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ABSTRACT:

A PolSAR is an active sensing device capable of providing images that are robust against variations of weather and atmosphere
conditions, irrespective of the time of the day they were acquired. For an efficient use of these images it is necessary to have
algorithms capable of classifying these images to generate maps with their content automatically. This paper presents the extension
of a PolSAR image classification method based on exponential Fisher Vectors, a Potts smoothing model and different similarity
measures. With the proposed extension, improvements in classification with respect to the base method are achieved. Future work
consists in extending the codification so as not to have to discard the imaginary part of the data.

1. INTRODUCTION

A polarimetric synthetic aperture radar (PolSAR) is an active
sensing device capable of providing images that are robust against
variations of weather and atmosphere conditions, irrespective of
the time of the day they were acquired. These properties make
PolSAR images a valuable resource in environmental monitor-
ing applications and for the automated analysis of terrains and
land covers [Lee et al., 1999, Gao et al., 2014, Wang et al.,
2016, Jiao, Liu, 2016, Zhang et al., 2016, Hou et al., 2016].
However, the greatest difficulty in the use of PolSAR data is
that the information (pixel values) is encoded as complex vec-
tors or matrices, making it difficult to apply standard techniques
of statistical analysis and machine learning literature. From the
modeling perspective, dealing with this type of information in a
well-founded way is a difficult problem that has attracted great
attention in the past. PolSAR data is generated by transmiting
orthogonally polarized electromagnetic pulses towards a target
and recording the returned echo for each channel independently.
Raw measurements are further processed in order to generate a
multi-channel image with complex-valued entries. As a con-
sequence of the coherent illumination, the images are contam-
inated with a particular form of noise known as speckle [Frery
et al., 2011]. To reduce the effect of this noise, PolSAR data
is aggregated by averaging local information over small neigh-
borhoods, resulting in the so called multi-look representation of
the PolSAR data [Lee et al., 1994].

In this paper we present the application of models originated
in the computer vision literature to the problem of land cover
classification, this is the task of assigning labels to pixels based
on the dispersion properties of the objective measured by a Pol-
SAR sensor. Specifically, we propose a model that integrates
the formalisms of exponential Fisher Vectors (eFV) [Sánchez,
Redolfi, 2015] with a Potts-like energy model [Potts, 1952,Boykov
∗Corresponding author

et al., 2001] that captures the spatial dependence between the
variables. In the eFV scheme the content of the image (pixels,
regions and/or the whole image) is characterized by the stan-
dardized gradient vector derived from different mixtures of con-
venient distributions. In this case, we consider the real part of
the covariances measured by the PolSAR sensor and an eFV is
derived from a mixture of real Wishart probability distributions
functions (pdfs) and Gaussian pdfs. Then we define a Potts-like
energy model where the unary terms are computed as differ-
ent measures of similarity between the eFVs computed for each
class and an eFV computed at pixel level. The minimization of
this energy on the graph of four-connected pixel locations give
us the desired classification.

The main contributions of this work are the extension of a previ-
ously presented method [Redolfi et al., 2017], adding the com-
parison of different probability distributions functions for the
eFVs encoding and different similarity measures between the
eFVs to generate a raw classification of pixels. The hypotheses
of this work are that although the theoretical distribution of the
data follows a Wishart distribution, with Gaussian distributions
competitive results can be obtained and also that using other
types of similarity measures the results in the classification can
be improved.

2. PRELIMINARIES

In this section, we introduce the fundamental concepts on Pol-
SAR image generation and the eFV image representation. For
a deeper treatment of these topics, we refer the reader to [Lee,
Pottier, 2009] and [Sánchez, Redolfi, 2015], respectively.

2.1 PolSAR imagery

A polarimetric SAR measures the backscattered signal from
a medium in the four different combinations that result from
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transmitting and receiving the radar signal with horizontal and
vertical linear polarizations. The scattering information can be
represented by the following complex-valued matrix:

S =

(
SHH SHV
SVH SV V

)
. (1)

For a reciprocal medium, SHV = SVH holds and the scattering
information can be alternatively encoded as a vector:

h =
(
SHH

√
2SHV SV V

)T (2)

where T denotes the transpose operator. The “multi-look” ver-
sion of this vector is obtained by averaging the individual mea-
surements in a local neighborhood. Alternatively, one can de-
fine the multi-look complex covariance as the matrix:

C = [cij ] =
1

m

m∑
k=1

h(k)h(k)∗. (3)

Here, h(k) is the scattering vector h at location k, m is the
number of looks and the superscript ∗ denotes conjugate trans-
pose. The Hermitian matrix C is positive semidefinite (PSD)
and follows a complex Wishart distribution with m degrees of
freedom (DoF) [Goodman, 1963, Lee et al., 1994].

In this work, instead of work with the complete matrix C, we
only consider its real part <{C} = [<{cij}].

2.2 Fisher vector codification

The eFV of a sample X = {x1, . . . ,xN} given a probability
distribution pλ defined over a sample space Ω is defined as:

Gλ(X)
def
=

1

N

N∑
i=1

Lλ∇λ log pλ(xi). (4)

where Lλ is the Cholesky factor of the inverse of the Fisher
information matrix, λ are the parameters of the model and ∇λ
denotes the gradient with respect to λ.

The selection of the parametric model pλ depends on the par-
ticularities of the problem and for this case we define pλ as a
finite mixture distribution over the space of symmetric positive
defined matrices of q × q, S(q) of the form:

pλ(x)
def
=

K∑
k=1

wkpk(x), (5)

with
∑K

k=1 wk = 1, wk > 0, ∀k and pk an exponential family
pdf.

For this work we propose the use of two different pdf for pk.
The first is the Gaussian distribution and the second is the Wishart
distribution. Based on both distributions, two different types of
eFV (equation (4)) are derived and we compare their accuracy
on the problem of PolSAR image classification.

3. CLASSIFICATION METHOD

For classification we adopt an approach based on an energy
model over a graph G, where each vertex or node represents
a pixel of the image. This model contains two terms, the first

one that depends on the observed data and the second one that
depends on the relation between neighboring labels; this second
term gives smoothness to the solution.

The energy model can be written as:

E(Y) = Edata(Y) + Esmoothness(Y) (6)

where Y is the labeling over the graphG = (V, E) with vertices
i ∈ V and edges (i, j) ∈ E . The energy term that depends on
the data or observations analizes the pixels individually and the
other takes into account the relationship between neighboring
pixels, penalizing adjacent pixels with different labels, achiev-
ing a smoother classification result.

For the smoothing function, we propose a simple model con-
sisting of the following Potts-like energy over the graph of 4-
connected pixel locations, which corresponds to a horizontal
and vertical neighborhood of 3× 3:

E(Y) =
∑
i∈|V|

φi(yi) + γ
∑
{i,j}∈E

I[i 6= j] (7)

The first term of the energy, which is data dependent, is φi(yi),
also known as unary potential, which penalizes the incorrect
assignment of the class label yi to location i. The second term
is composed of the indicator function I[z] which is equal to 1
if its predicate is true and 0 in another case, and for the penalty
constant γ ∈ R.

The unary potential φi(yi) penalizes an incorrect assignment,
therefore we can define it as the negative of the distance be-
tween the eFV computed over a local neighborhood to the loca-
tion i and one eFV computed per class using all training sam-
ples for class yi ∈ {1, . . . , c}, where c is the number of interest
classes. We can also define this potential as the negative of an
eFV classification score at the location i obtained using some
type of classifier.

The figure 1 shows the connection between a central node and
its neighbors, the edges with solid lines indicate the connection
of the node with its neighbors and the arrow indicates the unary
potential of the node in question. As we can see each node
connects with four of its eight neighbors.

Figure 1. Connection between a central node and its four
neighbors. The nodes with solid lines are those that connect to

the central node and the edges in solid line indicate these
connections. The arrow indicates the unary potential φi of the

central node.

The labeling that minimizes energy E(Y),

Ŷ = arg min
Y
E(Y), (8)

give us the desired classification.
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3.1 Energy minimization

To minimize the energy of equation 7 there are several algo-
rithms in the literature, among which we can highlight those
based on maximum a posteriori estimates normally used for
minimization of energy in Markov random field [Geman, Ge-
man, 1987]. One of the disadvantages of these methods is that
the solutions require exponential computation times. Because
of this, the approximate solution presented in [Boykov et al.,
2001] known as α-expansion or expansion-move was used for
minimization, which is based on graph-cut.

3.1.1 Expansion-move algorithm This algorithm is a very
powerful method and widely used in practice. The algorithm
is based on finding the expansion of some of the labels that
makes energy decrease. That energy minimization is solved
using graph cuts.

Below are the steps of the algorithm:

1. Start with an arbitrary labeling.

2. Repeat for each label:

(a) Find the lowest energy labelingE with an expansion-
move step using graph-cut.

(b) Go to the labeling if the energy is less than the en-
ergy of the current labeling.

3. If E does not decrease in the cycle, terminate the algo-
rithm, otherwise return to 2.

The main advantages of this algorithm is that it has a conver-
gence time proportional to the number of nodes, unlike other
algorithms in which it is usually exponential. The fundamental
disadvantage is that this algorithm does not find a global mini-
mum of energy although it does find a local minimum and it is
shown that this local minimum has an upper bound [Boykov et
al., 2001], which is shown in the following equation:

E(Ŷ) ≤ E(Y∗) ≤ 2βE(Ŷ) (9)

where Ŷ is the lowest global energy labeling, Y∗ is the local
minimum that finds the algorithm and β is a constant that de-
pends on the smoothing function.

In figure 2 we show an example of the operation of the algo-
rithm.

Obtaining the lower energy labeling. To find an expansion
of any of the labels (step 2.a of the algorithm), the graph-cut
algorithm is used. For this, the problem is transformed into a
graph where the objective is to find the cut that divides the graph
into 2 parts with the minimum energy known as the minimum
cut [Boykov et al., 2001]. The graph cut finds the division of
minimum energy between 2 labels, therefore to solve a multi-
label problem as in this case, first a label is selected and the rest
of the labels are grouped into a new temporary label. This can
be seen in figure 3.

After this, if the new energy obtained for step i+ 1 is less than
the energy of step i we move to this new labeling, as indicated
in step 2.b, otherwise we end the algorithm.

(a) Labeling in step i (b) Labeling in step i+ 1

Figure 2. Example of a step of the expansion-move algorithm.
In this example we have 3 labels; on the left, the labeling

obtained in step i is shown and on the right, the labeling for step
i+ 1 is shown after performing an expansion-move step of the

label represented by the color yellow.

(a) Labeling in step i (b) Labeling in step i+ 1

Figure 3. Example of a step of the graph-cut algorithm. In this
example, the blue and red labels of figure 2 became a single

label; on the left the label obtained in step i is shown and on the
right the label for step i+ 1 is shown after performing an
expansion-move step of the label represented by the color

yellow.

4. PROPOSED EXTENSION

In this paper we propose two modifications to the work pre-
sented in [Redolfi et al., 2017]. The first one is with respect
to the selection of the pdf of equation (5). While it is known
that the data measured by a PolSAR sensor is modeled as a
Wishart distribution [Goodman, 1963] we also know that with
a sum of Gaussian distributions we can model any type of dis-
tribution [Papoulis, Pillai, 2002], therefore it is feasible to use a
Gaussian pdf in equation (5).

The pk(x) of equation (5) looks like:

pk(x) := H(x) exp
[
vec(ηk)T vec(x)−Ψ(ηk)

]
. (10)

where H(x) is a normalizer, vec(·) denotes the vectorization
operator , Ψ(ηk) is known as log-partition function and ηk ∈
Rq×q are the parameters of the distribution in natural form.
For the definition of these terms for each of the distributions
see [Sánchez, Redolfi, 2015]. Then using this definition for
the probability distributions we calculate the gradient of equa-
tion (4) on a set of pixels obtaining the eFV encoding for those
pixels.

The second modification proposed is in the calculation of the
φi(yi) unary potential of equation (7). In this work we propose
to use three similarity measures, the first one is the dot product
(DP) between eFVs, the second is the Euclidean distance to the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-189-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165635

 
 

191



nearest neighbor (NN) and the third is the distance to a hyper-
plane obtained with Vector Support Machines (SVM) [Cortes,
Vapnik, 1995].

5. EXPERIMENTS

This section describes the data used to perform the experiments,
then what are the proposed experiments and the evaluation pro-
cedure for the performed experiments. Finally, the results ob-
tained are shown.

5.1 Dataset

For evaluation, we consider a subset of the images that were
available trough PolSARpro1 by the European Space Agency
(ESA). This subset consists of two fully polarimetric images in
the L-band acquired by the NASA/JPL AIRSAR sensor over
the San Francisco Bay (SFB) area, USA, and over an agricul-
tural region in the Flevoland (FL) province in The Netherlands.
Figures 4 and 5 show the Pauli decomposition of the polarimet-
ric data (left) and the ground truth labels (right) for the SFB and
FL regions, respectively. Segmentation masks for these two sets
are based on [Gao et al., 2014] and [Anfinsen et al., 2007]. For
SFB, we cropped the original 900×1024 image and considered
a region of 500× 500 pixels since we have not ground truth an-
notations for the rest of the image. The cropped image is shown
in 4. For FL, we consider the full 750× 1024 image.

Figure 4. San Francisco Bay image (left) and ground truth labels
(right). Training samples are marked as black squares (best

viewed with magnification).

Figure 5. Flevoland image (left) and ground truth labels (right).
Training samples are marked as black squares (best viewed with

magnification).

The SFB image will be used for parameter setting and the FL
image will be used for evaluation. For each image we generate
5 different train/test splits and report the mean accuracy (and
standard deviation) over the 5 runs. Train/test splits are gener-
ated following a process that lies between two common strate-
gies found in the literature, namely random selection [Wang et

1https://earth.esa.int/web/polsarpro

al., 2016, Jiao, Liu, 2016, Zhang et al., 2016] and manual anno-
tation of training and testing samples [Zhang et al., 2009,Doul-
geris et al., 2008,Zhang et al., 2015]. The process is as follows.
For each class, we sample r anotated pixels and at each pixel
location, we crop a small window of size s × s pixels. To en-
force data variability, we only consider non-overlapping win-
dows. Following this procedure, we end up with rs2 samples
per class that we use for training, while the rest is used for test-
ing. From now on, we set r = 4 and s = 5, which gives a total
of 100 samples per class.

5.2 Implementation details

Classifying an image with our model involves the following
steps:

1. fitting the parameters of the mixture distribution (5) based
on the selected distribution,

2. computing eFVs signatures at each pixel location,

3. compute unary potentials of equation (7) for each pixel
depending on the similarity measure selected, and

4. solving the classification problem posed by equation (7).

Details regarding each step are next provided. First, since the
images are the result of a single pass (single look), they are con-
verted to a multi-look image using PolSARPro v4.2. The pa-
rameters of the mixture model (5) are estimated under a maximum-
likelihood criteria with the EM algorithm using around 1000
points chosen at random. In practice, we consider only those
whose determinant is within the 95th percentile of the sample
population. Empirically, we observed this has the effect of re-
ducing the noise during estimation by removing samples which
are badly conditioned. Once the model has been fitted, FVs are
computed pixel-wise as in [Sánchez, Redolfi, 2015]. For simi-
larity measures we use the implementations of the scikit-learn
library [Pedregosa et al., 2011]. Finally, the inference problem
associated to the minimization of (7) is solved via Graph Cuts
using the approximate solver of [Delong et al., 2012] as imple-
mented in the GCO library2.

5.3 Parameter selection

In this subsection, we evaluate the impact on the classification
accuracy of the number of mixture componentsK, equation (5).
In figure 6 we show the results obtained on the image of SFB
for different values of K. As can be seen in figure 6, the ac-
curacy using Wishart is more stable and remains similar for the
range ofK analyzed. In the case of Gaussian there is more vari-
ation with the number of components and for more than 16 the
accuracy begins to decrease. Due to the latter, in what follows
we set K = 16.

5.4 Resuls

In table 1 we show the experiments results on the FL image. As
can be seen in the results table, the Wishart distribution gives
better accuracy than the Gaussian distribution for any of the
similarity measures used. This is consistent with the assertion
that the selection of the parametric model pλ depends of the
particularities of the problem as we claim in sub-section 2.2.

2http://vision.csd.uwo.ca/code/
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Figure 6. Mean accuracy and standard deviation measured on
the SFB subset for different choices of K. In blue for eFV based
on Wishart distribution and in green for eFV based on Gaussian
distribution. Similarity measures are dot product (DP), support

vector machines (SVM) and nearest neighbors (NN).

Wishart Gaussian
Dot product 0.9019 (0.0205) 0.5273 (0.0340)
Nearest neighbor 0.9222 (0.0270) 0.7247 (0.0514)
SVM 0.8296 (0.0112) 0.6339 (0.0965)

Table 1. Comparison of results on the FL image.

In addition, it can be seen that for both probability distributions,
the use of a similarity measure based on the nearest neighbor
produces better results than the other proposed measures.

In figure 7 we show the segmentation results on the FL image
using Wishart distribution and nearest neighbor distance.

Figure 7. Segmentation results on the FL image for K = 16,
and eFV based on Wishart distribution and nearest neighbors as

similarity measure.

6. CONCLUSIONS AND FUTURE WORK

In this work we present an extension of a PolSAR image clas-
sification model presented in a previous work. The proposed
extension consists in the use of different probability distribu-

tions to capture the underlying structure of the data and the use
of different similarity measures for the comparison of vectors.

With respect to the first hypothesis we can say as a conclusion
that the underlying structure is very important for the choice of
the base probability distribution for eFV encoding. For this par-
ticular case, the Wishart distribution is the one that best adapts
to the data as can be seen in the results.

With respect to the similarity measure, for both probability dis-
tributions analized, the measure of similarity that showed better
accuracy was nearest neighbor.

We are currently working on the extension of the eFV model
to adapt it to complex probability distributions. With this type
of distributions, we avoid discarding the imaginary part of the
data and work with all the available information and we expect
to obtain an improvement in the classification.
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