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ABSTRACT: 

 

High-Andean wetlands from northern Chile are considered worldwide biodiversity hot spots, however, they are subdued to high 

anthropic pressure. The monitoring of state variables, such as vegetation, allows to know the ecosystem’s global condition, which 

could be assessed by the analysis of spectral vegetation indices. The main goal of this paper was to detect changes in the high-

Andean wetland vegetation, with remote sensing tools, to focalize surveillance efforts and the use of resources from environmental 

agencies. NDVI time series were constructed spanning from 1986 to 2019 based on Landsat data, which were analyzed based on the 

vegetation change detection using BFAST Monitor method. Detected changes were categorized to highlight certain types of changes 

that were considered more relevant. Wetlands were separated in two rankings (A and B) based on detected changes and territorial 

context. From 5,622 wetlands, 81 were categorized into group A and 510 into group B. One affected wetland was used as study case 

to assess the method’s efficiency, being able to detect changes and assign a relative importance to the case. It is shown that the 

proposed method has the capacity to detect vegetation degradation processes in high-Andean wetlands and could improve in the 

efficiency and effectiveness of the environmental agencies control labors over these ecosystems. 

 

 

1. INTRODUCTION 

High-Andean wetlands located in northern Chile have a high 

ecological value due to the high species richness that can be 

found in these ecosystems because of the high spatial 

heterogeneity, being considered biodiversity hotspots 

(Ahumada, Faúndez, 2009). Also, they provide ecosystem 

services which are very important for local communities, such 

as hydrological cycle regulation and food supply (Ramsar-

MMA, 2015, ten Brink et al., 2013).  

 

Their azonal distribution is associated to temporally or 

permanently saturated soil strata due to local hydrogeological 

conditions. This makes them highly susceptible to changes in 

hydrological regimes of the systems that feed them, which are 

considered one of the main drivers of change (Ahumada et al., 

2011; Ahumada, Faúndez, 2009). The latter is very relevant due 

to high levels of anthropic pressure that many of these wetlands 

are exposed to due to water extraction for local economic 

activities, such as mining and agriculture, among others. 

Therefore, wetland monitoring is fundamental to act in a timely 

manner against possible actions that could result in negative 

impacts to them. In this sense, the role of environmental control 

institutions, as Superintendence of Environment (SMA, from its 

Spanish initials) is crucial, since it oversees the compliance with 

environmental regulations and commitments acquired by the 

owners of projects and productive activities in order to avoid 

negative environmental impacts. However, it is necessary to 

consider the limited supervising resources, which complicate 

the establishment of an adequate spatial-temporal coverage 

control that would provide a full understanding of all the 

regulated aspects related to the ecosystem’s health. Instead, they 

are only analyzed based on specific inspections caused by 

complaints and to a lesser extent by scheduled inspections. 

 

A wetland’s survey can be done at different spatial-temporal 

scales, which show different aspects of its dynamic and 

structure (Ahumada et al., 2011). Currently, the United States 

Environmental Protection Agency (EPA) defines three levels 

for wetland monitoring and assessment. Level 1 considers a 

landscape level vision based on large-scale approaches, 

generally through remote sensing techniques, while levels 2 and 

3 take into account brief and intensive in-situ evaluations, 

respectively (EPA, 2019). The two latter require important 

amounts of logistics and resources to be executed and sustained, 

limiting their applying to specific study cases. Considering this, 

the identification of “state variables” allows to study the 

wetlands global condition without the need for a deep analysis, 

being the vegetation one of the main state variables in wetland 

ecosystems because it is directly affected by changes in 

hydrological availability (CEA, 2006), and has been widely 

studied by means of spectral indices obtained from satellite 

imagery (Kayastha et al., 2012, Hansen et al., 2016). In present 

days, satellite remote sensing is a true and reliable option for 

acquiring surface information from large portions of the earth 

systematically. Besides, there is an increasing number of free 

data available online for public access in various spatial and 

temporal scales, turning remote sensing into an ideal tool for 

developing low-cost applications for environmental monitoring 

to be used by environmental agencies with limited resources. 

 

There are a number of international examples in the matter, 

such as DETER system in Brazil, which allows to generate 

deforestation alerts in the Amazonas (Diniz et al., 2015), a 

coastal monitoring system for detecting hydrocarbon spills in 

Argentina (CONAE, 2019) and other global scale initiatives 

such as the Global Wetland Observation System GWOS which 

emerged from the 2007 Ramsar convention (GEO BON, 2019). 

In general terms, national wetland monitoring initiatives are 

limited to particular cases or projects restricted to national parks 

and reserves. Nevertheless, the inclusion of remote sensing tools 

in wetland monitoring could help to develop a continuous and 

permanent survey that includes much of the high-Andean 

wetlands that exist in northern Chile.  

 

This work aims to use satellite imagery to provide the 

environmental institutions with a tool that will help to focalize 

control efforts and act in timely manner against possible 

negative impacts derived from anthropic factors over high-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-13-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165678

 
 

13



 

Andean wetlands that haven’t been detected by traditional 

means such as complaints and inspections. 

 

 

2. OBJECTIVE 

To create a methodology for the monitoring of vegetation in 

high-Andean wetlands in terms of changes generated by 

potential anthropic impacts, which will lead to prioritize and 

focus environmental agencies control efforts. 

 

 

3. METHODOLOGY 

3.1 Study area 

The study area (Figure 1) corresponds to all of the high-Andean 

wetlands located in Arica and Parinacota, Tarapacá, 

Antofagasta and Atacama regions that has been registered by 

the Environment Ministery of Chile in 2015 that are located 

over 2,000 of altitude (CIREN 2013), which sum up to 6,706 

wetlands.  

 

 
Figure 1. Study Area. 

 

3.2 Satellite imagery 

Satellite imagery used in this research corresponds to Landsat 

data from 1986 to 2019. Specifically, we used the 30m Surface 

Reflectance product, choosing only Collection 1 Tier 1 data 

from TM5 and ETM+ sensors aboard Landsat 5 and 7 

platforms. No OLI imagery was included as to preserve spectral 

and radiometrical consistency among images. Only summer 

scenes (December to March) were considered for the study 

since it’s the time of year with the highest vegetation vigor, 

allowing a better study of this variable and to avoid snow cover 

in the higher reaches. Scenes with more than 30% of cloud 

cover were excluded from the analysis, and subsequent cloud 

and saturated pixels masking using QA bands were performed 

to enhance data quality. A thermal band-based filter was also 

applied to reduce confusion between salt flats and clouds in the 

area. The vegetation index was calculated for each scene, 

grouping them afterwards by summer season and obtaining the 

summer median value for each pixel, which was chosen as the 

representative value for each year. 

 

3.3 Time series construction 

The creation of time series is based on generating an index that 

is consistent in time and ordered chronologically. In remote 

sensing, the time series are pixel-based and represent the 

variation of a certain variable in a fixed geographical location (a 

same pixel) in time for a set of particular images (each image is 

a different date). 

 

3.3.1 Generation of vegetation index: Time series for 

vegetation monitoring are based on the Normalized Difference 

Vegetation Index (NDVI) (Rouse et al., 1974), which is used as 

a proxy for vegetation vigor and/or cover and has been proven 

to be precise in the estimation of vegetation cover for arid zones 

(Barati et al., 2011).  

 

3.3.2 Pixel selection for analysis: In a first approach, the 

study area was based on a mask generated using polygon 

products from the 2015 Wetland Inventory form the Ministry of 

Environment of Chile, plus a 100m buffer to ensure the 

selection of all pixels that represent wetland vegetation. The 

NDVI was subsequently calculated for these pixel series. 

 

Additionally, a data availability filter was applied to the time 

series to include only pixels with enough data and that had 

vegetation in the period between 1986 and 1999. This period 

was defined as the base (or historic) period for the change 

analysis (that will be explained in the next section) because it 

allows to have a minimum amount of observations for the 

training of the model, and due to the difficulty of the 

environmental authority to act upon events that happened before 

2000. In order to do so, pixels were selected based on two 

criteria:  

 

1. That pixel time series count with at least 10 

observations in the base period for the generation of a trend 

model.  

2. That the NDVI median of the base period is above a 

threshold that can be considered vegetation. Based on 

observation performed in the study area, the threshold value was 

set to 0.08 as to include areas with very low vegetation cover, a 

situation that was observed in some wetlands in the area 

 

After filtering, 1,048 wetlands were excluded from the analysis 

because they did not have vegetation to analyze, leaving a total 

of 5,622 to study. 

 

3.4 Time series analysis 

BFAST Monitor algorithm was used to detect changes in the 

time series, which is based on the “Break detection For Additive 

Season and Trend” algorithm (BFAST) (Verbesselt et al, 2012). 

The method consists on the generation of a model that 

represents vegetation behavior in the time based on a “historic” 

period (1986 - 1999 in this research) that is considered stable, 

and evaluates if new data, since 2000, considered as monitoring 

period), behaves in the same manner. It is based on a linear 

trend and a harmonic season to represent vegetation 

phenological fluctuations. Only the linear trend was used in the 

present research because only one scene per season was 

considered. The algorithm was chosen due to its ease of use, 
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without the need of setting change thresholds. This is very 

useful in a high range of environmental conditions, wide levels 

of NDVI fluctuation and various types of changes. Besides, it is 

not affected by gaps in the time series, avoiding the use of 

imputations methods. The model’s output corresponds to the 

year of change and magnitude.  

 

3.5 Results generation at pixel level 

With the aim to detect the wetlands that experienced the most 

relevant changes and help to eliminate false change detections 

due to the own methods limitations, a pixel-level categorization 

was done based on the magnitude and slope of the historic 

period and monitoring period linear trends. The year of change 

was not considered, however this feature is relevant in 

subsequent steps to relate relevant vegetation changes with 

natural or anthropic events that had taken place nearby. Besides, 

only negative changes were considered in the analysis given 

that the aim of the study is to detect harmful impacts on 

wetlands (decrease in vigor or vegetation cover). 

 

As a first step to pixel categorization, the linear trends behavior 

for the historic and monitoring period for every pixel were 

classified into positive, null or negative. Based on a series of 

possible combinations (historic/monitoring period), they were 

assigned a value between 0 and 3, as show on Table 1. This 

allows to prioritize certain changes that are more relevant in 

terms of environmental inspections, as well as mitigate the 

effect of false change detections and inflated change magnitudes 

due to the projection of increasing trends since the historic 

period that, when not met, are detected as possible significant 

changes (DeVires et al, 2015).  

 

Historic period / monitoring period Category 

Null/Null, Positive/Positive 0 

Negative/Null, Negative/Positive 1 

Null/Positive, Negative/Negative, Positive/Null 2 

Null/Negative, Positive/Negative 3 

Table 1. Categorization based on slopes of linear trends 

 

Afterwards, the change magnitudes were classified into 5 

categories according to their position in the quartile (Q), 

including atypical values. Negative change magnitudes were 

converted to positive values. The data distribution showed 

atypical values above the upper quartile, which were considered 

the most abrupt changes and were classified as category 5. The 

rest of the classification is shown in Table 2. 

 

Limit values Magnitude 

range 

Category 

Values < Q1 0 - 0,018 1 

Q1 - Q2 0,018- 0,033 2 

Q2 – Q3 0,033- 0,072 3 

Q3 – (Q3 + 1.5 × RIC) 0,072 – 0,154 4 

Atypical Values > (Q3 + 1.5 × 

IQR (1)) 

0,154 – 99 5 

Table 2. Categorization according to change magnitude.  

 

Finally, the slope of linear trends and magnitude classification 

were combined to generate 7 final categories as shown in Table 

3. The highest values represent the most important pixels.  

 

 

 

 

 

(1) IQR: Interquartile Range. 

Slope categories Magnitude 

categories 

Change 

Category 

3 5 7 

3 3-4 6 

3 1-2 5 

2 4-5 4 

2 1-3 3 

1 1-5 2 

0 1-5 1 

Table 3. Change categorization. 

 

3.6 Results generation at wetland level 

Results generation at wetland level consisted in collecting all 

data that could allow to identify each unit’s state (pixel 

information) and its local context. Three main aspects were 

considered for estimating change severity: affectation, causality 

and relevance, which are explained next.  

 

3.6.1 Affectation: Affectation for each wetland is defined by 

their pixel’s features. On this way, the following indicators were 

generated per wetland: 

 

1. Number of pixels in category 6 and 7, considered the 

most relevant. 

2. Percentage of pixels that changed from category 6 and 7 

to other category, with respect to the total amount of pixels for 

each wetland.  

 

3.6.2 Causality: As a way of integrating local context, the 

distance to surface and groundwater extraction points was 

included (Alvares-Garreton et al, 2018). This was done to relate 

anthropic causes to eventual degradation processes given the 

range of action of environmental control institutions. The used 

criteria were the following: 

 

  1. Wetlands with 1 or more groundwater extraction at less than 

5 km, given that they belong to the same basin. 

  2. Wetlands with 1 or more surface or groundwater extraction 

points at less than 10 km, given that they belong to the same 

basin and that they are located upstream from the wetland’s 

lower point. 

 

3.6.3 Relevance: Relevance was defined based on if 

wetlands were located in some of the following interest zones: 

Site under official protection (2), Indigenous Development Area 

(CONADI, 2019) and/or Restriction Area of Prohibition Zone 

(DGA, 2019). These zones were used because they have high 

level of environmental and social protection in the country. 

 

3.7 Detection and sorting of relevant cases 

Two rankings (A and B) were generated from the outputs when 

applying affectation, causality and relevance criteria. Ranking A 

was defined prioritizing the area and proportion of affectation in 

the wetland, while Ranking B was defined based on affected 

area independently from the percentage of change. This was 

done to include large wetlands with high absolute surfaces of 

change but little in terms of the whole area. Used criteria are 

detailed in Table 4: 

 

 

 

 

 

(2) ORD. D.E. N° 130844/13 and OF. ORD.: N° 161081/16, 

Servicio de Evaluación Ambiental. 
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Criterion Ranking A Ranking B 

Affectation 1. Wetlands are 

sorted in descending 

order according to the 

sum of pixels changed 

from category 6 and 

7. 

2. Wetlands are 

filtered, selecting only 

those with 20% or 

more of its area 

changed from 

category 6 and 7. 

3. Wetlands are 

filtered by change 

area over 10 pixels 

(0.9 ha). 

4. Rivers and 

anthropic systems are 

isolated from the 

analysis. 

1. Wetlands are 

sorted in descending 

order according to 

the sum of pixels 

changed from 

category 6 and 7. 

2. Wetlands are 

filtered by change 

area over 10 pixels 

(0.9 ha). 

3. Anthropic 

systems are isolated 

from the analysis. 

 

Causality Only wetlands with nearby surface or 

groundwater extractions are selected (<= 

10km radius). 

Relevance Only wetlands that intersect some interest 

zone are selected. 

Table 4. Criteria for ranking generation. 

 

 

4. RESULTS AND DISCUSSION 

From a total of 5,622 wetlands analyzed, 87% had at least 1 

pixel with some level of change, representing 26,050 ha of 

potentially affected wetlands across the monitoring period. In 

terms of relevant changes (categories 6 and 7), they represent 

50% of the analyzed wetlands with 7,320 ha of potentially 

relevant change (3.8% of the total area).  

 

Based on the given methodology, Rankings A and B were 

created. 81 wetlands were categorized into ranking A while 510 

in ranking B, significantly reducing the numbers of wetland to 

analyze and enabling to focalize inspection efforts by starting 

by the top wetlands in each ranking. The utility of having two 

rankings lie in the case of large wetlands with high absolute 

affected areas that don’t fall in ranking A because they don’t 

fulfill the percentage of change condition (area affected < 20% 

of total area) defined in this ranking. So, leading wetlands in 

ranking B are considered of similar importance as those leading 

ranking A, which present a greater affected area. 

 

In order to evaluate the methodology, a study case was 

conducted with the wetlands of Valle Ancho, in Atacama 

Region, which were inspected by the Superintendence of the 

Environment (SMA by its initials in  Spanish) in 2015 in the 

context of a sanctioning process against Maricunga Mining 

Company and its Refugio mining project, which was finally 

closed due to the generation of environmental damage (SNIFA, 

2019). This thesis was supported via the analysis of vegetation 

index time series, which showed a drying trend in the vegetation 

that was associated with groundwater extraction. This study 

considered the affection of 3 wetlands which correspond to 

Valle Ancho 2 and two nameless wetlands, which are identified 

by the ID: HU-OT-4024, HU-OT-4023 and HU-OT-4025 

(Figure 2).  

 

As a result of the categorization and applying criteria filters and 

ranking generation, wetlands HU-OT-4024, HU-OT-4023 and 

HU-OT-4025 were located in positions 6, 13 y 27 of ranking A 

and 29, 85 and 168 on ranking B, respectively. 

 

In this case, the algorithm used in this work detects changes in 

almost 50% of the study area, with 22.6% considered as 

relevant changes (categories 6 and 7). Also, wetland HU-OT-

4024 presents a higher number of pixels detected in categories 6 

and 7 (407 pixels) than wetland HU-OT-4023 (111 pixels), 

which has a greater proportion of category 4 pixels (139). This 

can be explained by the temporality of the changes happened in 

wetland HU-OT-4023, because the degradation trends were 

present before the monitoring period began, thus creating a 

negative-negative trend slope combination and being classified 

in category 4 (Table 3). On the other hand, wetland HU-OT-

4024 had null to positive trends during the historic period,  

starting to showing evident degradation signals after 2000 and 

thus being classified into categories 6 and 7. Figure 3 shows 

examples of the behavior of the analyzed time series and change 

detection for a pixel belonging to each one of the  defined 

categories. 

 

 
Figure 2. Change detection analysis results for Valle Ancho 

wetlands. 

 

This shows that the pixel categorization according to the type of 

change allows to focus efforts on wetlands with more recent 

degradation processes. These are more relevant for the 

environmental control institutions since it eases to detect 

possible causality and gives a wider range of action to apply 

measures needed to revert and/or mitigate negative effects of 

this changes on wetlands.  

 

Also, the detection of these cases in such a broad universe of 

cases implies that the method can give warnings on cases as 

complicated as Valle Ancho or worse. In this way, ranking 

information can be used to detect similar cases that haven’t been 

identified through traditional methods, and year of change could 

be used to relate changes with local events happening in the 

area. 
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It is important to state that the information generated by this 

method is indicative and aims to generate alarms on wetlands 

that are potentially being affected by water extraction or other 

factors. Each case should be analyzed individually in order to 

build a hypothesis about the possible factors or activities that 

could cause changes in each wetland through detailed on-site 

data collection.  

 

 
Figure 3. Example of the behavior of pixel time series in the 

Valle Ancho wetland according to change category. 

 

 

5. CONCLUSION 

The presented method proved to be able to detect both abrupt 

and gradual degradation processes in high-Andean wetland 

vegetation in an automatized way using remote sensing tools. In 

this sense, it represents a great opportunity for expanding the 

observation range and focusing efforts for environmental 

agencies related with the vigilance of high importance 

ecosystems.  

 

The generation of an affectation, causality and relevance 

ranking allows to focalize efforts and increase efficiency and 

effectiveness of the use of resources from the environmental 

institutions in a zone where in-situ inspections are operationally 

and logistically costly. Also, it has a positive effect due to the 

deterrent effect of having a permanent monitoring on these 

ecosystems located in extreme zones and opens the possibility 

to create alerts over degradation processes that complement 

those generated by traditional methods like complaints and on-

site inspections.  

 

On the other hand, increasing availability of high-performance 

cloud computing tools and free satellite databases have 

permitted the development of satellite big data applications, like 

this project, without the need of owning high cost equipment. In 

this way, new opportunities arise for the development of tools 

that could increase efficiency of public entities control labors 

without a significant increase in operational costs.  

 

It is important to state that one of the possible method’s 

limitation is that it is only useful for detecting variations in 

vegetation vigor/cover and no other degradation events like 

variations in vegetation’s composition and configuration caused 

by changes in the hydric regime. These changes could be 

undetected when using the NDVI, so the use of complementary 

indices related to the vegetation’s hydric content or denser time 

series that include more than one scene per year so that 

phenological changes can be detected are recommended. Great 

improvement opportunities in terms of territorial context inputs 

are detected, like the need for a more detailed and updated water 

extraction cadastre in the area and better groundwater systems 

information at regional level. Other aspects can also be 

included, like the spatial aggregation of changes as an input for 

case prioritization. 

 

Finally, an in-situ validation campaign is sought to be done in 

the future to detect strong points and limitations of the proposed 

methodology and increase the accuracy of the results and 

improve the tool in the context of high-Andean wetlands. 
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