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ABSTRACT: 

 

The Ciénaga Grande, Santa Marta is the largest and most diverse ecosystem of its kind in Colombia. Its primary function is acting as 

a filter for the organic carbon cycle. Recently, this place has been suffering disruptions due to the anthropic activities taking place in 

its surroundings. The present study, the changes in the surface of Ciénaga Grande, Santa Marta, Magdalena, Colombia between 2013 

and 2018 were determined using semiautomatic detection methods with high resolution data from remote sensors (Landsat 8). The 

zone of studies was classified in six kinds of surfaces: 1) artificial territories, 2) agricultural territories, 3) forests and semi-natural 

areas, 4) wet areas, 5) deep water surfaces & 6) wich is related to clouds as a masking method. Random Forest classifiers were utilized 

and the Feed For Ward multilayer perceptron neuronal network (ANN) was simultaneously assessed. The training stage for both 

methods was performed with 300 samples, distributed in equal quantities, over each coverage class. The semi-automatic classification 

was carried out with an annual frequency, but the monitoring was carried out throughout the analysis period through the performance 

of three indicators Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference 

Water Index (NDWI). It was found from the confusion matrix that the Random Forest method more accurately classified four classes 

while Neural Networks Analysis (NNA) just three. Finally, taking the Random Forest results into account, it was found that the 

agricultural expansion increased from 7% to 9% and the urban zone increased from 20% to 30% of the total area. As well as a decrease 

of damp areas from 27% to 12% and forests from 4% to 3% of the total area of study. 

 

 

1. INTRODUCTION 

The most commonly used methods to study the changes of the 

vegetal coverages demand exhaustive field surveys which 

increase the costs of the projects and condition the spatial 

variable (Di Vittorio and Georgakakos, 2018), nevertheless, the 

evolution of the remote sensing has allowed the terrestrial 

ecosystems to be characterized (Setiawan et al., 2016) in a way 

that  it is possible to quantify the changes on the surfaces, rate 

their state and therefore monitoring the spatial dynamics of the 

swamps (Wu et al., 2017). 

 

One of the most conventional methodologies of remote sensing 

is the employ of standardized indexes. Faour et al., (2016) studied 

the change of the vegetation in the Middle East region by 

employing the Normalized Difference Vegetation Index (NDVI), 

classifying it into different categories which describe the 

behavior of the soil, concluding that arab soil suffers from 

humongous loss of vegetation. Othman et al. (2014) considered 

NDVI as one of the fittest methods to observe changes of the 

vegetation and NDWI for waters thanks to the results obtained 

after the study at Razzaza Lake, where it was possible to quantify 

and observe the increase and decrease of the vegetal coverage 

over time. 

 

In addition, there are more sophisticated methodologies which 

allow to determine and distinguished the different kinds of 

coverage, such as classification with remote sensing data using 

supervised and unsupervised methods (Belgiu & Drăgu, 2016). 

Some supervised methods are based upon neural network 

learning (ANN), Classification and Regression Trees (CART). In 

addition, their assembled methods such as Random Forest have 

been useful for studying the distribution of the different 

coverages of a swamp, the changes it suffers during a determinate 

term and the quantification of these areas (Han et al., 2012). 

 

Automatic classification methods have demonstrated high 

accuracy over satellite imaging (Wright y Gallant, 2007), as well 

as shorter processing terms and ability to efficiently estimate 

changes in the coverage compared to conventional techniques 

(Han et al., 2012); (Munyati, 2000). The use of ANN is one of 

the classification methods, a model based on a large amount of 

training data which later can predict to what kind each pixel 

belongs, achieving accuracies up to 93.4% as in the case of Yang 

et al. (2018). Han et al., (2012) compared different variations of 

the ANN method, among which are the radial-based neural 

networks with those that obtained an accuracy of 48 to 86%, and 

also compared the ANNs to RF, in which reached an accuracy of 

96%. 

 

The objective of the present study is to determine the changes in 

the surface of The Great Swamp of Santa Marta, Magdalena, 

Colombia between 2013 and 2018 by using Semi-automatic 

classification methods with high resolution from remote sensors. 

Conventional indexes of vegetation and water were estimated to 

determine their temporary courses and behaviors. Subsequently, 

two methods of supervised classification were employed to 

discriminate the types of water, vegetal and artificial coverage. 

The authors assessed the reliability of the models by using 

confusion matrixes generated by means the internal validation of 

each surface type. Finally, the changes were estimated by means 

of a simple differences model. 

 

 

2. STUDY AREA AND MATERIALS 

The study area is located in the Caribbean Region in the 

Department of Magdalena with coordinates al center N 10° 51’ 

51”. The Great Swamp has an approximate extension of 5.000 

km2, it has been classified as a zone of arid tropical weather with 

temperatures between 27°C and 30°C influenced by the 

Intertropical Convergence Zone, with annual average 
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precipitation values up to 807 mm (Freites et al., 2001) with a dry 

season between December and May and a rainy season from June 

to November, of which October presents the highest values. This 

area is categorized as rural land and it shelters the 64.7% and 

50.5% of the population of the municipalities Pueblo Viejo and 

Sitio Nuevo, respectively; which develop fishing and tourism as 

their main economic activity, nevertheless, nearby zones to the 

municipality of Pueblo Viejo have implemented agriculture 

based on banana and African palm tree crops (Aguilera, 2011). 

 

A set of 119 Landsat-8 images was utilized to cover the study 

term 2013 – 2018. The Landsat-8 Satellite offerts a total of eleven 

(11) bands (Table 1) generated by the two sensors on board: The 

Operational Land Imager (OLI) for the visible spectrum sensor   

and, the Thermal Infrared Sensor (TIRS) for the infrared thermal 

region. Despite existing other sources of spectral information 

with greater advantages in processing times (Setiawan et al., 

2016); the 12-bit radiometric resolution, the temporary resolution 

that provides images every 16 days and finally, the spatial 

resolution of 30m x 30m makes it more convenient to use Landsat 

images for studies to estimate coverage changes (Haque & Basak, 

2017). 

 

 
Fig. 1. Study area “Cienaga Grande, Santa Marta” 

 

 

3. METHODOLOGY 

3.1 Pre-Processing of Landsat-8 Images 

Landsat-8 data was converted to planetary reflectance through 

the use of rescaled reflectance coefficients, arranged in the MLT 

metadata file, considering the observation angle in the digital 

value equation (ND) to reflectance (IGAC-CIAF, 2013 ). 

 

𝜌𝑇𝑂𝐴 =
𝑀𝜌∗𝑄𝐶𝐴𝐿+𝐴𝜌

𝑠𝑖𝑛(𝜙𝑠𝑒)
 (1) 

 

where: ρTOA = reflectance value at the top of the atmosphere 

 Mρ = multiplicative factor for each band 

 Aρ = additive value for each band 

 QCAL = digital number of each pixel 

 sin(∅se) = solar elevation angle 

 

Atmospheric correction DOS that subtracts all the minimum 

reflectance values from the minimum band values (Chavez, 

1988) was applied to all 119 images converted into planetary 

reflectance and angularly corrected. 

 

Two indicators were selected to highlight land coverage (NDVI, 

EVI) and water bodies’ behavior (NDWI). The Normalized 

Difference Vegetation Index (NDVI) makes a classification of 

the terrestrial coverages to estimate the quantity, quality and 

vegetation health through the interpretation of photosynthetic 

processes (Rouse, et al., 1974). A healthy plant disperses solar 

radiation in the near-infrared region so as not to generate an 

overheating that would damage tissues and absorb solar radiation 

from the red region since it is part of an active photosynthetic 

radiation (Othman et al., 2014). 
 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+ 𝜌𝑅𝐸𝐷
 (2) 

 

where: ρNIR = near wavelength infrared reflectivity (Landsat-8 

band 5) 

 ρRED = red wavelength reflectivity (Landsat-8 band 4) 

 

 

The Enhance Vegetation Index (EVI) provides information that 

allows monitoring the state of the vegetation in case of high 

biomass densities. The EVI was optimized from the NDVI to 

reduce the influence of the atmosphere called "aerosol resistance" 

used by the blue band to correct the effect of aerosols on the red 

band (Huete et al., 2002). The EVI was evaluated for 

characterizing NDVI’s saturation situations, caused by the 

influence of intertropical convergence on the study area for some 

periods of the year. 

 

 

 (3) 

 

where: ρBLUE = blue wavelength reflectivity (band 2 Landsat 

8) 

 L = ground adjustment factor (1.0) 

 C1, C2 = 4 band correction constant for atmospheric 

aerosol dispersion (6.0 and 7.5 respectively) 

 

The Normalized Difference Water Index (NDWI) allows wet 

areas to be identified from maximizing the reflectivity of the 

water with the wavelengths of the green band and with the 

reflectivity generated by the near-infrared spectrum to minimize 

it., hence this relation takes leverage of the high reflectance of  

que Near Infrared (NIR) for terrestrial vegetation and soil 

characteristics (McFeeters, 1996). 

 

 (4) 

 

where: ρGREEN = green wavelength reflectivity (Landsat-8 band 

2) 

 

3.2 Supervised Classification 

3.2.1 Random Forest 

 

This technique associate to statistical and machine learning 

disciplines, has its matrix model as decision trees for 

classification and regression (CART). These are models that, 

from the statistics values, such as the mean, median, standard 

deviation, and Gini coefficient, find optimal values to classify the 

information. In cases of classification, the class for each category 

can be inferred based on a divided complex model. However, the 

CART method has multiple inconveniences that excluded it to be 

applied to real-life exercises, Among these, are their 

predisposition to bias and lack of robustness, because they are 

highly dependent on the distribution of the training set, which 
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implies that training two trees with the same initial conditions 

does not guarantee that the results are the same or even similar. 

 

Therefore, different strategies have been proposed to attack this 

problem. Among them, two stand out: the bagging uses a set of 

random subsamples for the training of the different weak 

classifiers, attacking the bias of the individual CARTs, that is to 

say the different Trees specialize in various classes; and the 

impulse (boosting) proposes that a strong classifier can be 

generated by a weak one. Finally, the RF algorithm takes a set of 

training data and automatically divides it into subsamples. Then, 

500 trees were independently train for the purpose of the study 

and to respond to a class, taking the most voted value from the 

500 trees. 

 

3.2.2 Artificial Neural Networks 

 

They are an artificial intelligence model based on the human 

brain behavior, it is mainly based in neurons and their connectors. 

The models are a group of elements (neurons) that work together. 

Each part of the network receives information to be sent through 

the connectors to other neurons that allow them to know and learn 

from the data. There are many neural network models used for 

different activities, in the case of classifications, the perceptron 

is the simplest and most used neural network structure (Caicedo 

& López, 2009). 

 

For this study, a multilayer perceptron neural network 

FeedForWard (MLP) type was used. This model used two hidden 

layers. One of these layers, has 7 neurons and a hyperbolic 

tangent activation function (Tanh). The other layer has 10 

neurons and a linear exponential unit function (Selu). The 

activation function for the output layer, with 7 neurons, was the 

normalized exponential (Softmax), based on the logistic function. 

The Softmax function selection is due to its categorical 

distribution, commonly used for classifications (Caicedo & 

López, 2009). 

 

 (5) 

 

where: a = the exponential parameter 

 b = the exponential prefactor 

 

Layer Associated function Number of 

neurons 

Input  7 

Hide 1 Hyperbolic Tangent 7 

Hide 2 Exponential linear scaling 10 

Output Softmax 7 

Table 1. Number of neurons and activation function for each 

layer 

 

3.2.3 RF and ANN Sampling and Training 

 

For the training of the machine learning technique, 300 samples 

were used distributed into six categories; five soil coverage taken 

from the adaptation of European methodology for classification 

CORINE Land Cover to Colombia in its most basic level and an 

additional category which corresponds to the presence of clouds 

in the scenario. The kinds obtained by CORINE refer to artificial, 

agricultural territories, forests and semi-natural areas, damp areas 

and water surfaces. The 300 samples fed the models of ANN and 

Random Forest; in both cases, 15% of the data was utilized to 

prove the validity of the adjusted models and the remaining 85% 

fed the model. The root mean square and the accuracy associated 

with ANN were 0.25 and 0.95 respectively. 

 

The sample size is the main affectation in the training of the ANN 

model. For this reason, Bolgiu & Drăgut (2016), recommend a 

sample of 0.25% of the size of the area, which corresponds to a 

sample size, for the case of the present study, of 8856 data. 

 

 

4. RESULTS 

The results of this work present a practical approach to the use of 

semi-automatic techniques in Colombia for the derivation of land 

cover maps, in contrast to the methodologies officially accepted 

by the national environmental authorities. Among them we have 

the one established by the Institute of Hydrology, Meteorology 

and Environmental Studies (IDEAM, by his initials in Spanish) 

that adapted the European methodology of Corine Land Cover 

for National studies at 1: 100 000 scales (Ardila et al, 2010), in 

this adaptation, the determination of land cover is given through 

photointerpretation techniques which may include image 

enhancement techniques such as false color compositions, spatial 

filters, and fusion of multispectral bands with the panchromatic 

band on the Landsat satellite (IDEAM, I. (2008). 

 

4.1 Vegetation and Water Indices 

In Fig. 2, it is observed how the EVI values obtained for the crop 

and forest sample areas are within the range mentioned by Roldán 

& Poveda, (2006). In addition, it is evident that the behavior of 

the index, described Roldán & Poveda, (2006) for the Caribbean 

region, presents a similar pattern in its local minima, located 

between the months of November and April. On the other hand, 

the values obtained from NDVI present local minimums from 

January to April. In both cases, the indices present atypical values 

for some periods. 

 

The trend pattern of the trajectories, as in the previous case, is 

consistent with the above for the Caribbean Region. In this case, 

the observed values are below those expected according to local 

characteristics (Roldán & Poveda, 2006). However, the values 

are within the average range of values described by other authors 

in previous studies (Huete et al., 2002).  

 

In Ciénaga Grande de Santa Marta, two crops with similar crop 

characteristics are predominant, such as African palm and 

Banana (Aguilera, 2002). In the activity of harvesting the fruit 

there are no modifications in the appearance of the canopy, unless 

in the crops there is a presence of pests or extreme climatic 

conditions. Of which, for agricultural cover, the EVI and NDVI 

trajectories are represented with green and blue dashed lines (Fig. 

2), however, they do not exhibit the representative phenological 

fluctuations of the surface. In addition, the NDVI index turns out 

to be very sensitive, so the depressions that apparently shows the 

cycles do not refer to crop cuts, but to the effects caused by 

precipitation. 

 

The NDVI index presents a disturbance in the spectral response, 

so those depressions that apparently demarcate the cycles do not 

refer to crop cuts, but to what is considered by Faour et al. (2016), 

where they expresses that the index is affected by climatic 

behaviors, typical in the region. Therefore, it is observed that 

months of January to April spectral responses tend to take low 

values (stressed vegetation) and from June to November high 

values (vigorous vegetation). 
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The EVI index has a very stable pattern with an almost horizontal 

trend and without any abrupt change in the period analyzed, but 

this pattern is expected in a forested area that has not had any 

interruption due to anthropomorphic problems or a natural 

change. On the other hand, the NDWI index represented in dotted 

lines (Fig. 2) shows how deep-water bodies have a higher value 

compared to wetlands due to the proportion of the near and 

infrared green bands. NIR values are higher in wetlands due to 

the turbidity that follows the increase in the equation. 4, shows 

that the difference of the numerator is smaller. 

In addition, the trajectories are not able to reflect the phenology 

of the crops due to the scale of analysis. For this to happen, 

agricultural soils must have the same plantation and all crops 

should be synchronous with their sowing and harvesting date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Trend of the average values of the vegetation and water indices used 

 

 

 

4.2 Classification Methods 

Fig. 3 shows the RF confusion matrix, a  100% effectiveness is 

highlighted in four of the six categories (Urban Zone, 

Agricultural Territories, Water and Cloud surfaces), and an 

accuracy of 90% in the class assignment of wet areas. Forests and 

semi-natural areas were the classes with the lowest allocation 

accuracy (Fig. 3, left). Regarding the accuracy of the ANN, 

 it is observed that in three of the six categories, the allocation 

was 100% correct, for two categories the correct allocation was 

higher than 80%, and in the classification of water surfaces, the 

correct allocation was 71% (Fig. 3, middle), which constitutes the 

lowest percentage of the assignments made through RF and 

ANN. In both methods, the assignment of urban area and clouds 

was done exactly. The water surface class presented greater 

discrepancy between the classifiers. Finally, the correlation 

analysis of the assignments performed by both methods show that 

most of the pixels were classified in the same class since the 

Pearson coefficient, statistically significant with p-value <0.01, 

was 0.81 (Fig. 3, right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Confusion Matrix and ANN and RF correlation scatter plot. 1) artificial territories. 2) agricultural territories. 3) forests and 

semi-natural areas. 4) wet areas. 5) water surfaces and 6) clouds 

 

.

 

4.3 Coverage Changes Determination 

After performing the overall fit and corresponding tests for both 

classification methods, the coverage change occurred during the 

five years was determined using a difference model which was 

fed with the classification of September 2013 to 2018. It can be 

observed for the case of RF, a change of class from wet areas to 

water surface, as well as a decrease in forest areas (Fig. 4). In the 

ANN model, it is evident how an area of the swamp made a 
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transition from water surface to wet area. The presence of clouds 

and the edge of the swamp are observed in the extreme values of 

ANN. In both cases, the classification of clouds has a high 

correspondence.

 

 
Fig. 4. Classification and changes in 2013 and 2018 coverage 

 

 

Finally, an annual follow-up of the coverage change was carried 

out based on the classification results from both methods. It is 

observed how the RF method classifies more areas as agricultural 

territories instead of forests, and wet areas instead of water 

surfaces, compared to the ANN. Based on the statements made 

by Belgiu & Dragut., (2016) the RF method is better suited to the 

data in situations where they are fed with a small number of 

samples. In this sense, the results suggest that there are four 

important coverage changes: agricultural and urban expansion 

from 7 to 9%, and from 22 to 30%, of the total area, respectively. 

As well as a decrease in wet areas from 27 to 12%, and forests 

from 4 to 3% of the total area of the study area (Fig. 5). 

 

 

Fig. 5. Percentage of coverage changes with respect to the total 

study area. 

 

5. CONCLUSION 

An evaluation of the ANN and RF classification methods was 

performed by comparing the success of each pixels. A correlation 

of 0.81 and a determination coefficient of 0.82 were obtained, 

which indicates that for 81% of the cases, both models match 

within the category assignment. However, the confusion matrix 

showed that the neural network model classified with high 

precision three of the six classes studied, while the RF model 

achieved four to 100%, which means that the RF model 

performed better in the classification process. Finally, it is worth 

noting that the study provided evidence about the coverage 

changes at the Ciénaga Grande, Santa Marta from 2013 to 2018. 

 

In this study, the RF model shows better results than the neural 

network model. This can be mainly due to two reasons. The first 

is intrinsic to the models and corresponds to their ability to 

generate good results, their tendency to overtraining and 

generalization capacity. Although both models run the risk of 

over-adjustment due to the need to optimize the objective 

function using a greater number of parameters, so more 

knowledge is required to adjust the architecture of the models. 

On the other hand, the second reason is reduced to the training 

stage of the techniques, where the ANN model presents 

limitations in its results when the samples are limited, as in the 

present study. 

 

The sample size established in the literature review indicated that 

it is necessary a 0.25% of the total area, which for this study 
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translates into 8865 samples. The sample sizes were the biggest 

limitations for the development of the study. 

 

The time scale used is quite wide to be able to accurately predict 

small and detailed changes in crops that are related to the NDVI 

and EVI index, on the other hand, on top of water and wetland 

surfaces, outliers were observed that displaced the average 

generating peaks because samples were taken at sea and in flood 

areas that in dry seasons with moisture deficits.  

 

It can not be possible to determine with exactitude the variability 

of the crops since the harvest technique does not generate 

changes in the coverings that allow to identify the state of the 

crop since the replacement of the plants is taking place gradually, 

as well as the harvest of the fruit. 
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