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ABSTRACT:  
 

To assess the damage produced by wildfires on forest ecosystems is a critical task for their subsequent management and ecological 

restoration. Satellite-based optical images provide reliable ex-ante and ex-post data about vegetation state, making them suitable for 

the aforementioned purpose. In this study we assessed the damage produced on two forested lands by the series of wildfires occurred 

in central Chile during summer 2017. Arithmetic differences from pre- and post-fire NDVI (normalized difference vegetation index), 

NDWI (normalized difference water index) and NBR (normalized burnt ratio) were retrieved from a Sentinel-2 image set embracing 

four near-anniversary summer dates: 2016 (ex-ante), 2017, 2018 and 2019 (ex-post). The nine index-derived differences resulting 

were correlated to CBI (composite burn index) data collected in the field during summer 2019, and a model constructed by a 

stepwise regression was formulated. Results show that planted forests exhibited a somewhat smaller biomass recovery than native 

ones, in part due to their post-fire clearing and preparation, deriving in a smaller tree cover. CBI poorly performed because its 

calculation includes low vegetation strata largely recovered at the time of the field data collection. However, when overstory field 

data were used alone correlations noticeably increased (r=-0,74). This was because during the field campaign this stratum was 

still appreciably damaged, thus better matching with the data provided by the indices-derived differences, intrinsically more 

representative of uppermost vegetation layers. The burn damage was mapped on both study areas employing the best performing 

regression model, based on NDWI2016-2019, NDWI2016-2017, NBR2016-2018 and NBR2016-2017 differences (adjusted R2= 0.72, p < 0.005, 

root mean square error = 0.38). The use of approaches like this one in other areas of central Chile, where wildfires are increasing 

their frequency and intensity, might contribute to better lead post-fire management and restoration actions on their damaged forest 

ecosystems. 

 

1. INTRODUCTION 

Wildfires may produce severe disturbances on forest 

ecosystems, among these: biodiversity destruction, habitat 

fragmentation, soil erosion and sterilization, water and 

atmosphere degradation and carbon dioxide release (Chuvieco, 

1999). Although most of the wildfires are caused by human 

actions, the temperature rising and the humidity diminishing 

trends, both influenced by the global climate change, have 

increased their frequency and intensity (Westerling et al. 2006; 

González et al., 2011). This especially occurs over regions 

subject to dry and hot summers, like those inserted on 

Mediterranean climates, where the fire’s triad (fuel, climate and 

topography) is enhanced (Díaz-Delgado, 2000; González et al., 

2011; Díaz-Hormazábal and González, 2016; Font et al., 2016). 

 

To assess and monitoring the calcination severity and biomass 

recovery progression of a burnt forest ecosystem is a key task to 

orientate long- and short-term site-specific post-fire actions of 

management and ecological restoration. In this regard, satellite-

based optical remote sensing stands out as a cost-efficient tool 

for capturing and analysing data sensitive to the effects 

produced by wildfires on any vegetation land cover. It provides 

a synoptic overview of vast calcined areas at frequent and 

regular time intervals (Gitas et al., 2012). The capabilities 

offered by optical images to retrieve vegetation state variables 

related to disturbances like wildfires is widely documented in 

the scientific literature, where subtractions between ex-ante and 

ex-post spectral vegetation indices have been routinely used as 

fire damage proxies (Chuvieco et al., 2002; Key and Benson, 

2006; Escuin et al., 2008; Sever et al., 2012, Ryu et al., 2018). 

These indices result from arithmetically combining spectral 

samples or bands sensitive to several physical-chemical 

vegetation parameters. 

 

The ability of an ecosystem to regenerate and to achieve its 

primal condition, i.e., resilience capability, will depend on the 

calcination severity or intensity of its biomass, as well as its 

response to ecosystem variables like seedling recruitment, 

resprouting, alien and native species colonization, among others 

(Keeley, 2009; Chen et al., 2011). In this sense, it should be 

noted that values retrieved from index-derived differences are 

more closely sensitive to the bulk amount of calcined or 

recovered biomass, and not necessarily to the reestablishment of 

other ecological attributes of the burnt ecosystem, such as 

structure and composition (Bastos et al., 2011; Peña and Ulloa, 

2017). In spite of this, to relate these values to quantitative or 

qualitative field data of biomass calcination or recovery 

contributes to understand the response of several of those 

variables to fire damage (Key and Benson, 2006; De Santis and 

Chuvieco, 2009). 

 

In this study vegetation spectral indices were related to field 

data in order to assess the impact of fire on planted and native 

forest land covers. Two of the largest forested lands burnt 

during the series of wildfires affecting central Chile on the 2017 

summer, were considered as study areas. Biomass burn severity 

of the target forests along two years after the wildfires was 

inferred by the ex-post to ex-ante subtraction of three well-

known vegetation spectral indices retrieved from Sentinel-2 

images. Thereafter, CBI (composite burn index) data collected 

in the field during summer 2019 were employed to model burn 

severity using the index-derived differences as predictors in a 

stepwise regression analysis. 
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2. MATERIALS AND METHODS 

2.1 Study area 

Two areas burnt during summer 2017 in central Chile, known 

as Nilahue-Barahona and Las Máquinas, were targeted in this 

study. The former is located in Region VI (between latitudes 

34°05’ y 34°75’ S) comprising an area of 490 km2, and the 

latter is in Region VII (between latitudes 35°05’ y 35°51’ S) 

reaching an area of 2163 km2. Both are covered by similar 

forest formations, distributed along the Coastal mountain, 

roughly at 400 m.a.s.l., and subject to a predominantly 

Mediterranean climate. In Nilahue-Barahona, planted and native 

forests comprise 44.86 and 55.14% respectively, of the whole 

forest lands, whereas in Las Máquinas these percentages 

correspond to 87.7 and 12.72. On both areas planted forests 

comprise Radiata pine (Pinus radiata D. Don) monocultures 

mostly, while native forests mostly correspond to sclerophyll 

formations with some minor variations bewteen their 

compositions. 

 

2.2 Materials 

A set of four Sentinel-2 images comprising pre- and post-fire 

near anniversary dates of each study area (Table 1) was 

downloaded from the ESA (European Spatial Agency) online 

service https://scihub.copernicus.eu/. 

 

Study area Image acquisition date 

Pre-fire Post-fire 

Nilahue-

Barahona 

December 20, 2016 February 18, 2017 

  February 18, 2018 

  February 23, 2019 

Las 

Máquinas 

January 19, 2017 March 20, 2017 

  March 15, 2018 

  March 20, 2019 

Table 1. Acquisition dates of the Sentinel-2 images for each 

study area.  

Sentinel-2 images are acquired by an optical pushbroom 

scanner (MSI, Multispectral Instrument) comprising 13 bands 

across visible and infrared wavelengths of the spectrum. The 

product used (L2A) records at-surface reflectances orhorectified 

in UTM (Universal Transverse of Mercator) projection, datum 

WGS84 (World Geodetic System 1984). The bands were 

spatially resampled to the finest Sentinel-2 pixel (10 m) by the 

nearest neighbour method. 

 

2.3 Methods 

Three commonly used vegetation spectral indices were retrieved 

from each image (Table 2). 

 

Index Notation Formula Reference 

Normalized 

difference 

vegetation 

index 

NDVI 

 
Rouse et al., 

(1973) 

Normalized 

difference 

water index 

NDWI 

 
Hunt and Rock 

(1989) 

Normalized 

burn ratio 

NBR 

 
Key and Benson 

(2006) 

Table 2. Vegetation spectral indices used in this study. 

 

Each post-fire index was subtracted to its corresponding pre-fire 

index to obtain a difference depicting the burn severity of the 

targeted forests for that period. A field campaign carried out in 

summer 2019, enabled to measure that variable on 31 forest 

plots exhibiting a homogenous condition within a radius of 20 

m (twice the image pixel size used). They were 

opportunistically scattered across both type of forests: planted 

(n= 22) and native (n= 9) of the Nilahue-Barahona (n= 13) and 

Las Máquinas (n= 18) study areas. The measurement method 

employed was the widely known CBI, an index that averages 

the magnitude of fire damage observed on the understory 

(including substrate) and overstory strata of a given forest plot, 

using a continuous scale from 0 (no calcination) to 3 

(completely calcined) (for more methodological details see Key 

and Benson, 2006).  

 

The nine index-derived differences resulting were correlated to 

three field data sets: the measurements made on understory and 

overstory strata separately, and the CBI integrating both. A 

stepwise regression (i.e., combining backward and forward 

variables selection) using the field data set yielding the highest 

correlation as dependent variable and the index-derived 

differences as predictors was performed. The predictors were 

selected by the adjusted determination coefficient (R2) and the 

model’s performance was further assessed by the RMSE (root 

mean square error) resulting from a 100 times repeated 5-fold 

cross-validation. 

 

3. RESULTS 

As it could be expected, on both study areas index-derived 

differences were the widest for those including the first post-fire 

image date, being reflected in their largest mean differences 

(Figures 1 and 2). These averages progressively diminished 

throughout the index-derived differences including the 

remaining post-fire image dates. In general, index-based 

differences exhibited similar temporal patterns, with planted 

forests consistently showing larger mean index-derived 

differences than native or mixed ones.  

 

 
Figure 1. Mean and standard deviation of the index-derived 

differences (ex-ante minus ex-post image dates) for Nilahue-

Barahona’s forest land covers. 
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Figure 2. Mean and standard deviation of the index-derived 

differences (ex-ante minus ex-post image dates) for Las 

Maquinas’ forest land covers. 

Correlation coefficients retrieved between field and remote 

sensing data showed different behaviours, mainly depending on 

the field data set employed (Table 3). For CBI (i.e., upper and 

lower tree canopy strata measurements), they were low (r= 

0.22-0.39), but when overstory data were used alone, 

correlations were strengthened (66% of the them ≥ 0.66). For 

understory instead, correlations were very low or almost 

inexistent. Similar behaviours were observed in the correlations 

when data were partitioned according to forest type (data not 

shown). For the best correlated data set (i.e., using overstory), it 

was observed that NDWI and NBR yielded the highest 

correlations, especially for the index-derived differences using 

the second and third post-fire image dates (r= 0.66-0.74). 

Image 

subtraction 

 Forest 

stratum 

r 

NDVI NDWI NBR 

2016-2017 

Overstory 0.43 0.32 0.28 

Understory 0.08 0.06 0.17 

CBI (total) 0.31 0.24 0.26 

2016-2018 

Overstory 0.66 0.71 0.66 

Understory -0.08 -0.18 0.11 

CBI (total) 0.33 0.31 0.34 

2016-2019 

Overstory 0.35 0.7 0.74 

Understory 0 -0.2 -0.13

CBI (total) 0.24 0.32 0.39

Table 3. Correlation coefficients (r) for CBI and each of the 

forest strata composing it, according to index-derived 

difference. 

A stepwise regression revealed that the most robust linear 

model of forest fire damage for the overstory stratum of both 

study areas should consider NDWI2016-2019, NDWI2016-2017, 

NBR2016-2018 and NBR2016-2017 as predictors (adjusted R2= 0.72, 

p < 0.005, RMSE = 0.38). 

4. DISCUSSION AND CONCLUSIONS

Index-derived differences revealed that forests of both study 

areas experienced a progressive biomass recovery two years 

after wildfires. However, regardless the spectral index, slowest 

recoveries were found in the case of planted forests. On one 

hand, this is likely due to the relatively high fire severity that 

the targeted forest plantations may reach, as a result of the high 

fuel load of their dominant species (Radiata pine and 

Eucalyptus spp.). On the other hand, sclerophyll species tend to 

exhibit fast post-fire recovery because of a morphology and 

physiology fitted to thermal and water stresses (Gómez and 

Hahn, 2017). Aside from that, post-fire regrowth of scleropyll 

formations not only relies on seeding, as for Radiata pine 

plantations, but also resprouting (Reyes and Casal, 2000). This 

regrowth is faster for herbs, shrubs and small trees comprising 

their understory, a canopy layer often inexistent in 

monostructural plantations like those targeted (Key and Benson, 

2006). Finally yet importantly, we observed extensive post-fire 

clearing on many burnt plantations during the field campaign, 

exhibiting bare soils under preparation. This situation 

contributed to post-fire index dates exhibiting low values and 

therefore, relatively large differences when subtracting to their 

corresponding ex-ante date. Such a values erroneously were 

part of scarcely recovered or severely burnt forest land covers 

(i.e., false positives). 

Spectral indices had a similar performance, indicating that even 

when they are sensitive to different physical-chemical 

vegetation parameters (i.e., vigor and turgor) a significant 

autocorrelation may arise between them, as previous studies 

have pointed out (Chen et al., 2011; Peña and Ulloa, 2017). 

NDWI- and NBR-based differences yielded the highest 

correlations and predictive power, especially using the second 

and third post-fire image dates. These indices are constructed 

with bands belonging to the SWIR region, which have had a 

good performance in several forest-related studies (Frolking et 

al., 2009; Banskota et al., 2014), particularly those orientated to 

wildfire damage assessment by benchmarking different spectral 

indices (Chuvieco and Kasischke, 2007, Escuín et al., 2008; 

Chen et al., 2011), The usefulness of these bands relies on their 

relatively minor sensitivity to the noise due the atmosphere 

scattering and their high sensitivity to scarcely vegetated or bare 

soils (Banskota et al., 2014). The lower correlations yielded for 

index-derived differences calculated immediately after the fire 

extinction (using the 2017 image date) were as expected, as 

those differences should more weakly relate to field data 

collected two years later, when forests were recovered to some 

extent. 

The poor performance of CBI is also explained by the 

aforementioned temporal mismatch between both, field and 

remote sensing data sets. As it could be expected, understory 

was largely recovered two years after wildfire, when field 

campaign was made, thus introducing lower burn severity 

values to CBI. Meanwhile, overstory exhibited more damaged 

canopies at that time, especially on its taller and bigger trees. 

Since images better depict the uppermost vegetation strata, 

overstory field measurements will stronger correlate to their 

corresponding pixel-derived data (De Santis and Chuvieco, 

2009). Consequently, we obtained higher correlations and more 

predictive power when using this data set alone. This finding 

warns about using CBI in its original form when pretending to 

relate it to earlier remote sensing data, being recommendable to 

consider only the overstory stratum.  

Future studies should improve the methods and further explore 

the findings exposed here by expanding the observations to 

other wildfires of central Chile, affecting different forest 

formations under different site conditions. Moreover, they 

should test other regressions and validation approaches (e.g. 

regularized linear functions and spatial cross-validations), 

which have shown more robust predictability for vegetation 

ecology studies using large set of predictors and subject to 

spatial autocorrelation (Zandler et al., 2015; Schratz et al., 

2019). This might contribute to formulate more accurate models 
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of fire damage for the different Chilean biomes. Such a task 

assumes a special meaning in the Chilean forestry context, 

where wildfires are occurring more often and with increasing 

intensity (Peña-Fernández and Valenzuela-Palma, 2004). 
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