (estimated period of 60-80 years). 

Car_erst Caribbean SST Index are SST anomalies 

averaged over the Caribbean Sea.  

tsa Tropical Southern Atlantic Index is an anomaly of 

monthly average SST,  Eq-20S and 10E-30W. 

 

 

3. METHODS 

First, the teleconnections were detected based on high correlation 

values and then an exploratory spatial data analysis (ESDA) was 

performed. ESDA provides a set of indicators to explore spatial 

autocorrelation, and their results are useful to build hypothesis 

about the spatial behaviour of the study variable. In our case, 

global and local indicators of spatial association were computed 

based on spatial weights matrix. 

 

3.1 Pixel-wise correlation  

Due the lack of normality, the correlation between the 

precipitation time series at each pixel of the rasterbrick with 

each climate index was computed using Spearman’s ρ. The 

correlation was performed at t0, i.e. lagged correlation was not 

performed. Values of ρ were obtained for each pixel and climate 

index, and thus correlation maps were plotted. Correlation values 

larger than 0.3 or smaller than -0.3 were identified as 

teleconnections. Since the focus is on the spatial patterns of the 

correlation strength, maps with the absolute value of ρ for each 

index were obtained. Thus it was represented the degree of 

relation (strength) regardless the direction of such relation. 

 

3.2 Spatial autocorrelation 

Spatial autocorrelation measures the degree of association that a 

variable develops through the geographical space. It quantifies 

how much the value of a variable at one location depends on the 

values of the same variable measured at a specific geographic 

distance from that location. The essence of spatial 

autocorrelation is to analyse the variability of a phenomenon 

through the geographical space to determine spatial patterns and 

describe its behaviour, that is, how much local elements can be 

affected by their neighbours (Siabato & Guzmán-Manrique, 

2019). It is an exploratory spatial statistical approach that allows 

to detect how stable (heterogeneity-dependence and statistically 

significant) is the underlying spatial phenomenon for a given 

pattern. 

Spatial autocorrelation can be measured at the global and local 

levels. The global measures provide a statistic for the entire 

study area under the assumption of spatial stationarity, i.e. the 

mean and covariance do not vary over space. The local statistics 

allow the exploration of local patterns of spatial association, by 

decomposing a single global measure into the partial contribution 

of each individual location, and to detect the locations that are 

major contributors to the global autocorrelation (Naimi et al., 

2019). We used Moran’s I to assess the spatial autocorrelation at 

the global level (Anselin, 1993; Moran, 1948) and LISA to 

assess it at the local (Anselin, 1995). Although many other 

global and local statistics exist (Bivand & Wong, 2018), it was 

selected Moran’s I and LISA because they have been widely 

implemented. 

 

3.3 Spatial weights matrix 

The spatial relationship between a location and its neighbours is 

represented using a matrix that stores the spatial structure of the 

weighted influence of a neighbourhood (de Smith et al., 2018). It 

is assumed that the influence is only dependent on the distance, 

thus it can be represented by an inverse distance weighted 

function. In order to include only the neighbours that actually 

have some influence, and to reduce the size of the matrix, a cut 

off distance is usually necessary. In our case, we defined a 

neighbourhood based on cut off distance of 5km (Euclidian 

distance). Additionally, given that the border pixels (Ecuadorian 

country limits) had a reduced number of neighbours, and to avoid 

invalidating of the statistical approach when none or limited 

observations are present in the neighbourhood, a row 

standardization of the spatial relationships matrix was performed 

(de Smith et al., 2018; Orellana & Wachowicz, 2011). 

 

3.4 Moran’s I 

Moran’s I is a cross-product statistic between a variable and its 

spatial lag (at a defined neighborhood), with the variable 

expressed in deviations from its mean. At a location i, it is 

expressed as  where  is the mean of variable  

(Anselin, 1993; Moran, 1948). Moran’s I statistic is then: 

 

                                    (1) 

 

with  as the elements of the spatial weights matrix,  

as the sum of all the weights, and  as the 

number of observations. 

Moran’s I returns values between -1 and +1. If I <0, then spatial 

autocorrelation is negative showing a disperse pattern, i.e. 

association of dissimilar values. If I > 0, then spatial 

autocorrelation is positive with a homogeneous or clustered 

pattern, i.e. association of similar values. If I = 0, there is no 

evidence of spatial autocorrelation or the phenomenon shows a 

random spatial distribution. 

In order to determine the global spatial autocorrelation at 

different distance ranges, a correlogram was used. It allows to 

compare the global spatial autocorrelation at short and large 

ranges (Naimi et al., 2019). In order words, how spatial 

autocorrelation varies in relation to distance. The statistical 

significance of the global spatial association was tested using a 

randomization approach (i.e., each value is equally likely to occur 

at any location) for ranges of 5, 15, 35 and 100km. The null 

hypothesis of spatial randomness was tested with a two sided 

approach and a significance level of 0.05. 

 

3.5 LISA 

A Local Indicator of Spatial Association (LISA) is any statistics 

that satisfies (Anselin, 1995): (i) the LISA for each observation 

gives an indication of the extent of significant spatial clustering 

of similar values around that observation; and (ii) the sum of 
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LISAs for all observations is proportional to a global indicator of 

spatial association. Therefore, a LISA is useful to measure the 

contribution of each observation to the global association. 

LISA uses this last property to evaluate the spatial association by 

calculating local Moran’s I and then to evaluate the statistical 

significance of each unit. Three calculation steps were performed 

(Orellana & Wachowicz, 2011): 1) The LISA value and its 

respective Z-score were computed for each pixel (with the 

respective defined neighbours). High positive values indicated 

that an observation was surrounded by observations with similar 

values, and high negative values indicated that an observation 

was surrounded by very different values. 2) A hypothesis testing 

was applied based on a null hypothesis of spatial randomness 

(i.e. no spatial association of nearby pixels) at a 0.05 significant 

level (two sided); then, pixels with significant spatial association 

were selected for the next step. 3) Spatial clusters and outliers 

were detected based on a scatterplot of the standardized values of 

the LISA and of the original variable. Four quadrants can be 

identified based on the means or the 0 z-score, in order to 

classify spatial clusters or spatial outliers. If the variable and the 

LISA z-scores > 0, a High-High or “hotspots” are detected. 

These are homogeneous regions with high correlation values also 

with high neighbourhood values. If the variable and the LISA z-

score < 0, the Low-Low or “coldspots” are detected. These are 

homogeneous regions with low correlation values also with low 

neighbourhood values. The remaining quadrants represent spatial 

outliers of dispersed values. Because our analysis is performed 

on continuous raster data, the three calculation steps can be 

plotted in maps. 

 

4. IMPLEMENTATION 

Implementation was done in R using several libraries. The 

rasterbrick satellite images of precipitation were handled with 

the library raster (Hijmans, 2017); the correlograms were 

calculated with elsa (Naimi et al., 2019); and Moran’s I and 

LISA, including the hypothesis testing were performed with 

spdep (Bivand & Wong, 2018). 

 

5. RESULTS AND DISCUSSION 

5.1 Correlation maps 

Correlation maps showed positive correlations in blue, and 

negative in red (Figure 2). A positive correlation means that 

when the value of a climate index increases, the precipitation also 

increases; while a negative correlation means that when the index 

increases, the precipitation is expected to decrease. Whether such 

correlations were larger than 0.3 or smaller than -0.3 (i.e. 

moderate to high correlations), they depicted the presence of 

climate teleconnections. The larger positive detected 

teleconnection was for niño1+2, followed by niño3 also with 

positive correlation, and niño4 with negative and positive 

correlations. Some indices such as niño1+2, niño3, ammon, and 

Car_errst showed the same direction for the relation in the whole 

study area (i.e. positive or negative), while others showed regions 

with positive and negative relations. 

 

5.2 Global spatial association 

As it is expected for continuous raster data, that have smooth and 

gradual value transitions, the Moran’s I value showed high 

positive spatial association (larger than 0.5) from short (5km) to 

medium ranges (100km). Moran’I at 5, 35, 50 and 100km were 

proved to be statistically significant with a p-value smaller than 

0.5.  

 
Figure 2. Correlation maps of climate teleconnection from 

Pacific and Atlantic climate indices. 

 

From the correlograms (not showed here for the sake of space), it 

was observed that the spatial association decreased while the 

neighbourhood increased. The teleconnections from the Pacific 

Ocean, such as soi, niño12, niño34, niño4, tni and np, reached 

the 0.5 Moran’s I value around the 100km distance; mei, niño3 

and oni did it at a shorter distance than 100km (around 50 to 

60km); while modoki at larger distance than 100km. The 

teleconnections from the Atlantic showed similar pattern than 

that from the Pacific. Ammst, amon and tsa reached the 0.5 

Moran’s I value around the 100km distance; while Car_errst and 

pna at shorter distance than 100km (around 50km). This agree 

with the observed spatial distribution of correlation maps, in the 

sense that teleconnections with spatial associations at larger 

ranges also showed homogenous and extensive influences in the 

correlation maps. An exception for this pattern was observed for 

niño3, that although with extensive pattern it showed a medium 

range spatial autocorrelation.  

 

5.3 Local spatial association 

LISA showed local spatial association by combining two types of 

information: clustered areas and significant local spatial 

association. On the one side, the clusters or homogeneous 

regions had high correlation values also with high neighbour 

values (HH, High-High cluster, represented in dark grey colour, 

Figure 3), and low correlation values also with low neighbour 

values (LL, Low-Low cluster, represented light grey colour). On 

the other side, only locations with significant spatial 

autocorrelation were shown. In such locations, it was rejected the 

randomness hypothesis or the lack of spatial association (i.e. 

dark and light grey areas were significant locations). Thus, HH 

and LL clusters represented significant spatial association of the 

teleconnections.  

Additionally, the significant clustered maps were overlapped 

with the moderate to high correlation areas (larger than 0.3 or 

smaller than -0.3). They are shown in figure 3 with blue the 

positive correlations and in red the negative correlations.  

It was identified two patterns: homogeneous and disperse (Table 

2). The homogenous pattern is characterized by the 

homogeneous and extensive teleconnections (correlation maps), 

also overlapped with homogeneous and extensive spatial 

association patterns (significant LISA maps). These patterns 

were mainly localized in the Coast and Amazonian regions 

(niño1+2, niño3, niño4, amon and tsa). In general, the HH 
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clusters had a more reduced (smaller) extension than the 

teleconnections influences. This means that although the 

correlation of a climate index with precipitation could be high, 

there is also a spatial randomness process (local climate drivers) 

such as topography, mountain orientation, local wind and micro-

climates, that might be playing a role to explain such high 

correlation. For instance, in the case of niño1+2, there were not 

significant spatial association in the western Andes slope, 

showing that in the highlands a spatial randomness process takes 

place. In the Amazon, niño1+2 and niño3 had moderate positive 

correlation, however such patterns were not supported by 

significant spatial association. The existence of a HH clustered 

with lack of significant spatial association does not contradict the 

influence of the teleconnection itself. Instead it pointed out the 

need to explore local climate drivers that might be interacting 

with the teleconnection. In the case of niño34, the HH cluster had 

a larger extension than the teleconnections influence, which 

shows that although with low correlation values, the spatial 

association is still large and significant.  

 

 
Figure 3. LISA clustered maps with significant spatial 

association. Dark gray areas are HH clusters, light gray areas are 

LL clusters, and white areas means spatial randomness. Blue 

polygons are moderate to high positive correlation, and the red 

ones are moderate to high negative correlation. 

Table 2. Summary of detected patterns of spatial association. 

Pattern Coast Highlands Amazon 

Homogeneous  Pacific 

niño1+2 

niño3, niño4 

Atlantic 

amon, tsa 

 

 Pacific 

niño34 

pna 

 

Disperse  Pacific 

modoki 

tni 

np 

Pacific 

soi, mei 

modoki 

niño4, oni 

tni, np, pna 

Atlantic 

ammsst 

car_ersst 

 

 

The disperse pattern is characterized by disperse teleconnections 

(correlation maps), also overlapped with disperse spatial 

association patterns (significant LISA maps). These patterns 

were mainly localized in the Highlands (soi, mei, modoki, niño4, 

oni, tni, np, pna), central-south part of the Coast (modoki, tni, 

np), and centre of Amazonian region (ammsst, car_ersst). In 

these cases, the spatial association clusters played an important 

role by confirming the disperse teleconnection patterns and 

showing that the presence of an underlying local process that 

might help explaining such teleconnections. For instance, in the 

highlands region could be the altitude and the mountain 

orientation that manage to capture moisture. This pointed out the 

need to explore the interaction of precipitation with local drivers 

and further teleconnections in order to identify the physical 

process that might explain such patterns. 

 

6. CONCLUSIONS 

This study explored spatial autocorrelation of climate 

teleconnection in the tropical country of Ecuador. Moran’ I 

global and LISA local indicators were used. The results showed 

that although Moran’s I depicted high positive spatial association 

in all the cases, LISA also allowed to identify two types of 

teleconnections patterns: homogenous and disperse. The 

homogenous patterns were localized in the Coast and Amazonian 

region. Meanwhile the disperse patterns were localized in the 

three regions of the country, with a major presence in the 

Highlands.  

In the Coast, homogeneous teleconnections were detected with 

Pacific indices niño 1+2, niño 3, niño 4, and Atlantic indices 

amon and tsa. Disperse relations in the Coast were modoki, tni 

and np, highlighting the influence of lower than annual frequency 

oscillations and suggesting that precipitation in the Coast has 

inter-annual and longer influences. For the Amazon 

homogeneous teleconnections with Pacific indices were found 

with niño 3.4 and tna. Disperse teleconnections were detected 

with Atlantic Ocean indices such as ammsst and Caribean 

car_ersst. Only dispense teleconnections were found in the Andes 

probably due to more local precipitation occurrence in this 

complex terrain. 

Despite the important findings already shown, the main 

limitation of this study is the lack of seasonal analysis due to the 

high spatio-temporal features of the climate system. Thus further 

studies may go on this direction. In addition, the used data was 

corresponding a 10 years’ period, up to 2011. Therefore, it is 

needed to extend and update the temporal period in order to 

capture decadal variations and trends in the teleconnections.  

Moran’s I and LISA are exploratory spatial methods, useful for 

hypothesis building. Thus this study focalized out attention in 

two directions for further research. First, in those geographic 

areas that, even if they had moderate to high teleconnection 

influences, there also were random spatial patterns (i.e. without 

significant spatial association). Second, in those areas that both 

teleconnections and significant spatial association were similar, 

but dispersed. This study pointed out the need to identify the 

local underlying features that restricts (smaller spatial 

association patterns) or reaffirms (disperse patterns) the 

teleconnection patterns. In this regards, our hypothesis is that the 

presence of local climate drivers such as topography, mountain 

orientation, local wind and micro-climates, might be playing a 

role to explain such patterns.  
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