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ABSTRACT:

The mapping of vegetation and Land Cover (LC) is important for research and for public policy planning but, in Brazil, although
diverse maps exist there are few studies comparing them. The semiarid region of the Caatinga, in northeastern Brazil is an area long
neglected by scientific research and its vegetation is diverse and relatively rich despite years of human occupation and very little
preservation effort. In this study we make a comparison between the main maps made for the Caatinga from four different sources:
IBGE (Brazilian Institute of Geography and Statistics), TCN (Third National Communication), ProBio (Project for Conservation
and Sustainable Use of Biological Biodiversity) and MapBiomas. We also test these maps against well-known Land Cover maps
from ESA and NASA: ESA’s GlobCover and Climate Change Initiative (CCI) Land Cover, and NASA’s MODIS MCD12Q1. This
was done on a sample area where many of the Caatinga’s vegetation physiognomies can be found, using well-established Difference
metrics and the new SPAtial EFficiency (SPAEF) algorithm as they present complementary viewpoints to test the correspondence
of mapped classes as well as that of their spatial patterns. Our results show considerable disagreement between the maps tested
and their class semantics, with IBGE’s and ProBio’s being the most similar among all national maps and MapBiomas’ the most
closely related to global LC maps. The nature of the observed disagreement between these maps shows they diverge not only in
the application of their classification systems, but also in their mapped spatial pattern, signaling the need for a better classification
system and a better map of vegetation and land cover for the region.

1. INTRODUCTION

The classification of vegetation is a complex undertaking and,
although man has studied it at least since Theofrastus of Athens
wrote his notes entitled Historia Plantarum, sometime between
350 to 287 B.C. (Hort, 1917), there is not yet an accepted uni-
versal classification system or a ”definitive” mapping of Earth’s
vegetation. Whichever one’s objectives may be in classifying
currently established vegetation, a system must be established
to differentiate the observed plant communities and, a method
must be chosen and utilized to effect said differentiation.

In the case of Brazil, the government (in separate initiatives)
and Non-Governmental Organizations (NGOs) have produced
different maps of vegetation and land use for diverse purposes
and no scientific research has been done to compare or qual-
ify these efforts. From the different regions of the country, the
semiarid Caatinga has been particularly neglected by scientific
research (Santos et al., 2011) and consequently, disadvantaged
by most previous vegetation mapping attempts. This neglect is
not in regard to the number of maps that have been produced
but actually to the semantic choices made on the preparation of
these maps and the fact that they can be perceived as insufficient
to describe the phytophysiognomies of the Caatinga.

The official maps of Caatinga physiognomies, made by IBGE
(IBGE, 2018), classify the local vegetation as a mosaic
of foreign typologies (i.e., not originated at the Caatinga
but from other neighboring ecoregions like the Cerrado and
the Atlantic Forests) interspersed with one main Caatinga-
specific type denominated by IBGE as steppic-savanna which
is subdivided into four sub-types: Forested Steppic-Savanna,

Arboreous Steppic-Savanna, Parkland Steppic-Savanna and
Woody-Grassy Steppic-Savanna. The problem with this clas-
sification concerns mainly the validity of the steppic-savanna
label. As we demonstrate in another work (Bontempo et al.,
2020), the combination of both savanna and steppe into a com-
pound name - originally suggested by Trochain (Schnell, 1971)
but later abandoned by that same author (Trochain, 1957), is
erroneous since the two classes, savanna and steppe, are incom-
patible by definition (Bontempo et al., 2020). Such a term is
also misleading because the main characteristic defining a pu-
tative ”steppic-savanna” would be a lack of clear dominance
between savannic and steppic characteristics which is vague
and hard to substantiate (Bontempo et al., 2020). Furthermore,
the hierarchical subdivisions originally proposed for the region
are a repetition of what was accepted for the savannic Cerrado:
a density- and height-related organization with physiognomies
containing a dense canopy at one end, the forested steppic-
savanna, and another with trees absent and a mix of shrubs
and seasonal forbs at the other end, the woody-grassy steppic-
savanna. This is an oversimplification considering the more
than eleven physiognomies that compose the best classification
attempt (Andrade-Lima, 1981, Prado, 2003) and, although it
can be construed as a reasonable simplification forced by the
limitations of remote sensing since some of the characterist-
ics used for distinguishing between the different physiognom-
ies are not easily observable with current remote sensing tech-
nology, it still ignores the differences between similarly tall but
essentially different physiognomies (Bontempo et al., 2020).

There are at present four main sources of vegetation maps for
the Caatinga ecoregion: IBGE’s own map of the Caatinga’s ve-
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getation and land use (IBGE, 2018), the map from the Third
National Communication (TCN map - from the Portuguese ac-
ronym) from Brazil to the United Nations Framework Conven-
tion on Climate Change (UNFCCC); the ProBio map (from
the Project for Conservation and Sustainable Use of Biological
Biodiversity) (MMA, 2007); and, the MapBiomas national map
of vegetation and land use from the Brazilian Annual Land Use
and Land Cover Mapping Project (MapBiomas, 2019).

Considering the importance of vegetation and land cover maps
for scientific research and public policy planning, we aimed to
compare these four maps agreement and also, to test the coher-
ence of their mapped classes to actual local vegetation in a small
sample of the Caatinga region. Because no reference map can
be found that represents a consensus, we have decided to com-
pare them to other widely-used land cover and land use maps:
the GlobCover 2009 product from ESA and Climate Change
Initiative (CCI) Land Cover Classification product, also from
ESA.

1.1 Objectives

Our objectives with this work are twofold:

• First, to demonstrate the differences and similarities
between the existing land cover maps for the region of the
Caatinga;

• Secondly, to compare the existing maps with three neutral
references of LCC data produced with diverse data.

To achieve our objectives, maps were compared using the cross-
tabulation based Disagreement or Difference metrics, previ-
ously suggested as a replacement for the inadequate, but widely
used, Kappa index of agreement (Olofsson et al., 2014, Pontius
Jr., Millones, 2011, Pontius Jr., Santacruz, 2014). Complement-
ary to that well-established land-cover and land-use (LCLU)
mapping comparison technique, the SPAtial EFficiency metric
(SPAEF) was also used since it is an unbiased algorithm for the
comparison of spatial patterns based on three metrics: correl-
ation, coefficient of variation and histogram overlap (Demirel
et al., 2017, Koch et al., 2018, Demirel et al., 2018). Although
Pontius Jr.’s quantity, exchange and shift components of dif-
ference are robust they are still subject to eventual bias stem-
ming from the classification systems employed in the different
maps being tested (Pontius Jr., Santacruz, 2014). While SPAEF
can be used to compare spatial patterns independently of their
semantic relationships, testing rather their mathematical differ-
ences.

2. MATERIALS AND METHODS

2.1 Study Area

The Caatinga is a semiarid region of northeast Brazil with
nearly 850,000 Km2 harboring over 28 million inhabitants
(Silva et al., 2017). The region is bounded by Atlantic ever-
green forests to the east and by Cerrado savannas to the west
and south. Caatinga vegetation is frequently armed with thorns
and also commonly deciduous, it includes a range of woody
and succulent species and a few ephemeral herbs and grasses
distributed in a complex mosaic of physiognomies (Andrade-
Lima, 1981, Pennington et al., 2000, Silva et al., 2017). Most
of its area is not subject to frequent fires, as is common to sa-
vanna vegetation and, the local physiognomies include mostly

sparse and dense shrublands, savannas, Seasonally Dry Trop-
ical Forests (STDF) and also enclaves of humid tropical forests
usually isolated in landscape features favoured by orographic
precipitation (Pennington et al., 2018, Silva et al., 2017). The
region has been scantly studied (Santos et al., 2011, Pennington
et al., 2018) and its relatively high levels of endemism (Pen-
nington et al., 2000, Silva et al., 2017) points to an urgent need
for further study and protection. Unfortunately, there are relat-
ively few protected areas and these cover only 7.4% of its area
while extensive human occupation since the 16th century has
altered the local landscape mainly by the introduction of goat
farming and by small-scale agriculture (Silva et al., 2017).

As a study concerning the total area of the Caatinga would be
too complex and extensive to discuss in this format, we have
chosen to subset the Caatinga area for this preliminary study.
Therefore, we have selected an area containing several repres-
entative types of Caatinga vegetation (Fig. 1) which we have
found to be often confused and misclassified, namely: sea-
sonally dry tropical forests (STDF), savannas, steppic-savannas
and Carrasco (a dense and tangled semi-deciduous vegeta-
tion composed mainly of shrubs and small trees permeated by
thorny vines).
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Background image by Bing Satellite, 2019.

Caatinga

Figure 1. Caatinga and study area

2.2 Brazilian Maps

The Brazilian Institute for Geography and Statistics (IBGE -
acronym from the Portuguese) has produced an official map
from data gathered in the Radam Brasil Project (also spelled as
RADAMBRASIL), a pioneering endeavor from the Brazilian
Ministry of Energy which started in 1975, with the latest iter-
ation dating from 2018 (IBGE, 2018). This map uses IBGE’s
own classification system developed in-house by a team of spe-
cialists using a morphological approach largely based on Elle-
mbergh and Muller-Dombois’ system from 1966 (IBGE, 2012).

At the request of the Brazilian Ministry of Environment (Envir-
onmental Ministry) and within the Project for Conservation and
Sustainable Use of Biological Biodiversity (ProBio, also known
as ProBio I) Landsat images were used to create a new map of
Brazilian vegetation (MMA, 2007).

In the context of Brazil’s national REDD+ framework, another
map of vegetation was produced to be incorporated into the
Third National Report of our country to the UNFCCC (MCTI,
2016) using a re-analisys of both the IBGE and the ProBio Map,
along with more Landsat imagery. This map is locally known
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as the TCN Map (from the portuguese acronym for the Third
National Communication to the UNFCCC).

The IBGE, the ProBio and the TCN maps all follow IBGE’s
classification system and were all made at the scale of 1 :
250, 000.

Completing the list of Brazilian-made vegetation maps is the
one produced by the MapBiomas project (MapBiomas, 2019),
a group established as a result of a seminary organized by
the Greenhouse Gas Emission and Removal Estimating System
(SEEG, from the Portuguese acronym). This map is the most
modern of the three, made using Landsat and diverse data in-
puts processed through a complex chain using a Random Forest
algorithm operating within Google Earth Engine. The MapBio-
mas map is the only national map included here not made using
IBGE’s classification system but, employing instead a custom
”legend” as stated by the authors (MapBiomas, 2019). Due to
its pixel-based mapping method and its use of Landsat imagery,
it is the national map of highest spatial resolution: approxim-
ately 0.00029◦ by 0.00029◦.

2.3 Global Maps

As previously stated, we have chosen to include three data-
sets representing global LCLU classification efforts, here re-
ferred to as the GlobCover map and the CCI map, from the
European Space Agency (ESA) and, the MODIS map from the
United States’ National Aeronautics and Space Administration
(NASA) agency. These were chosen due to their widespread
use in the scientific community and also due to their spatial res-
olutions being comparable, according to Tobler’s rule (Tobler,
1988), to that of the national maps described above, with the
exception of the MapBiomas map.

The GlobCover map used here is from GlobCover 2009 and
it was created through automatic classification of ENVISAT’s
Medium Resolution Imaging Spectrometer (MERIS) surface
reflectance data from that year (Arino et al., 2012). Data is
made available in raster format and it is gridded at approxim-
ately 0.0027◦ by 0.0027◦.

The MODIS map used here is the MCD12Q1 Land Cover
Product with in its IGBP classification layer (Friedl, Sulla-
Menashe, 2015). This data is produced at approximately
0.0049◦ by 0.0049◦ and also made available in raster format.

Finally, the CCI map is from ESA’s Climate Change Initiat-
ive (CCI) Land Cover product (ESA, 2018). It was made with
PROBA-V data and it was included as its classification sys-
tem is an improvement from GlobCover and it includes more
classes that have been added after careful analysis of MERIS-
based classification efforts.

2.4 Classification System Compatibility

To allow for the comparison of all chosen maps, we have made
a custom system based on the current version of IBGE’s vegeta-
tion classification system (IBGE, 2012) with composite classes
included. Since no definitive maps exist and no adequate field
classification or validation can be found for most of the Caat-
inga area, our choices here have been tailored from the begin-
ning to improve compatibility whenever we had a subjective
decision to make, for example: MapBiomas considers most of
the local vegetation as the general class ”savanna” but, since
IBGE, Probio and TCN maps use the ”steppic-savanna” class

to describe the majority of the area’s vegetation, we converted
MapBiomas’ ”savanna” into ”steppic-savanna”.

Our custom classification system is presented in the following
table (Tab. 1) but the complete correlation between the systems
of each used map and our custom one cannot be presented here
as the space is insufficient for the multiple tables that would be
necessary.

Number Class Description
1 Water
2 Urban
3 Agriculture and pasture
4 Barren
5 Savanna / Steppic-savanna
6 Savanna / Steppic-savanna / Deciduous Forest
7 Savanna / Deciduous Forest
11 Forested Savanna
12 Woody Savanna
13 Park Savanna
14 Woody-Grassy Savanna
21 Forested Steppic-savanna
22 Woody Steppic-savanna
23 Park Steppic-savanna
24 Woody-Grassy Steppic-savanna
31 Deciduous Forest
44 Grassland

Table 1. Custom Land Cover Classification System - Classes are trans-
lations from IBGE’s classification system adapted to include only types
found in our study area, regardless of the dataset. Combined classes 5, 6
and 7 represent areas of mixed vegetation or ecotones.

2.5 Statistics

All maps were tested in two groups, one comparing the local
Brazilian maps and another testing them against ESA’s and
NASA’s maps. As previously stated, we use the Difference
Metrics of Map Disagreement, quantity and alocation (the sum
of exchange and shift) (Pontius Jr., Millones, 2011, Pontius
Jr., Santacruz, 2014), and also, the SPAtial EFficiency metric
(SPAEF) defined by the following formula:

SPAEF = 1−
√

(α− 1)2 + (β − 1)2 + (γ − 1)2 (1)

where α is the Pearson correlation coefficient between map A
and map B, β is the fraction of coefficient of variations repres-
enting spatial variability, and γ is the percentage of histogram
intersection. For more information and detailed equations of
each term on SPAEF please see (Demirel et al., 2017, Koch et
al., 2018, Demirel et al., 2018).

All data processing was carried out using Qgis (QGIS Devel-
opment Team, 2019), python (van Rossum, 1995) and R 3.6.1
(R Core Team, 2019), with the following R packages: diffeR
(Pontius Jr., Santacruz, 2019), ggplot2 (Wickham, 2016), raster
(Hijmans, 2019) and rgdal (Bivand et al., 2019).

3. RESULTS AND DISCUSSION

3.1 Brazilian Maps Comparison

Concerning the pairwise comparison of national maps, Pro-
Bio and IBGE maps show the highest spatial correlation and
SPAEF, indicating the similarity between their spatial patterns
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(Fig. 2). Although TCN and ProBio maps show a similar
amount of correlation as can be observed between TCN and
IBGE maps, the later pair has the lowest SPAEF value observed,
due to their mutual coeficient of variation and divergence in the
histograms of both maps (results not shown). This in turn in-
dicates that the mapped categories are very different although
the overall pattern (as indicated by spatial correlation) is not so
dissimilar. Results also show that MapBiomas, although using
a different classification system and having higher resolution
than other maps is not markedly dissimilar from the others in
its spatial pattern (Fig. 2).

Figure 2. SPAEF Metrics Between National Map Pairs:
SPAEF is the Spatial Efficiency index. A SPAEF value
of 1 would indicate identical datasets. Correlation refers
to Pearson Product Moment Correlation and is one of the
factors used in calculating SPAEF, the others being coeffi-
cient of variation and histogram overlap.

Difference metrics’ results show large disagreement between
national maps (Fig. 3) averaging 64%. Although the IBGE,
the ProBio and the TCN maps were all made using the same
classification system we still observe overall differences (the
sum of the three components: quantity, exchange and shift) at
or above 50% between them.

As the majority of observed variation on differences is in the
quantity component, our results show that these discrepancies
pertain mostly to an imperfect match in the amount of classes
in each map (Pontius Jr., Santacruz, 2014). As can also be seen,
only between ProBio and IBGE there is significant exchange
of mapped classes, and these are the maps found to be most
similar among all compared data (overall difference at 23%).
Our detailed cross-tabulation analysis of category differences
shows that most confusion occurs between savanna and steppic-
savanna (results not shown). As these are the categories oc-
cupying the largest proportion of the mapped area, results sug-
gest that these maps are unreliable in differentiating between
these categories. This is understandable because, as it is argued
in a another study (Bontempo et al., 2020) these classes are not
well-defined and therefore, easily confused.

3.2 Local and Global Maps

Concerning the spatial patterns of national and global maps, our
results show that MapBiomas is the most similar to all global

Figure 3. Difference Metrics Between National Map Pairs:
Quantity is the percentage of disagreement between maps
that derives from an imperfect match in the amount of the
categories, Exchange and Shift are parts of the allocation
component of differences and refer to confusion between
the categories or classes of both maps. Exchange is the
percentage of pixels reciprocally classified as category A
in the first map and as category B in the second map while
Shift is the percentage of non-reciprocal confusion (in-
volving more categories).

maps (Fig. 4). The other map comparisons show mixed results
but generally low similarity in general, with TCN and ProBio
maps showing the overall lowest SPAEF values.

Comparisons through difference metrics shows better results for
IBGE, ProBio and TCN against GlobCover data while MapBio-
mas was considerably similar to MODIS MCD12Q1 but, not
so to the other two global maps (Fig. 5). Regardless, maps
with IBGE-based classification system were still more similar
among themselves than when compared to global maps (Fig. 3).
MapBiomas in the other hand showed better results when com-
pared to MODIS than with any other map and mixed results
in all other comparisons (Figs. 3 and 5). National maps over-
all differences to international maps averaged over 77% (results
not shown).

Category-based difference results against global maps corrob-
orate our observation with national maps that most confusion
was related to the steppic-savanna classes (not shown). Results
of the comparison of national and global maps support the con-
clusion that the classification system used in IBGE, ProBio and
TCN maps makes them incompatible to global data (Figs. 4 and
5). Furthermore, MapBiomas’ map is also not ideal for north-
eastern Brazil vegetation as it labels generically as ”savanna” a
whole range of different vegetation types previously described
at this region (Andrade-Lima, 1981, Prado, 2003).

Considering that the tested global maps were produced with
classification systems based on the Plant Functional Type (PFT)
concept (Arino et al., 2012, ESA, 2018, Friedl, Sulla-Menashe,
2015), and that PFTs have been shown to relate closely to bio-
logically meaningful units and have been successfully used to
improve large scale ecosystem models (Duckworth et al., 2000,
Wullschleger et al., 2014), the discrepancies observed between
these global maps and IBGE, ProBio and TCN maps raises
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Figure 4. SPAEF Metrics Between National and Global
Map Pairs: SPAEF is the Spatial Efficiency index. A
SPAEF value of 1 would indicate identical datasets. Cor-
relation refers to Pearson Product Moment Correlation and
is one of the factors used in calculating SPAEF, the others
being coefficient of variation and histogram overlap (not
shown here).

doubts concerning their usability for scientific research. As our
results suggest, the classification system used for the production
of those maps hampers their credibility as realistic representa-
tions of the local plant communities and consequently, limits
their application. Therefore, we suggest that a new classific-
ation system and a new map are needed to support scientific
research in northeastern Brazil.

Ideally, such a system should harmonize the known complex-
ity of Caatinga vegetation with the current technological limit-
ations of remote sensing. For example, some of the vegetation
units identified by previous research depend on the presence or
absence of certain succulent species for their precise character-
ization (Prado, 2003) and, therefore, are not likely to consti-
tute realistic units for mapping. Despite such limitations, we
suggest that much can be done to improve the correspondence
of mapped classes and basic PFTs, like for example: a more
careful identification of the different scrub-like formations (e.g.,
sparse shrubland, dense shrubland and the vine-permeated Car-
rasco shrublands) and the separation of Orbignia spp. (Babaçu)
and Copernicia sp. (Carnaúba) -based palm formations from
general savannic classes (currently mapped by IBGE as Sa-
vanna Parkland or Steppic-savanna parkland). These examples
are feasible and their implementation would greatly improve the
biological meaningfulness of mapped physiognomies.

Before our concluding remarks we must reiterate that the area
studied here is small considering the expanse of the Caatinga re-
gion. Therefore, although we have confidence that our choice of
study site was fortuitous in including diverse vegetation types,
our results may change as the study progresses and more areas

Figure 5. Difference Metrics Between National Map Pairs:
Quantity is the percentage of disagreement between maps
that derives from an imperfect match in the amount of the
categories, Exchange and Shift are parts of the allocation
component of differences and refer to confusion between
the categories or classes of both maps. Exchange is the
percentage of pixels reciprocally classified as category A
in the first map and as category B in the second map while
Shift is the percentage of non-reciprocal confusion (in-
volving more categories).

are tested. Nevertheless, the category-related confusion we
have observed seems to result from the classification system
used for the whole region and, therefore, it is reasonable to as-
sume that our conclusions will apply to most of the Caatinga.

4. CONCLUSIONS

Results show that national IBGE, ProBio, TCN and MapBio-
mas maps disagree considerably among themselves and also
when compared to the widely used land products: Globcover
2009, MODIS MCD12Q1 and ESA’s Climate Change Initiative
Land Cover product. Furthermore, our results show that most
class confusion was related to Steppic-savanna classes. There-
fore, we suggest that a new classification system should be de-
veloped for remote mapping of Caatinga vegetation, as a new
map, with more biologically accurate classes will improve sup-
port for research and public policy planning on this large and
important semiarid region of South America.
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Fund (Fundo Amazônia - BNDES) through the pro-
ject ”Monitoramento Ambiental dos Biomas Brasileiros”
- http://www.fundoamazonia.gov.br/pt/projeto/Monitoramento-
Ambiental-dos-Biomas-Brasileiros/.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-201-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165656

 
 

205



REFERENCES

Andrade-Lima, D., 1981. The Caatingas Domain. Revista
Brasileira de Botânica, 4, 149–162.

Arino, O., Ramos Perez, J. J., Kalogirou, V., Bontemps, S., De-
fourny, P., Van Bogaert, E., 2012. Global Land Cover Map for
2009 (GlobCover 2009).

Bivand, R., Keitt, T., Rowlingson, B., 2019. rgdal: Bindings for
the ’Geospatial’ Data Abstraction Library. R package version
1.4-4.

Bontempo, E., Corsini, C., Martins, F., Valeriano, D., 2020.
The steppic-savanna fallacy: A revision into the semantics and
applicability of the term to Caatinga vegetation. In preparation.

Demirel, M. C., Koch, J., Stisen, S., 2017. SPAEF: SPAtial EF-
ficiency. GitHub Res., doi:10.5281/ZENODO.1158890.

Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego,
L., Stisen, S., 2018. Combining satellite data and appropriate
objective functions for improved spatial pattern performance of
a distributed hydrologic model. Hydrology and Earth System
Sciences Discussions, 2, 1–22.

Duckworth, J. C., Kent, M., Ramsay, P. M., 2000. Plant func-
tional types: an alternative to taxonomic plant community de-
scription in biogeography? Progress in Physical Geography:
Earth and Environment, 24(4), 515–542.

ESA, 2018. CCI Land Cover Product - https://www.esa-
landcover-cci.org/.

Friedl, M., Sulla-Menashe, D., 2015. MCD12Q1
MODIS/Terra+Aqua Land Cover Type Yearly L3 Global
0.05Deg CMG V006 [Data set].

Hijmans, R. J., 2019. raster: Geographic Data Analysis and
Modeling. R package version 2.9-23.

Hort, A., 1917. Theophrastus: Enquiry into Plants, and Minor
Works on Odours and Weather Signs.
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