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ABSTRACT:

Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case
of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis
of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian
authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a
time-consuming task and into the subjectivity of the experts.
In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolu-
tional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results
show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of
training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image
resolution characteristics, is improved.

1. INTRODUCTION

Remote sensing is frequently used to gather data from areas we
live in, to observe the effects and impact of nature, and evalu-
ate human activities (Van Westen, 2000). Nowadays, satellite
images have proven to be a reliable source of information due
to the improvements in spatial resolution. Such is the case of
PeruSAT-1, which has a resolution of 2.8 m in the Red, Green,
Blue and NIR bands; and, 0.7 m in the panchromatic band (eo-
Portal Directory, 2018).

The recollection of satellite images from several regions of Peru
might provide insightful information about population growth,
contamination, forest felling, among others. In this research, we
focus our attention on the analysis of water-bodies (e.g. rivers,
lakes, ponds) from the coast of Peru to assess the affected re-
gions by the Niño costero phenomenon, which is a recurrent
natural phenomenon in Peru and has a large impact on agricul-
tural production, social services, and infrastructure (Ramı́rez,
Briones, 2017). Once the catastrophe has occurred, the next
step is to quantify the damage so that infrastructure and sanit-
ation projects can be defined to aid recovery of affected areas,
restore the normal functioning of services, and improve the life
quality of the victims.
When dealing with flooding or contaminated water, the com-
plexity of detecting water bodies is that these frequently appear
in non-homogeneous ways due to the combination with other
different materials (e.g. rocks, soil, trees, construction materi-
als, among others). This lack of homogeneity entails variability
in the parameters or features that can be extracted (e.g. inten-
sity of color, texture) from the image. Besides, due to the huge
spread of water bodies and, in some cases, the inaccessibility of
the regions affected, the retrieval of images and data represents
a challenging task.

Different methods have been proposed to detect water bodies.
The use of single-band thresholds and multi-band thresholds

were reported in (Nath, Deb, 2010). Spectral water index from
satellite images was computed in (Du et al., 2016), (Jiang et
al., 2014), and in (Pekel et al., 2016), the authors also proposed
a classification scheme based on expert systems, visual analyt-
ics, and evidential reasoning to evaluate 32 years of water body
data from satellites. Although there exist some approaches us-
ing big data analysis and image processing algorithms to cope
with these tasks (Ayma et al., 2016), most of the solutions still
rely on the expertise of researchers to select the thresholds and
determine which features are the most representative. For these
reasons, in the last years, there are several investigations using
convolution neural networks such as those reported in (Miao et
al., 2018), (Nowaczynski, 2017), (Feng et al., 2019), (Talal et
al., 2018), and (Hu et al., 2019).

The main objective of this study is to detect water bodies in
satellite images captured by PeruSAT-1 and create water body
maps to aid in the evaluation of the flood-affected areas. We
created a manually labelled dataset from these satellite images,
based on which we propose to use semantic segmentation to
classify each pixel as part of a water body. We also explore the
use of convolutional neural networks to segment water bodies
using a training dataset with few labeled images. We first eval-
uate the performance of a conventional U-Net model using only
the PeruSAT-1 dataset. Afterward, we used the idea of know-
ledge distillation using another dataset with a lower resolution
than the PeruSAT-1 dataset. Images for the second dataset are
available from the Sentinel-2 satellite (QueryPlanet, 2019).

The article is divided as follows: Section II describes the state-
of-the-art in the analysis of satellite images. Section III defines
the proposed methodology. Section IV presents the dataset used
in this research. Section V introduces the experiments and re-
sults, and Section VI concludes and discusses the research re-
sults.
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2. STATE OF THE ART

As mentioned in the introduction, there are different methods
used to detect water bodies from satellite images. In the follow-
ing, we will provide a few key details on these ideas.

1. Threshold segmentation: this method identifies water bod-
ies by applying thresholds to one or more spectral bands.
The drawback of this proposal is that there is a possibil-
ity to lose some parts of the water body if the threshold
value is not selected adequately. In (Jiang et al., 2014),
and (Zhiyuan Zhang, 2018), the correct detection of water
bodies depends on the selection of the correct bands and
appropriate thresholds.

2. Spectral water index: one of the most used methods is the
NDWI (Normalized Difference Water Index) proposed by
McFeeters (McFeeters, 1996). This index maximizes the
reflectance of bodies in the green band and minimizes the
reflectance in the NIR band. Some disadvantages of this
method are the following: inefficient detection of mixed
water pixels, confusion of water bodies with background
noise, and thresholding that is dependent on the satellite
and the different regions and times analyzed. Also, this
index is not robust in the presence of clouds and non-
pure water. Shadows from clouds, mountains or buildings
are also frequently confused with bodies of water. Xu,
et al. developed the MNDWI (Modified Normalized Dif-
ference Water Index) to address the shortcomings of the
NDWI (Xu, 2006). This index uses the Shortwave Infrared
(SWIR) band instead of the NIR band used in NDWI. The
research suggested that MNDWI is more suitable to en-
hance water information and can extract water bodies with
better accuracy than NDWI (Jiang et al., 2014), (Du et al.,
2016); however, MNDWI is not widely used because most
high-resolution satellites only capture data in four bands
(blue, green, red and near-infrared), such as in the case of
PeruSAT-1 satellite.

3. Active contour model: the advantage over other models is
that it integrates image data, initial estimates, target con-
tour features, and constraints in the feature extraction pro-
cess. However, it is necessary to choose an initial point
of the contour of the water, and automatic acquisition of
this initial position is not frequently easily achieved. Fur-
thermore, these manual decisions impact on the accuracy
and efficiency of the detection of water bodies (Feng et al.,
2019), (Hemalatha et al., 2018).

4. Object detection based on classification: this method com-
bines the spectral and textural features of remote sens-
ing images with classical machine learning methodologies
(e.g. SVM, decision tress, among others). However, in
(Huang et al., 2015), the authors found out that due to di-
minished spectral separability and complications concern-
ing the identification of the same spectrum across differ-
ent water bodies and/or various spectra within a single wa-
ter body, object-based technology falls short in several as-
pects. These features and the method used to select the
most relevant ones impacts also in the precision and ef-
ficiency of the entire proposal hindering its performance
and robustness when applying to different datasets.

5. Deep Learning: it has been verified that CNN (convolu-
tional neural networks) have better performance than clas-
sical algorithms due to their robustness, invariance to trans-

lation, among other factors (Krizhevsky et al., 2012). How-
ever, common CNN architectures do not allow a pixel-wise
classification of an image; that is, they do not generate
any context information that helps the segmentation of ob-
jects in those images. Therefore, the literature describes,
initially, a technique that uses CNN to classify small re-
gions (sliding windows) in images and then join said slid-
ing windows to obtain a pixel-wise classification of all the
objects recognized in the scene (Cires, an et al., 2012). The
computational cost of this proposal was too high, so new
ideas emerged such as Fully Convolutional Neural Net-
works (FCN) (Shelhamer et al., 2017) or other more ad-
vanced networks such as U-Net, DeepLab, among others.
All these architectures have an end-to-end configuration;
that is, they receive images as inputs and then provide im-
ages as outputs; however, the U-Net (Ronneberger et al.,
2015) has the advantage of requiring a smaller number of
images for training, since it is a neural network that has
only 23 convolutional layers without additional stages. In
addition, following the results of the survey reported in
(Hu et al., 2019), its use is suitable for working with re-
mote sensing images.

3. METHODOLOGY

We developed two different approaches. First, we trained a
model using only the very high-resolution (VHR) dataset from
PeruSAT-1. Then, we used a high-resolution (HR) dataset for
the knowledge transfer process. With the second approach, we
aim to improve the performance where the first methodology
fails, and when we have a limited number of images labeled
from the VHR dataset. Additional details about the configura-
tion of the mentioned architectures and datasets are described
bellow.

3.1 Data

Two evaluate the performance of both proposed methodologies,
we used satellite images from Sentinel-2 and PeruSAT-1. The
details are described as follows.

- HR dataset: taken from a publicly available dataset, contain-
ing 7671 Sentinel-2 image patches of size 64×64 pixels each
(QueryPlanet, 2019). Sentinel-2 is a European wide-swath, high-
resolution, multi-spectral imaging mission. The images from
this satellite have 13 spectral bands varying from 443nm to
2190nm. Also, images have the red, green, blue, near-infrared
(10m), red edge and short-wave infrared bands (20m), as well
as, three atmospheric correction bands (60m) (SUHET, n.d.).
In our study, we use 4 bands from this satellite (i.e. red, green,
blue, and NIR), each of 10m per pixel resolution, to match the
same characteristics of the PeruSAT-1 satellite.
- VHR dataset: built on images captured with PeruSat-1 satel-
lite, which is a very high spatial resolution satellite with 2.8m
per pixel in the red, green and blue band, and 0.7m in the pan-
chromatic band. The images were collected from the coast of
Peru from different periods, pre and post-disaster. The original
images have an approximate size of 6000× 6000 pixels.
The QGIS software was used to label images and to generate
masks for the semantic segmentation training process. To do
this, we first added a vector layer to create the polygons. Then,
using image processing algorithms, we eliminated missing in-
formation (e.g. borders of the satellite image) and further define
the edges of water bodies. Finally, the original images were
split into small patches. We obtained 1113 patches of 512×512
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Figure 1. Knowledge transfer based on two models, which uses
mapping information from lesser resolution images to improve
the segmentation capability of the very high-resolution images.

pixels, from which 945 have binary labels, considering 1 for
pixels representing water areas, and 0 otherwise; and the re-
maining 168 patches correspond to unlabeled images.

3.2 Architectures

Model 1: to train this model, we used images from the VHR
dataset. The neural network architecture was based on a vari-
ation of the U-Net called TernausNet (Iglovikov, Shvets, 2018),
which uses the VGG11 as an encoder. It is a fully convolutional
network (FCN) with 23 convolutional layers and its architec-
ture follows an encoder-decoder model. This neural network
concatenates low-level feature maps with higher-level ones, en-
abling a precise pixel-level localization, which is very useful
for a pixel-wise classification scheme. The contracting path
(i.e. the encoder) consists of 3x3 convolutions (unpadded con-
volutions), each followed by a rectified linear unit (ReLU) and
a 2x2 max pooling operation with stride 2 for downsampling.
The expansive path (i.e. the decoder) increases the resolution
of the detected features. In our study, we tuned the network to
perform pixel-wise binary classification, for water or no water
classes.

Model 2: in this approach, we used the idea of knowledge dis-
tillation. Distillation was introduced by (Hinton et al., 2015)
and it is a method proposed to do knowledge transfer from lar-
ger architectures to smaller ones. Additionally, the authors in
(Papernot et al., 2015) extended that idea and proposed a de-
fense distillation architecture in which knowledge transfer is
done between the same architectures to improve its own resi-
lience to adversarial samples. Using these ideas, we design the
second model which is shown in Figure 1. This architecture
has two U-Nets, one working on high-resolution (HR) images,
and the other working on very high-resolution (VHR) images,
and both networks designed for performing the semantic seg-
mentation, trained at once. The images from the HR dataset are
used to train the HR-model, which is in charge of computing
the missing labels for the VHR dataset. When a missing label
is detected in the VHR dataset, a downscale is applied to the
corresponding image and then a label is predicted using the HR
model. This label obtained is then upscaled in order to get the
very high-resolution label for the original input image.

4. EXPERIMENTS AND RESULTS

For the experiments, we used the following hardware: a Lambda
workstation with Ubuntu 18.04 and two NVIDIA RTX 2080
GPUs with 12 GB of memory each. For the implementation

(a) Image (b) Label (c) Model 1 (d) Model 2

(e) Image (f) Label (g) Model 1 (h) Model 2

(i) Image (j) Label (k) Model 1 (l) Model 2

(m) Image (n) Label (o) Model 1 (p) Model 2

(q) Image (r) Label (s) Model 1 (t) Model 2

(u) Image (v) Label (w) Model 1 (x) Model 2

Figure 2. Example image patch (a), (e), (i), (m), (q), (u),
ground-truth label (b), (f), (j), (n), (r), (v), predictions of the

model 1 (c), (g), (k), (o), (s), (w), and predicitions of the model 2
(d), (h), (l), (p), (t), (x).

of the algorithms, we used Python v3.6 programming language
and PyTorch 1.0 framework for deep learning architectures.

The HR-dataset was divided into training, and validation splits,
each with 7057, and 613 samples, respectively. For the labelled
VHR-dataset, we used 680, 170 and 95 samples for the train-
ing, validation, and testing dataset; and regarding the unlabelled
data, we used 131, and 37, for the training, and validation.

All the experiments used the same VHR labelled testing dataset.
For our first model, we used all the labelled VHR data, and
the results are shown in the third column of Figure 2. For the
second approach, we used the HR-dataset, and both, labelled
and unlabelled VHR-dataset and their outcomes are presented
in the fourth column of the same figure.

In a qualitative evaluation of the predicted masks, we observed
that for several cases (such as in Figure 2(a) - 2(q)), both models
compute the water bodies labels correctly as they match well
with the ground truth label. However, in some cases such as
the one in Figure 2(u), we realized that the narrower river in the
image is not segmented and additional noise appears in both
models. Therefore, having the same qualitative results for both
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Model 1 Model 2
Training
samples F1 score IoU F1 score IoU

680 0.9317 0.9124 0.9038 0.8823
340 0.9092 0.8844 0.8935 0.8844
170 0.9111 0,8846 0.9099 0,8849
68 0.8946 0,8665 0.9093 0,8819

Table 1. Average IoU and F1 score values for 4 datasets of
training and evaluated on a 95-image test dataset using model 1

and model 2.

Model 1 Model 2
Training
samples

F1 score
%

IoU
%

F1 score
%

IoU
%

68 (Fig. 3(a)) 78.43 64.62 88.40 79.61
680 (Fig. 3(e)) 97.63 95.36 95.78 92.14
68 (Fig. 3(i)) 21.79 18.22 77.64 66.57

680 (Fig. 3(m)) 87.15 77.56 84.53 74.14
68 (Fig. 3(q)) 0.08 0.00 0.13 0.00

680 (Fig. 3(u)) 21.71 20.00 20.49 20.00

Table 2. Average values of IoU and F1 score for specific samples
which are part of 95 test dataset using model 1 and model 2.

models would imply that in our case the information from HR
images does not directly help the segmentation of VHR data,
following the configuration of the training datasets.

To evaluate whether the second model, based on knowledge
transfer, increases the performance over the first one when us-
ing less data, we divided the number of labeled VHR training
samples into smaller datasets of 340, 170, and 68 samples. Re-
sults shown in Table 1 suggest that even with these reduced
datasets, the overall performance using the second model is
similar to the first one. However, further evaluation of each
image in the testing dataset shows that when we decreased the
training samples, images with narrow rivers or sediments, and
some cases with no water bodies, are better segmented using
the second model rather than the first one. These specific cases
are shown in Figure 3, and its corresponding metrics appear
in Table 2. Figures 3(g), 3(h), 3(o), 3(p), 3(w), and 3(x), de-
scribe similar performances when training both models using
680 samples from the VHR-labeled dataset, and it can be ob-
served in rows 2, 4 and 6 from Table 2 a small variation in the
metrics between the two models. When we decreased the train-
ing dataset to 68 images from the VHR labeled dataset, we ob-
served that the performance of the second model increased. Fig-
ures 3(d), 3(l), and 3(t)) reflect a better segmentation when us-
ing the knowledge-transfer based model, compared to the out-
comes achieved by the first one and presented in Figures 3(c),
3(k), 3(s). Regarding the metrics from this scenario, rows 1, 3
and 5 in Table 2 confirm such increase in the F1 score and IoU
metrics for every case analyzed.

5. CONCLUSION AND DISCUSSION

In this work, we compared two different deep learning methods
to segment water bodies in satellite images from Peru. We used
data collected from PeruSAT-1 and Sentinel-2 satellites. The
first approach consists of variations of the U-Net architecture;
meanwhile, the second approach uses the concept of distilla-
tion to enhance the U-Net response when fewer training images
are available. For this second methodology, HR images from
Sentinel-2 were used to guide the learning process of VHR im-
age segmentation of PeruSAT-1 data.

(a) Image (b) Label (c) Model 1 (d) Model 2

(e) Image (f) Label (g) Model 1 (h) Model 2

(i) Image (j) Label (k) Model 1 (l) Model 2

(m) Image (n) Label (o) Model 1 (p) Model 2

(q) Image (r) Label (s) Model 1 (t) Model 2

(u) Image (v) Label (w) Model 1 (x) Model 2

Figure 3. Example image patch (a), (e), (i), (m), (q), (u),
ground-truth label (b), (f), (j), (n), (r), (v), the predictions when
it has 68 training samples from model 1 (c),(k),(s) as well as of

the model 2 (d),(l),(t), and the predictions when it has 680
training samples with the model 1 (g),(o),(w) as well as with the

model 2 (h),(p),(x).

One of the reasons we found for the overall performance to be
similar in both models is that images in which the segmentation
using the model 2 outperforms model 1 represent examples of
narrow rivers, water-bodies with sediments, among other com-
plex scenarios, which are cases that do not appear frequently
in the training/testing dataset. This behaviour may suggest that
model 2 takes advantage of different resolution in the training
dataset to make the segmentation process more robust in the
presence of complex cases. In addition, following the results
presented in Table 1, we could argue that the variance in model
1 is increasing when adding more images to the training dataset.
On the other hand, the variance on model 2 remains the same
even when more data is added. This hypothesis translates in the
performance shown Table 2.

Finally, we do believe our findings will be of interest to other
researches currently working with limited-label datasets, which
nowadays is a common case in most remote sensing researches.
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