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ABSTRACT: 

 

The automatic detection of building changes is an essential process for urban area monitoring, urban planning, and database update. 

In this context, 3D information derived from multi-temporal airborne LiDAR scanning is one effective alternative. Despite several 

works in the literature, the separation of change areas in building and non-building remains a challenge. In this sense, it is proposed a 

new method for building change detection, having as the main contribution the use of height entropy concept to identify the building 

change areas. The experiments were performed considering multi-temporal airborne LiDAR data from 2012 and 2014, both with 

average density around 5 points/m2. Qualitative and quantitative analyses indicate that the proposed method is robust in building 

change detection, having the potential to identify small changes (larger than 20 m2). In general, the change detection method 

presented average completeness and correctness around 97% and 71%, respectively. 
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1. INTRODUCTION 

Building change detection is an important process in several 

applications such as land management, decision making, illegal 

building identification, disaster management, geographic 

information database updating, urban growth planning and 

monitoring. These applications aim at the sustainable and 

organized development of cities and its citizens, being directly 

linked to the 2030 agenda for sustainable development (United 

Nations, 2019). 

 

According to Matikainen et al. (2010),  change detection can be 

performed by means of visual interpretation and manual 

digitizing. However, it is a time-consuming task, especially in 

large or continuously changing areas (Manno-Kovacs and 

Sziranyi, 2015), since the human operators need to search and 

detect the changed objects by visual inspection over digital 

images, for instance. In this sense, the development of 

automated techniques to detect and extract building changes has 

a strong appeal to both the private and public communities. 

Besides, such automated techniques can help to save time and 

money, allowing a recurring database updating. 

 

In the last years, the scientific community has made efforts to 

develop automatic techniques using remote sensing data. In 

general, the building change detection can be performed in the 

2D space using aerial or satellite images, or in the 3D space 

using point clouds generated from photogrammetric techniques 

or airborne LiDAR scanning systems. The detection process 

using images usually considers the spectral response, being the 

final results influenced by several factors: shadows, occlusions, 

seasonal variations, and different weather conditions. Besides, 

the use of 2D imagery does not allow the extraction of 

volumetric change information, unless some digital image 

matching process is considered. However, the matching process 

can be affected by occlusion, lack of texture and/or repetitive 

patterns, for instance. In this sense, LiDAR data emerges as a 

good alternative, since the 3D point cloud is obtained directly 

from the integration of laser scanner and positioning and 

orientation sensors. Moreover, LiDAR data is not influenced by 

imaging conditions.  

 

During the past decade, several methods using airborne LiDAR 

data for building change detection have been developed. They 

can be divided into two categories: change detection using 

multi-temporal LiDAR data or combining LiDAR data with 

another data source. In the first category, the building changes 

are usually identified by comparing interpolated digital surface 

models (DSM) from two different epochs (Choi et al., 2009; 

Murakami et al., 1999; Pang et al., 2014; Pirasteh et al., 2019; 

Teo and Shih, 2013; Tuong Thuy Vu et al., 2004; Vogtle and 

Steinle, 2004). According to Butkiewicz et al. (2008), an 

alternative to avoid DSM interpolation errors is to perform the 

changes detection directly over the LiDAR point cloud, i.e., 

irregularly spaced LiDAR points. In the second category, the 

LiDAR data can be used to update an existing geographic 

database or combined with different data sources for change 

detection. In Awrangjeb et al. (2015) the authors proposed a 

method for updating building information in a topographic map 

using LiDAR point cloud data. In Huang and Chen (2007), 

Malpica and Alonso (2010) and Matikainen et al. (2010), the 

detection process is based on the comparison of an existing 

building map (first epoch) with airborne LiDAR and aerial 

image data (second epoch). Malpica et al. (2013) uses satellite 

image and LiDAR data to update a vector geospatial database. 

In Du et al. (2016) is proposed an automatic method using old 

aerial images and LiDAR data. Zhou et al. (2018) provides a 

novel method for change detection between past LiDAR and 

new images. 

 

In the context of building change detection from LiDAR data, 

differentiating between the building and non-building changes 

is a challenge, since the classification depends on some factors, 
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such as object features and point cloud density. To overcome 

this problem, some works explored the semantic information 

derived from images (Huang and Chen, 2007; Malpica et al., 

2013; Malpica and Alonso, 2010; Matikainen et al., 2010). In a 

real scenario, LiDAR and image integration makes the 

acquisition process more expensive, being impractical for some 

emerging countries. In this sense, some authors have explored 

the geometry information derived from the LiDAR point cloud. 

In Vogtle and Steinle (2004), the change clusters are classified 

using a set of attributes: the  number  of significant border 

gradients, height texture, first/last pulse differences, shape 

parameters and laser pulse intensities. In Choi et al. (2009), the 

clusters are classified as ground, vegetation or building; being 

considered roughness, height and size as attributes. In the paper 

of Teo and Shih (2013) the change clusters are divided into 

building and vegetation considering the surface roughness 

attribute, which is estimated using  height gradient variance. In 

Pang et al. (2014), the random sample consensus (RANSAC) 

fitting algorithm is used to distinguish the true changed 

buildings from trees. In Awrangjeb et al. (2015) planar roof 

segments are extracted over change areas, being the vegetation 

clusters eliminated using some information such as area, and 

orientation. In Du et al. (2016), the non-building changes are 

removed considering two strategies: the normal variance 

direction of LiDAR points is used to remove vegetated areas for 

positive building changes (newly building or taller) and nEGI 

(normalized Excessive Green Index) is used for negative 

building changes (demolish building or lower). In some works, 

the area threshold is applied to eliminate small changes, which 

are usually related to non-building changes. In Pirasteh et al. 

(2019), for instance, it is considered that the smallest building 

has 75 m2, eliminating most of the vegetation areas. Thus, a 

negative aspect is that changes in buildings with an area smaller 

than this threshold are not identified. 

 

In this paper, a building change detection using multi-temporal 

airborne LiDAR data is proposed. The main contribution of this 

approach consists in the use of the Shannon entropy concept as 

a metric to distinguish the building and vegetation change 

clusters. In the proposed method, the change detection is 

obtained subtracting the interpolated DSM from two different 

epochs, obtaining a differential DSM (dDSM). Then, a height 

entropy value is determined for each change candidate cluster, 

which is estimated directly over the original LiDAR to preserve 

the multiple return geometry. 

 

The remainder of this paper is organized as follows. The 

proposed method is described in Section 2. The study area and 

dataset are presented in Section 3. The experiments and 

discussion are presented in Section 4. Finally, conclusions and 

further investigation are summarized in Section 5. 

 
2. METHOD 

The proposed method is composed of three main steps: 

preprocessing, change detection and building change detection, 

as highlighted in the flowchart shown in Figure 1. The input 

data are two LiDAR point clouds of two epochs (t1 and t2), 

whereas the output corresponds to a building change map. The 

building changes clusters are divided into two classes: 

constructed or demolished buildings. In Figure 1 the 

contribution of the proposed method is highlighted in blue 

dotted lines. It is assumed that both LiDAR data are referenced 

to the same global reference system. 

 

 
Figure 1. Building change detection method. 

 

2.1 Preprocessing 

The LiDAR point cloud available may contain outlying points 

that should be excluded before the data processing (Ben-Gal, 

2005). In this paper, the method proposed by Carrilho et al. 

(2018), cell histogram filter (CH filter), was considered. The 

method consists of identifying the outlying points by means of 

the analysis of the height frequency histogram generated 

locally. In this context, a frequency threshold (Tf) should be 

adopted. 
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After the outlier removal from both LiDAR point clouds, 

acquired in epochs t1 and t2, the grid data, i.e., the DSM can be 

generated. The DSM generation was performed using the 

lasgrid tool of LAStools software 

(http://rapidlasso.com/lastools/). In the LiDAR point cloud, the 

multiple returns can be affected by scan pulse, flight planning 

and scene characteristics (vegetation leaf cover), which hardly 

remain constant in independent surveys at two different epochs. 

Thus, to avoid false changes derived from multiple return 

variations, only the first return was considered. 

 

2.2 Change detection 

After the preprocessing step, the difference DSM (dDSM) is 

obtained employing Equation 1. The dDSM corresponds to a 

height difference map, which allows locating the potential 

change areas. To eliminate the small height variations a height 

threshold (TH) is applied, similar to Teo and Shih (2013). In this 

case, the pixels with absolute values larger than the height 

threshold are labeled as potential changes, otherwise, they are 

considered as no changes. Figure 2a presents an example of 

potential changes. 

 

dDSM = DSM(t2) - DSM(t1)                         (1) 

 

where DSM(t) is the DSM at epoch t, and dDSM is the height 

difference between two epochs. 

 

The dDSM usually has noise problems (Figure 2a), which are 

related to grid interpolation errors. This problem normally 

occurs in the regions near the steep edge and can be minimized 

by applying morphological filters, specifically the opening 

operator in this case, which is defined by an erosion followed by 

a dilation. In Figure 2b is presented the result after applying the 

opening operator considering a disk as structuring element. 

 

In the sequence, the pixels labeled as potential changes, i.e., 

only those that |dDSM(i,j)| > TH, are separated into two classes: 

constructed and demolished building candidates. This 

classification, as shown in Figure 2c, is performed by analysing 

the signal of height variation, i.e., whether the height variation 

is positive (dDSM(i,j) > 0), then pixel is labelled as constructed  

building candidate, otherwise the pixel is labelled as demolished 

candidate (dDSM(i,j)  < 0). 

 

To obtain the clusters related to each change, the region 

growing was performed considering the pixels connectivity 

criterion, being used 8-connected neighbourhood. In this work, 

the segmentation process was applied to each class separately, 

avoiding the grouping of different types of changes in the same 

cluster. After this process, it is possible to determine the area of 

each cluster. Considering that the small changes are usually 

related to commission errors, an eliminating process can be 

performed using an area threshold (TA). Figure 2d shows the 

result after eliminating small areas.  

 

 
Figure 2. Change detection using the height threshold (a). 

Result after applying the opening operator (b). Classification of 

pixel changes into constructed (blue) and demolished building 

(red) (c). Result after eliminating the small clusters (d). 

2.3 Building change detection using the entropy concept 

As pointed by Murakami et al. (1999) and Teo and Shih (2013), 

the building change detection methods based on height 

difference may present commission errors, normally related to 

vegetation areas. An alternative to mitigate this problem is the 

application of the Shannon entropy concept, which is a measure 

of dispersion in a given domain (neighbourhood). Considering 

the geometric characteristics, it is expected that the vegetation 

presents a high magnitude of entropy, whereas the building has 

a smaller magnitude. In this work, the height entropy of a given 

point is estimated using Equation 2 (Oliveira and Galo,  2017), 

which corresponds to an adaptation of the Demantké et al. 

(2011). 

 

Ej = n-1 Ʃ[-(hi-hmin) ln(hi-hmin)]    ∀ hi ≠ hmin      i=1… n       (2) 

 

In Equation 2, the height entropy value (Ej) is computed 

considering a neighbourhood defined by a vertical cylinder of 

radius R centered on each point of interest. The hi represents the 

height of generic point i, whereas hmin corresponds to the 

minimum height in its neighbourhood.  

 

The height entropy is directly computed over the LiDAR point 

cloud, i.e., with all laser returns. The main advantage is related 

to the conservation of multiple return geometry, especially in 

vegetation areas. In general, the height entropy estimation is 

divided into two mains stages. In the first, for each change 

pixel, it is determined the closest point in the LiDAR point 

cloud. In the second, the height entropy value is computed 

considering all points inside each vertical cylinder. The 

estimated height entropy for the point is associated with the 

corresponding change pixel.  

 

The height entropy was estimated for both t1 and t2 LiDAR 

point clouds. In this context, the pixel change that presents 

|dDSM(i,j)| > TH and dDSM(i,j) < 0, i.e., demolished building 

candidate, has its height entropy value estimated based on t1 

LiDAR point cloud, whereas for the pixel that presents 

|dDSM(i,j)| > TH and dDSM(i,j) > 0, i.e., constructed building 

candidate, has its height entropy value estimated based on t2 

LiDAR point cloud. This strategy was adopted considering the 

idea that a demolished building exists in epoch 1 and does not 

exist in epoch 2, whereas the constructed building does not exist 

in epoch 1 and exists in epoch 2. In Figure 3 is presented one 

example of height entropy estimation for a pixel classified as a 

demolished building candidate. The same process is used for 

constructed building candidates, however, in this case, the 

LiDAR data at epoch t2 is considered.   

 

 
Figure 3. Estimation of the height entropy. Cluster related to 

demolished area (a). LiDAR point cloud in the epoch t1 (b). 

Neighbourhood selection using a vertical cylinder (c).  Height 

entropy map (d). 
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                               (a)                                                               (b)                                                                      (c) 

Figure 4. Study area in Presidente Prudente/Brazil (a). Results of proposed method (b-c). Vegetation detection using the entropy 

concept (b). Building changes (c). 

 

For each change cluster, a unique entropy value is determined 

based on the entropy value of each pixel. At this stage, several 

alternatives could be applied, such as the mean, the median, 

maximum, minimum, etc. In our work, median value (Emed) is 

adopted as a cluster attribute. The median was selected to 

minimize the influence of outlier values, i.e., height entropy 

values that differ from the central point. This is a recurring 

situation in roof building areas since the roof surface has a low 

entropy magnitude and the edge has a high magnitude. To 

verify whether a given cluster corresponds to a building or 

vegetation change, the magnitude of entropy value (Emed) is 

compared to an entropy threshold (TE). Whether the magnitude 

of Emed is smaller than the threshold, then the cluster is labeled 

as building change, otherwise, the cluster is considered as a 

vegetation change. 

 

3. STUDY AREA AND DATASET 

3.1 Study area 

The study area, located in Presidente Prudente city, in the 

Southeast region of Brazil, has an area of approximately 1 km2 

(1 km x 1 km). It is composed of different types of objects, such 

as buildings, trees, and streets. In Figure 4a is presented the 

geographic location and an aerial image of the interest area. In 

this area, there are buildings with different shapes, heights, and 

dimensions. In the upper-left corner, there is a high 

concentration of residential houses (with one or two floors), 

whereas in the lower and central parts, it is possible to observe 

taller and broader buildings. 

 

3.2 Dataset 

The experiments were performed considering the point cloud 

data of two epochs (2012 and 2014). Both datasets were 

acquired by an airborne RIEGL LMS-Q680i system from the 

Sensormap Company. This system has a precision of up to 2 cm 

in the range measurement, a LASER pulse repetition rate of up 

to 400 kHz and an measurement rate of up to 266 kHz at a 60° 

scan angle. The system can also store multiple returns. In 

Table 1 are presented some information about each aerial 

acquisition mission. 

 

 

 

Dataset 2012 2014 

Flying height 900 m 900 m 

Average point spacing 0.44 m 0.44 m 
Average point density 5.1 points/m2 5.2 points/m2 

Total number of points 3,125,730 3,207,329 

Table 1. Information related to each data. 

 

4. RESULTS AND DISCUSSION 

4.1 Results 

As described in Section 2, some parameters must be considered 

to apply the proposed method. In Table 2 is presented the value 

and description related to each parameter. The parameters 

include the grid cell size, the height difference threshold, the 

structuring element of the morphological filter, the radius of the 

cylinder, the area threshold, and the entropy threshold. The 

values of the thresholds were defined empirically. 

 

The results of the proposed method are presented in Figure 4. In 

Figure 4b is presented all potential clusters related to changes 

with an area bigger than TA. In this case, the changes are divided 

into three classes: vegetation, demolished or constructed 

building. Figure 4c shows just demolished and constructed 

buildings.  

 

Parameters  Values Description 

Grid cell size 0.5 m 
Grid cell size used to generate 

the DSM. 

Height threshold 

(TH) 
2 m 

To verify if a given pixel 

correspond to a change. 

Structuring 

element  

Disk of 

radius 

1 m 

Used to perform the 

morphological operation 

(opening). 

Radius of the 
cylinder (R) 

1 m 
Used in the neighbourhood 

selection.  

Area threshold 

(TA) 
20 m2 To remove small objects. 

Entropy threshold 

(TE) 
2 To identify tree clusters. 

Table 2. Change detection parameters. 

 

To perform the quantitative analysis, the following quality 

parameters, as described in Wiedemann et al. (1998) and 

Sokolova et al. (2006), were computed: completeness (Comp), 

correctness (Corr), accuracy (Accu) and Fscore. Each change 
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cluster was manually verified through a visual inspection using 

aerial images and LiDAR data from both epochs. In Table 2 is 

presented the quality parameters estimated for the study area, as 

well as the average value of each metric. 
 

Classes Comp. 

(%) 

Corr. 

(%) 

Accu. 

(%) 

Fscore 

(%) 

Constructed Building 100 73.2 85.8 84.5 

Demolished Building 94.7 69.2 94.9 80.0 

Mean 97.3 71.2 90.4 82.3 

Table 3. Quality parameters. 

 

In Figure 5 is highlighted some change areas obtained by the 

proposed method. To facilitate the visual analysis, it is also 

presented the corresponding aerial images and DSMs to each 

epoch. Figure 6 presents some change areas that were 

incorrectly classified as building changes. In this case, it is 

presented the DSMs and height profiles.   

 

 
Figure 5. Change areas identified using the proposed method. 

Constructed buildings (blue, a, b and f), demolished buildings 

(red, c and d), and vegetation changes (green, e and f). 

 

 
Figure 6. Change areas incorrectly classified as building 

changes. Vegetation (a, b) and ground (c, d) changes. 

4.2 Results discussion 

From visual analysis (Figure 4), it is possible to observe that a 

large number of clusters of vegetation changes were identified. 

Since the focus of this work is to find building changes, the 

identification and elimination of vegetation changes allow to 

reduce the commission errors, i.e., false negatives. In 

Figures 5a-5d are presented constructed and demolished 

buildings, whereas in Figures 5e and 5f are presented two 

vegetation changes correctly identified. In Figure 5f is also 

shown a small building change, which is related to a building 

extension. 

 

Analyzing the completeness metric (Table 3), it is possible to 

notice that constructed and demolished building classes reached 

100% and 94.7%, respectively. This indicates that most of the 

building changes were identified, i.e., the proposed method had 

a small omission error rate. This is an important achievement 

since the verification process of omission errors is much more 

costly and labor-intensive than the commission errors 

(Murakami et al., 1999). 

 

Considering the correctness metric (Table 3), the constructed 

building class presented value around 73% against 69% of the 

demolished building class, indicating a low commission error 

rate. This result is directly related to building change detection 

step, where the building change candidates were separated into 

building and vegetation changes through height entropy 

concept.  

 

The proposed method presented average completeness and 

correctness around 97% and 71%, respectively, being 

considered building changes larger than 20 m2. The method 

proposed by Teo and Shih (2013) presented correctness around 

80% for building changes larger than 50 m2. In Pang et al. 

(2014), the authors also considered building changes larger than 

50 m2, the completeness and correctness were around 98% and 

91%, respectively. Matikainen et al. (2010) perform a quality 

analysis considering building changes larger than 20 m2. The 

constructed building class presented completeness and 

correctness values around 69% and 56%, respectively, whereas 

the demolished class has completeness and correctness around 

43% and 68%, respectively. This comparison indicates that the 

results obtained by the proposed method are compatible with 

the previously developed methods, presenting a high potential 

in detecting building changes larger than 20 m2.     

 

In Figure 6 are highlighted some commission errors, which are 

corresponding to vegetation (Figures 6a and 6b) and ground 

changes (Figures 6c and 6d). This type of error is directly 

related to the estimated height entropy value for each cluster 

and the entropy threshold (TE) adopted. In some cases, the 

height entropy estimated for the cluster may have a similar 

value to buildings, as the laser pulse might fail to penetrate the 

tree canopy due to high leaf density. In the case of ground, 

commission errors were already expected, since the ground has 

similar behavior to the roof building, i.e., locally flat surface. 

 

In summary, the qualitative and quantitative analysis indicates 

that the proposed method has the potential to be used to identify 

building changes using LiDAR data from two epochs. In 

addition, the results showed the potential of the adopted strategy 

to minimize commission errors, usually related to vegetation 

changes. 
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5. CONCLUSION 

This paper proposes a method for building change detection 

using LiDAR data. The main contribution is related to the use of 

height entropy concept to classify the change areas into building 

or vegetation. This method was robust in detecting building 

changes, having also the potential to identify small changes 

(larger than 20 m2). The drawback of the proposed method is 

directly related to the definition of the entropy threshold, which 

was empirically defined for the dataset used in the experiments. 

 

As for future research, it is suggested to apply a technique that 

allows the automatic definition of the entropy threshold. 

Besides, it is interesting to explore other forms of calculating 

the entropy. 
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