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ABSTRACT: 
This project uses an artificial neural network to calculate the net primary productivity of an organic sugarcane crop in 
Hatico’s farm, in Cerrito, Valle del Cauca. The pilot scheme used in this project is composed by 6 treatments of nitrogen 
fertilization based on green manures (poultry manure and cowpea). During the last two crops’ phenological phases, the 
artificial neural network was provided with hyperspectral data collected in the field. In addition, an exploratory data study 
was implemented in order to identify anomalous signs related to the light saturation and the curvature geometry. The first 
network applied was Autoencoder, in order to reduce the dimensionality of the radiometric resolution of the data. The 
second network applied was Multilayer Perceptron (MLP), to calculate the productivity values of the patches. After having 
compared the actual productivity values provided by Cenicaña, this project obtained an accuracy of 91.23% in the 
productivity predictions.  
 
 

1. INTRODUCTION 

Sugarcane is one of the perennial crops with the highest 
organic matter rate per unit area, as a result, it is one of 
the most productive crops in the agricultural market 
around the world (Duveiller et al., 2013). Colombia is 
placed 13th among the sugarcane-producing countries 
and has the first position in productivity. The Colombian 
sugar sector is located in the valley of the Cauca’s river, 
which covers 47 municipalities from the north of Cauca 
and central Valle del Cauca, to the south of Risaralda. In 
this region there are 225,560 hectares planted with 
sugarcane; 25% of them belong to sugar mills and the 
remaining 75% correspond to around 2,750 cane growers 
(Asocaña, 2018). 
 
Biomass estimation methods can be categorized as either 
destructive or non-destructive sampling techniques. 
Remote sensing is a non-destructive sampling defined as 
a set of techniques used to read an object's spectral 
information based on the way it interacts with energy, 
which is recorded by sensors (Espín, 2015). 
 
Remote sensing has facilitated crops supervision by 
providing permanent condition data in large areas 
(Bégué, et al., 2010). However, the multispectral data 
obtained by satellite or drone imagery can’t be as detailed 
as the hyperspectral data (Abdel-Rahman, et al., 2009). 
Spectrometry techniques allow to obtain hyperspectral 
data along the electromagnetic spectrum, showing 
significant spectral patterns in different regions, which 
are related to plant phenology and are used to facilitate 
both management and productivity estimation (Curran, 
Dungan & Peterson, 2001). 
 
Artificial neural networks (ANN) are an automatic 
learning model based on biological neural networks and 

connections. These systems consist of a set of elements 
or neurons that connect to each other to send information 
to each of the nodes where the error spreads depending 
on the weight of the connections. There are different 
designs of neural networks, which can be used to perform 
many activities. The multilayer perceptron (MLP) model 
is frequently used in Deep Learning, due to its potential 
to classify, to predict, and to how easy it is to operate 
(Caicedo & López, 2009). 
 
MLP is based on a backpropagation algorithm, which 
distributes the error of the output layer, in the hidden 
layers. This network architecture is made up of an input 
layer, at least a hidden and an output layer. The 
connections between these types of neural networks are 
usually either FeedForWard or sequential type, which 
means that all the neurons in the input layer are 
connected to every neuron in the hidden layer. On the 
other hand, autoencoders are a type of neural network 
that uses the same sequential model used by the MLP, 
however, its design varies by conserving a smaller 
number of neurons in the hidden layers than in the output 
layers. Autoencoders are based on the dimensionality 
reduction obtained from principal component analysis 
(PCA). 
 
PCA take the most important features in the input data 
and reduce them through linear transformations. 
Although the autoencoders and the PCA are similar, the 
autoencoders employ a nonlinear component analysis, 
due to the high variety of data. The Autoencoder is 
composed of two regions, encoding, where the data is 
transformed reducing its dimensionality and then 
transporting the essential information from the data 
group to the hidden layers (NG, 2011). The decoding 
layer is the network part where the data is reconstructed 
following the input layer scheme. 
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This study applies the net primary productivity model 
(PPN) proposed by Kumar & Monteith, (1981), which is 
based on the plant's response to photo synthetically 
active radiation (PAR) and the most determining factors 
of the crop, such as environmental variables, plant 
phenology and physiology and behavior throughout 
time. The values of PPN, the set of hyperspectral data 
and the information of the physiological variables of the 
crop, were used to provide a neural network that allowed 
to estimate the productivity. 
 

2. STUDY AREA AND MATERIALS 

2.1. Study Area 

The study area is identified as the 758B crop, located at 
Hatico’s farm, in Cerrito, Valle del Cauca, Colombia. 
The study area is located in the geographical coordinates 
3 ° 38' 24” N, 76 ° 19' 48” W. The average temperature 
of the region is approximately 25° C. The 758B crop 
corresponds to an experimental sugarcane crop that 
contained 30 organic patches as presented in Figure 1. 

  

Figure 1. Location of experimental crop (758B) 

2.2. Spectroradiometer EPP2000 

The reflectance measured in each of the sampled plants 
was captured with a portable equipment that performs 
spectral measurements between 200 nm and 1100 nm. 
This range covers the ultraviolet, visible and near 
infrared spectrum. The plants reflectance is measured 
with a spectral resolution of 0.5 nm. The equipment was 
coupled with the fiber optic F400 - VISNIR of StellarNet 
Inc, this probe has an aperture of 400 um and a field of 
view of (FOV) of 25.4 °. The spectrometer used is shown 
in Figure 2. (StellarNet Inc, 2014). 

 

Figure 2. Spectroradiometer EPP2000. 

3. METHODOLOGY 

3.1. Sampling and processing of hyperspectral data 

The spectral signatures used in this project were obtained 
from the reflectance measured with the EPP2000 
spectrometer (StellarNet) between 200 to 1100 nm. The 
optical fiber coupled to the equipment has a vision field 
(FOV) of 25.4°, which captured an area of 2 cm of radius 
at a distance of approximately 8 cm. The data were 
collected in July 10th, 2018, in the 10th month of the 
sugarcane phenological cycle. The campaign was held 
between 10 a.m. and 3 p.m. for the purpose of 
maintaining an angle of 0 - 30 ° between the sun and the 
zenith. 
 
To avoid the edge effect, the samples were taken 20 m 
after the border edge of the two central grooves (Figure 
3). At this point, 10 plants that didn’t show spots, 
diseases or lesions at the foliar level were chosen out of 
the rest. Additionally, those plants were properly 
developed taking into account their growth phase. From 
each plant a spectral signature was obtained by pointing 
the optical fiber on the TVD leaf. 

 

 
Figure 3. Selection of central grooves in each plot 

The spectral signature corresponds to an average of 5 
measurements of the same leaf. Before starting the 
evaluation, the minimum and maximum reflectance were 
calibrated with the spectralon to reduce samples 
variation (Suarez, Apan & Werth, (2016). 
A standardization process was carried out in order to 
introduce the spectral signatures into the neural network. 
The data were scaled according to the upper and lower 
limit of the data range with a variation from 0 to 1. 
 

3.2 Artificial neural networks 

Autoencoder 

Autoencoder is a type of neural network that uses the 
same sequential model used by the MLP, however, its 
design changes due to the low quantity of neurons found 
in the hidden layers in comparison to the output layers. 
The autoencoder is based on the dimensionality 
reduction obtained from the analysis of main 
components (PCA), which take the greatest weight 
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characteristics in the input data and reduce them through 
linear transformations. 
 
Although the autoencoder and the PCA are similar, the 
autoencoder uses a nonlinear component analysis due to 
high data variation. As shown in Figure 4, the 
autoencoder is composed of two regions: the encoding 
layer and the decoding layer. The encoding layer is 
where the data is transformed reducing its dimensionality 
and then transporting the important information of the 
group data to the hidden layers. On the other hand, the 
decoding layer, is where the network rebuilds the data 
following the scheme of the input layer. 
 

 
Figure 4. Autoencoder Architecture 

 

During the process, the 300 sampled spectral signatures 
(each with 801 wavelengths) were organized in a 
300x801 matrix. 80% of the data set is used for network 
training and the other 20% is used for prediction and 
validation of the productivity estimation model. The 
matrices of 240x801 and 60x801 entered to an auto-
encoder with an input layer of 801 neurons and then to a 
hidden or encoded layer with 40 neurons. The layer 
encoded with 40 neurons within the autoencoder 
architecture results in two matrices: 240 x 40 and 60 x 
40. Finally, the network has an output (or decoded layer) 
with 801 neurons. The hidden layer has an exponential 
linear unit (ELU) activation function (Eq. 1), which is a 
variation of the rectified linear unit (ReLU) function. 
 

 (1) 

Where: e = exponential constant 

 x = input value 

 

The main difference between the two activation 
functions is the input values. When they are close to 0 or 
negative, ReLU has a gradient that turns them into 0 and 
the network can’t propagate the error backwards, it 
means the neural artificial network can’t be trained with 
the input data. On the other hand, the ELU function 
provides a slope in the negative quadrant of the function, 
then neurons are activated with these values and 
obtaining a more accurate result for problems with this 
type of data.  

The Sigmoidal activation function (Eq. 2) was 
implemented in the hidden layer, this allows a constant 
learning rate, avoiding slow rhythms where the network 
can remain stuck in a local minimum; also avoids high 
rhythms where instability in the error function is 
generated, with jumps in the weights close to the 
minimum that don’t allow to reach it. 
 

 (2) 

Multilayer Perceptron 

The MLP is a widely used neural network. It is based on 
a back propagation algorithm, which distributes the error 
of the output layer, in the hidden layers. This network 
architecture is made up of an input layer, at least one 
hidden layer and one output layer. Connections between 
these types of neural network are generally either 
FeedForWard or sequential, which means that the input 
layer neurons are connected to the neurons in the hidden 
layer, as shown in Figure 5. The mathematical concept of 
this class of neural network is presented in equation 2 
(NG, Andrew, 2014) 
 

 
Figure 5. Architecture Perceptron Multilayer 

 

Autoencoder showed two matrices: 240 x 40 and 60 x 40, 
which store the compression of the 801 wavelengths. The 
productivity vectors, obtained in the 2016, 2017 and 
2018 harvests, are added to the new matrix before being 
incorporated into the MLP; obtaining matrices of 
240x41, 240x42, 240x43 and 60x41, 60x42, 60x43 
respectively. The architecture of the neural network is 
composed of an input layer containing 41 neurons, 2 
hidden layers with 41 neurons each and finally, an output 
layer with a single neuron, which returns the productivity 
estimation within vector 60x1. The first hidden layer 
contains a hyperbolic tangent activation function; the 
second layer has an ELU function and the output layer 
was assigned a sigmoidal activation function. 
 

4. RESULTS 

The spectral signature shown in Figure 6 is the average 
result of the hyperspectral signatures obtained during the 
data acquisition campaign. This hyperspectral signature 
represents the spectral response’s behaviour of the plant 
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in different regions of the electromagnetic spectrum. 
During the process of photosynthesis, the chlorophyll 
pigments absorbed blue and red light, showing 
absorption peaks at 490 and 660 nm, respectively 
(Araque and Jimenez 2009). This behavior is presented 
graphically at the minimum of the curve, where the 
reflectance has lower percentages. The green region is 
made up of bands where one of the maximum reflectance 
sites is generated, this represents the foliar surfaces of 
vegetation at 550 nm. This maximum is caused by the 
low absorption of radiant energy, which produces a green 
pigmentation in plants. 
 

 
Figure 6. Average spectral signature of crop 758B 

As seen in Figure 6, the highest reflectance values of the 
hyperspectral signature are at the near infrared region 
(NIR), due to the vegetation’s health reflects the 
reflectance found in the wavelength. This region is 
commonly used to classify vegetation and identify stress 
on crops. Finally, the Red-Edge band, which is in the 
middle of infrared and red spectrum, shows a high 
inclination where absorption levels decrease as it moves 
towards larger wavelengths. 
 
To estimate the productivity of sugarcane, two neural 
networks were implemented. At the beginning, the data 
is added to the Auto-encoder through the matrices of 
240x801 and 60x801, where 95% of compression of the 
data is obtained using the synaptic weights calculated in 
the encoding phase, reducing the matrices to 40 columns. 
The learning process of the neural network is presented 
in Figure 7. The overall fit of the learning model had a 
mean square error (MSE) value below 0.02 for 50 
iterations. This value reduces as the iterations increase, 
finding an accuracy close to 0 for 400 iterations. 
 

 
Figure 7. Autoencoder precision model 

 

The productivity vectors of the previous crops were 
added to the new matrices to be included in the MLP. The 
new training matrix is 240x43, where columns 41, 42 and 
43 contain the productivity delivered by Cenicaña in 
2016, 2017 and 2018 harvest, respectively. 20% of the 
remaining data is divided into a 60x42 matrix that 
contains in columns 41 and 42 the productivity of 2016 
and 2017 harvests respectively, this matrix is used to 
make the 2018 productivity prediction. The other 60 
productivity data, stored in a vector, is used to validate 
the model with the predicted productivity. 
In this new neural network, data was used to estimate the 
biomass in the crop. The training of the MLP is shown in 
Figure 8. The learning process is presented in a slower 
way than in the autoencoder, where the MSE values 
below 0.02 were given only until 300 iterations, the 
graphic also shows a noise due to the dimensionality and 
the amount of training data.  
 

 
Figure 8. MLP precision model 

The low MSE values in the learning models of the neural 
network (presented in the graphs) refer to the 
backpropagation algorithm in which the architectures are 
based. In the supervised learning process, this algorithm 
modifies the synaptic weights in its layers to obtain the 
closest result to the output data provided. 
 
The prediction of the productivity model is developed by 
including in the neural network the matrix 60x42, that 
has the compressed reflectance and the productivity of 
the 2016 and 2017 harvest. The neural network returns a 
vector with 60 estimated productivity values that are 
compared with the real productivity values of each of the 
plots related to the compressed spectral signatures. The 
evaluation of the final estimation model has an absolute 
mean error (AME) of 8.06 t / ha and an RMSE of 10.43 
t / ha, giving an accuracy of 91.08%.  By adding only the 
2018 harvest productivity, the estimate had an accuracy 
of 85.37% and 88.47% with the productivity of 2017 and 
2018 when considered in training. 
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Figure 8. Lineal regression between Estimated PPN and 

Real PPN. 

Figure 8 shows the linear regression obtained between 
the estimated productivity with the MLP and the actual 
data productivity provided by Cenicaña. The regression 
obtained a coefficient of determination R2 of 0.7388, 
which indicates a low dispersion of the data, in which the 
error is distributed evenly in the plots. The linear 
regression has a correlation directly proportional to the 
precision values obtained in the estimate. The 
productivity estimation is globally calculated on the crop 
without discriminating the different nitrogen fertilization 
treatments, so the linear regression doesn’t allow a better 
adjustment. 
 

5. CONCLUSIONS 

 

In this project, two types of artificial neural network were 
evaluated with the purpose of estimating sugarcane 
productivity. Initially, the autoencoder achieved a correct 
compression of the reflectance data to 95%, reducing the 
dimensionality of the input matrix to only 40 columns 
that keep the spectral crop information. A compression 
greater than 95%, generated a higher loss of collected 
data; in addition, it increased noise in the autoencoder 
learning process returning matrix´s columns without 
values. 
 
The normalization of the input data is a process that 
standardizes the scale of variables that enter into the 
input layer of the neural network and reduces the 
computation workload. Thus, the training process is 
more efficient and the results are more accurate. This 
procedure avoided biases that could occur due to outliers 
corresponding to the scalar variation of the inputs. 
 
The autoencoder was a solution for the problem of 
dimensionality caused in an MLP when entering a matrix 
with a greater number of variables from the collected 
samples. The 300x40 matrix and the productivity vectors 
used to train the MLP, enabled a productivity estimation 
with an accuracy between 85 to 92%. The inclusion of 
productivity data from previous crops made possible an 
improving for the performed estimations. Also, a 
prediction accuracy of 85.37% was obtained using only 
the 2018 harvest. Besides that, the prediction accuracy 
was increased to 88.47%, including the productivity of 
2017. Finally, when the 3 productivity vectors of 2016, 
2017 and 2018 harvest were included, the accuracy of the 

prediction increased to 91.23% due to the consideration 
of productivity variation in each year. This variation 
indicates that productivity behavior is a phenomenon that 
doesn’t follow a sequential pattern over time even under 
experimental conditions, therefore, the use of a greater 
amount of information from previous periods, brings 
more precise behavior modelling trends to obtain more 
accurate results. 
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