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ABSTRACT: 

This paper presents a new methodology for mapping summer crops in Uruguay, during the season, based on time-series analysis of the 

EVI vegetation index derived from the MODIS sensor. Time-series were processed with the k-means unsupervised machine learning 

algorithm. For this algorithm, the ideal number of clusters was estimated using the elbow method. Once the clusters were obtained, for 

each one, the average phenological signature was adjusted using a nonlinear smoothing spline regression technique. Additionally, using 

the derivative analysis, the key points of the curve were estimated (minimum, maximum and inflection points). When analyzing the 

average signature of each cluster, those whose signature follows the seasonal pattern of an agricultural crop (similar to a Gaussian 

function) were selected to generate a binary map of crops/non-crops. The estimated crop area is 2,336,525 hectares, higher than the 

official statistics of 1,667,400 hectares for the 2014-15 season. This overestimation can be explained by the resolution of the MODIS 

pixel (250 meters), where each has a different degree of purity; and commission errors. The methodology was validated with 5,317 

ground truth points, with a general accuracy of 95.8%, kappa index of 85.6, production and user accuracy of 85.1% and 91.3% for 

crops/non-crops. 

1. INTRODUCTION

Uruguay has a total area of 176,220 square kilometers (FAO, 

2019). According to national statistics for the 2014-15 season, the 

area for summer agricultural crops (rice, corn, and soybean) was 

1,667,400 hectares (16,674 km2) (MGAP-DIEA, 2016). The 

summer crops area has increased from 300,000 hectares in 2000-

01 to 1,400,000 in 2012-13 (MGAP-DIEA, 2005). This growth 

is explained by the expansion of soybean crop area determined 

by the international prices of this commodity that went from 200 

dollars a ton in 2000 to 700 in 2012 (World Bank, 2019). This 

process of expansion of the agricultural area also occurred in 

other countries of the region such as Argentina, Brazil, and 

Paraguay (Llonch, 2019). Considering the most important crops 

in Uruguay: soybean, rice, and corn, the area occupied by these 

in 2014-2015 were of 1,334,000, 160,700, and 83,200 hectares 

respectively (MGAP-DIEA, 2016), Considering these same 

crops but in yield production, soybean represents 3,109,300 tons, 

rice, 1,348,300 tons and corn, 479,500 tons. About agricultural 

exports for 2017, soy and rice represented 1189 and 448 million 

dollars (URUGUAY XXI, 2018). 

Taking into consideration agriculture importance for the 

Uruguayan economy, it is central to have a tool that allows 

mapping agriculture areas during the season, to assess their 

status, through vegetation indexes like the Normalized 

Difference Vegetation Index (NDVI) or Enhanced Vegetation 

Index (EVI) (NASA-Earth Observatory, 2000). This tool will 

support decision-making of different stakeholders, such as 

farmers, technical advisors, and government agencies related to 

agriculture. 

For mapping agriculture areas, classic methods use ground truth 

points to train supervised models of machine learning. In 

Australia, supervised techniques were tested on MODIS multi-

temporal images with time series harmonic analysis (HANTS) 

and principal component analysis (PCA) (Potgieter, Apan, 

Hammer, & Dunn, 2005). Other methods, combined time-series 

of MODIS, Landsat 8 and Spot 4 images, using support vector 

machines (SVM) to mapped different land uses and land covers 

(Waldner, Canto, & Defourny, 2015). In Brazil, using random 

forest, some authors classified land uses with time-series of EVI 

of Landsat 8 smoothed with double logistic function (Bendini et 

al., 2016). 

Unsupervised classification techniques have also been tested by 

segmenting Spot 4 and 5 images into different land use and land 

cover categories, using k-means with Pearson Systems (Rekik, 

Zribi, Hamida, & Benjelloun, 2009). 

In this paper, we proposed a new methodology to map 

agricultural crops without ground truth data and during the 

growing season, analyzing time-series of a vegetation index, with 

machine learning techniques such as unsupervised classification, 

nonlinear interpolation techniques, derivative analysis and expert 

knowledge. 

2. MATERIALS AND METHODS

We considered Uruguay as the study, between latitudes 30 and 

35 south, and longitudes 53 and 59 (Figure 1). 

Figure 1. Uruguay. 
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2.1 Hardware and software 

The processing was performed on a computer with an INTEL 

CORE i7 processor of 2.90 GHz and 4 cores, 24 GB of RAM, 1 

TB solid-state disk and 64-bit Windows 10 operating system. The 

scripts were developed in the statistical software R, version 3.5.0 

and the RStudio IDE version 1.1.453. 

2.2 Satellite imagery 

For mapping agricultural areas during the season, satellite images 

from the MOD13Q1 version 6 product (Fontana et al., 2015) of 

the Moderate Resolution Imaging Spectroradiometer (MODIS) 

onboard the NASA TERRA satellite were used (Salomonson, 

Barnes, & Masuoka, 2006). This satellite has a daily review 

period. The MOD13Q1 has 2 bands of the vegetation indexes: 

EVI and NDVI, with a pixel spatial resolution of 250 meters. This 

product is a synthetic image where the value of each pixel is the 

highest from daily images of a 16-day period. For Uruguay, tile 

h13v12 was used, which covers the entire country (Figure 2). 

Images corresponding to the 2014-15 summer season (from 

September to March) were selected. 

Figure 2. MODIS sinusoidal tile grid h13v12. 

2.3 Methodology 

Time-series of EVI index were analyzed for each pixel during the 

growing season (from September to March) of summer crops 

(soybean, corn, and rice). EVI was used, since some studies have 

shown that it does not saturate at high biomass values as it 

happens with NDVI (Huete et al., 2002). 

Each land use and land cover (LULC) has a different evolution 

of EVI during an agricultural year, which represents its growth 

and development cycle, known as a phenological signature 

(Chatziantoniou, Psomiadis, & Petropoulos, 2017). We classify 

LULC in different categories such as grassland, implanted 

forests, natural forests, crops, water bodies, wetlands, or others 

such as urban areas. 

We hypothesize that it is possible, by combining machine 

learning techniques such as unsupervised classification, 

smoothing spline nonlinear regression, derivative analysis, and 

expert knowledge, to separate pixels from the same category. In 

addition, since each LULC has its specific phenological 

signature, it would be possible to separate the agricultural crops 

signature from the rest. Characteristics phenological signatures 

for different LULC in Uruguay are shown in Figure 3. Summer 

crops signature has a shape similar to a Gaussian function, the 

same pattern observed by other authors (Johnson, 2010) 

(Wardlow & Egbert, 2010). 

Figure 3. Characteristic phenological signatures of different 

land use and land covers in Uruguay. 

2.4 Workflow 

2.4.1 Imagery stacking: The first step was the creation of the 

image stack to analyze the EVI time series of each pixel. In 

Uruguay, the sowing of summer crops is carried out from 

October until December. In this context, to identify summer 

crops, an image stack from September to the beginning of March 

of the following year (September 2014 to March 2015) was set 

(Figure 4). In the stack, the images are organized in chronological 

order, the first being the oldest and the last, the most current. This 

stack is a multi-band file of 12 images in GeoTIFF format, where 

each band corresponds to a MODIS image (Table 1). The multi-

band stack is masked by a layer of Uruguay to use only the pixels 

that are within Uruguayan continental territory. 

Figure 4. EVI MODIS stack for crop mapping. 
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MOD13Q1 

IMAGE 
DATES YEAR 

241 August 29 to September 13 2014 

257 September 14 to September 29 2014 

273 Sempteber 30 to October 15 2014 

289 October 16 to October 31 2014 

305 November 1 to November 16 2014 

321 November 17 to December 2 2014 

337 December 3 to December 18 2014 

353 December 19 to January 3 2014 

001 January 1 to January 16 2015 

017 January 17 to February 1 2015 

033 February 2 to February 17 2015 

049 February 18 to March 5 2015 

Table 1. MODIS image stack dates. 

2.4.2 Time-series clustering: The next step is to do an 

unsupervised classification using a k-means algorithm. The 

objective of the k-means algorithm is to group the elements of a 

set of data into different classes, without using labeled data, 

where the elements of each class are more similar to each other 

than to the rest of the groups. This grouping is based on a 

similarity metric, such as Euclidean distance, applied to the 

variables in a dataset (Jain, 2010). The algorithm is executed in 

the EVI images stack, where each image corresponds to a date. 

Each image of each date is a variable of the entire dataset. 

A very important part of the application of the k-means algorithm 

is the determination of the number of clusters to be use. There are 

different methodologies (elbow method, gap, silhouette) to 

decide the ideal number of classes and, for computational 

efficiency, the elbow method was used (Kodinariya & Makwana, 

2013). We executed the k-means in the stack 40 times and, in 

each execution, use a number k = 1 to 40. After that, for each run, 

the within-cluster sum of squares (WCSS) is calculated, and the 

WCSS graph vs. the number of clusters is generated. The optimal 

number of clusters is determined by identifying the elbow of the 

curve: the point with the greatest orthogonal distance to the 

straight line that joins the first and last point of the curve. 

2.4.3 Smoothing spline: Once the optimal number of clusters 

was defined, the clustering corresponding to that k value was 

selected. For that clustering, the smoothed average signature was 

generated, for each cluster, using the smoothing spline method 

(Pollock, 1999). This technique allows reconstructing the 

original signature with daily EVI values. After that, the first 

derivative of the smoothed signature is calculated and the key 

values of the curve are obtained: minimums, maximums, and 

inflection points. 

2.4.4 Cluster selection: The next step was to generate the 

graphics for each cluster, with: the individual signature of pixels 

belonging to that cluster; the smoothed average signature; and the 

key points of the curve (minimums, maximums, and inflection 

points). The average signatures, together with the 5th and 95th 

percentile lines of each cluster, are visually analyzed to find those 

that follow the pattern of an agricultural crop. When crop clusters 

have been identified, the binary map of crops/non-crops is 

generated. 

2.4.5 Validation: To validate the methodology 5,317 ground 

truth points of crop/non-crop collected during summer 2014-15 

were used (Figure 5), and a confusion matrix was constructed. 

Different metrics were calculated: overall accuracy, balanced 

accuracy, kappa index, user’s accuracy, producer’s accuracy, and 

f-measure.

Figure 5. Ground truth points of crop/non-crop. 

A diagram of the process described above and the different steps 

of the workflow for mapping agriculture areas is shown in Figure 

6. 

Figure 6. Workflow for mapping agricultural areas. 

3. RESULTS AND DISCUSSION

The k-means algorithm with values of k from 1 to 40 was 

executed. Each run of k clusters was made with a threshold value 

of 0.95 and a maximum of 300 iterations. For each execution, the 

WCSS was calculated (Figure 7, WCSS against the number of 

clusters k used in each run).When the number of clusters used by 
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the k-means algorithm increases, the WCSS rapidly decays from 

almost 28x108
 (k = 1) to a value greater than 10x108

 (k = 14), and, 

from 14 clusters or more, it stabilizes and becomes asymptotic 

below the 10x108
 value. This figure shows the optimal number of 

clusters to be used, which corresponds to the bend of the curve 

(elbow). This point of the curve is the one with the greatest 

orthogonal distance to the straight line that joins points 1 and 40 

of the curve (optimal number of clusters = 9). 

Figure 7. Optimal number of clusters determination with elbow 

method. 

Once the optimal number of clusters was defined, for the 

clustering corresponding to that k value, each cluster was 

analyzed. We first generate the average signature of the cluster: 

the average EVI value for each date of the time series was 

calculated, and then, from those data and by nonlinear 

interpolation with the smoothing spline method, the average 

signature was estimated on a daily-basis (Figure 8). Also, for 

each date, the values corresponding to the 5th and 95th percentile 

were estimated, and the daily step curves of those percentiles 

were also constructed by the smoothing spline method. For the 

average signature, the first derivative was calculated, and 

minimum, maximum and inflection points of the curve were 

determined (Figures 9 to 12 show some examples). The 

unprocessed time series of each pixel that belong to the cluster 

are included in the graphics. With many pixels belonging to each 

cluster, individual signatures overlap and look like a black band. 

A raster was generated, where each pixel of the MODIS stack 

belongs to a cluster (Figure 13). 

The next step was to analyze the graphics of each cluster, along 

with the location of the pixels that belong to each cluster. As 

mentioned earlier, each LULC has a distinct pattern of evolution 

of the EVI index during the season. Considering this, we identify 

the clusters that have an average signature similar to a Gaussian 

function and identify in which areas those pixels are located 

(agriculture areas and if they are in dispersed or concentrated 

groups). Finally, the categories that are considered crops were 

chosen. In 2014-15 season, clusters 1, 5 and 8, have signatures 

that correspond to agricultural crop, and their pixels are located 

in agriculture areas of Uruguay. Additionally, the time of the year 

in which the minimum and maximum values were registered was 

analyzed: the minimum corresponding to the date where 

agricultural crops are sown, and the maximum value, where the 

agricultural crops are typically in anthesis. The signature patterns 

of other clusters such as 2, 3, 4, 6, 7 and 9, do not correspond to 

agricultural crop signatures. 

Figure 8. Average EVI phenological firms of clusters. 

Figure 9. Chart of cluster 1. 

Figure 10. Chart of cluster 5. 
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Figure 11. Chart of cluster 8. 

Figure 12. Chart of cluster 7. 

Figure 13. Map of clusters. 

After selecting the clusters that have the crop pattern, the final 

binary map of crops/non-crops was generated (Figure 14) and the 

total crop area was estimated. According to our map, an area of 

2,336,525 hectares was estimated, while the official areas 

reported was 1,667,400 hectares. One possible explanation of this 

difference is the satellite image used, which has a pixel of 250 

meters, equivalent to 6.25 hectares (medium resolution pixel). 

Pixels classified as crops have different degrees of purity, some 

are pure crops, and others, in different grades, include non-crop, 

such as: drainage areas, discard areas and other uses. 

Figure 14. Final map of crops/non-crops. 

Validation was performed, a confusion matrix was constructed, 

and the performance metrics were calculated: general accuracy, 

balanced accuracy, kappa index, producer’s and user’s accuracy, 

and F-measure.  

Validation results are shown in Tables 2 and 3. Analyzing the 

performance metrics data, the overall accuracy is very high, with 

a value of 95.8%. It is worth to mention that ground truth points 

are unbalanced, with over 4,000 points of non-crop and 900 of 

crop. This affects the calculation of general accuracy, being 

greatly influenced by the majority class. To correct the 

unbalance, the balanced accuracy, which overcomes this 

problem, was calculated considering the true positive rate and the 

true negative rate (Brodersen, Ong, Stephan, & Buhmann, 2010). 

The value of the Kappa index is high (85.6) as is the value of F-

measure (88.1). If the confusion matrix is considered and each 

land use is analyzed, it is observed that for crops and non-crops 

the user’s accuracy is greater than 91%, being higher for non-

crops. About the producer’s accuracy, crops have a lower value 

than non-crops, but are higher than 85.1%. It was also observed 

that the omission error for crops is 14.9% (100-85.1%), being 

greater than the omission error for non-crops, and greater than the 

commission error for crops and non-crops. About the user’s 

accuracy data for crops, the commission error is 8.7% (100-91.3). 

If we consider that the estimated area was 2,336,525 hectares, 

this is an overestimation of 210,287 hectares, so if this error is 

discounted to the estimated crop area, it would be reduced to 

2,126,237 hectares. It is also important to mention that the 

omission error for crops are 14.9%, being twice the commission 

error, which has a compensation effect on the commission error 

committed. 
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CLASSIFIED 

DATA 

REFERENCED 

DATA 
TOTAL 

USER'S 

ACCURACY 
CROP 

NON-

CROP 

CROP 818 78 896 91.3 

NON-CROP 143 4,278 4,421 96.8 

TOTAL 961 4,356 5,317 

PRODUCER'S 

ACCURACY 
85.1 98.2 

Table 2. Confusion matrix. 

PERFORMANCE 

METRIC 
% 

GENERAL ACCURACY 95.8 

BALANCED 

ACCURACY 
91.7 

KAPPA INDEX 85.6 

F-MEASURE 88.1 

Table 3. Performance indexes. 

4. CONCLUSIONS

The method presented in this paper is a possible and fast tool for 

mapping agricultural areas during the season, without the need 

for ground truth data. This is achieved by combining: the analysis 

of time series of vegetation indices (EVI); unsupervised machine 

learning algorithms (k-means); smoothing techniques; derivative 

analysis; and expert knowledge. The results found, when 

compared with ground truth points, have a good performance 

considering different metrics, obtaining a general accuracy of 

95.8%, and user accuracy values above 90%. If the estimated area 

of crops is considered, it is higher than the official statistics. This 

can be explained by the resolution of the satellite images used 

and an overestimation error close to 10%. 

The methodology attempts to discriminate non-agriculture from 

agriculture areas, but does not identify different crops, such as 

soybean or corn. 

This methodology implies that a user must define, based on the 

average signatures for each cluster and the distribution of the 

pixels in the territory, which classes correspond to crops. This 

implies subjectivity that depends on the user, so two different 

users may not consider the same classes as crops. 

For future work, it is necessary to explore satellites of higher 

spatial resolution such as Landsat 8 and Sentinel 2. It is also 

necessary to explore the possibility of discriminating between 

different crops (corn, soybeans, rice) by combining both optical 

and SAR satellites, such as the Sentinel 1, and combine the 

method with ground truth data to generate a more robust model. 
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