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ABSTRACT: 

Water depth is an important measure for nautical charts. Accurate methods to provide water depth information are expensive and 

time costing. For this reason, since late 70’s, it started to be estimate by multispectral sensors with empirical models. In the literature 
there is no investigation using empirical models partitioned in depth intervals, for this reason, we evaluated the accuracy of 

partitioned and single bathymetric models. The results have shown that to retrieve depth in from 0 to 15 m the single model provided 

an RMSE of 3.57 m, with a bias of about -0.83 m; while the RMSE for the partitioned model was 2.29 m with a bias of 0.41 m. For 

updating nautical charts using multispectral sensors it was concluded that the partitioned model can provide a better result than using 
a single model. 

1. INTRODUCTION

Accurate water depth measurement is an important parameter in 

aquatic system, since this information could be used e.g to make 

or update nautical charts to support navigation, explain the 

amount of deposit sediments, and manage and monitor areas 
close to water system. Nowadays the most common techniques 

to provide bathymetric information are echosounders and 

airborne laser bathymetry. Although these methods are accurate, 

they are also expansive and time consuming. For this reason, in 
the last decades, Remote Sensing techniques have been used to 

acquire depth in shallow water from multispectral and 

hyperspectral sensors (Lyzenga,1978; Stumpf et al., 2003, 

Dierssen et al., 2003; Pacheco et al., 2015; Kerr, Purkis, 2018; 
Brando et al.,2009).     

Firstly, the depth retrieval using multispectral sensors used a 

linear regression model that can estimate water depth in a 
specific area with clear and shallow waters (Lyzenga, 1978). 

Subsequently, different empirical methods to derivate the depth 

from multispectral sensors were proposed (Stumpf et al, 2003; 

Dierssen et al., 2003, Pacheco et al.,2015; Kabiri, 2017). In the 
late 90’s, Lee et al. (1999) proposed a physical-based approach 

for depth estimation, in which remote sensing reflectance (Rrs) 

was a function of water columns and water bottom. This 

approach generally uses hyperspectral sensors (Lee et al., 1999; 
Brando et al., 2009). A simpler physical-based approach was 

created by Lyzenga et al. (2006) that can estimate the water 

depth independently of the ground truth. 

Most recently, strategies including empirical and physics-based 

approach started retrieving depth using multispectral imagery 

without ground truth data (Kerr, Purkis, 2018). The Kerr and 
Purkis (2018) method, use a library of several spectra benthic 

substrate to find the bottom reflectance which is going to be 

used as input on empirical model, producing an accurate depth 

retrieval up to 12 m deep. Also using empirical models, 
Traganos et al (2018) compared different algorithm using 

Google Earth Engine to find the Lyzenga’s methods as being 

the most accurate one. To support the Lyzenga et al. (2006) 

technique, Manessa et al. (2018) prove that the absence of 
ground-truth does not have a great influence on the estimated 

depth for shallow waters. 

Although optical bathymetry shows accurate results, it still has 
some limitations, presenting low accuracy in deep and turbid 

waters. This limitation is due to light attenuation in the water 

column, which has suspended and dissolved material interacting 

with light radiation. In general, the detectable depth is around 
20 m (Gao, 2009) and in clear waters it can reach an accuracy of 

about five times better than in turbid waters (Pan, 2015). This 

limitation makes it difficult to estimate the depth on deep waters 

such as oceans, rivers, lakes and dams. Dams are mostly turbid 
due to the organic material flooded, especially on the Amazon 

region. Because of the high turbid waters and the difficulty to 

accomplish field surveys, few studies have been made in this 

region.  

The aim of this paper is to apply Lyzengas’s empirical method 

in turbid and shallow water in the Amazon region using the 

multispectral sensor OLI (Operation Land Imager) onboard of 
the satellite Landsat-8. For a more accurate modeling, instead of 

using a single regression model for the whole region, the area 

was partitioned in three parts. One part corresponds to depths 

ranging from 0 m to 5 m, the second part ranges from 5 m to 
10 m, and the last one ranges from 10 m to 15 m. Finally, in 

order to assess the accuracy of both bathymetry procedures, 

corresponding results are presented and analyzed. 

2. METHODOLOGY

2.1 Study area 

This investigation focuses on the Tucuruí Hydroeletric 
Reservoir (THR) (Figure 1), located on northeast of Pará State,  

Brazil, in the Amazon region. This reservoir was implanted 

along the Tocantins river and to starts its operations in 1984 a 

vast area of native tropical forest was flooded. Nowadays the 
dam floods 2,290 km2 during the dry season and can reach 
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2,850 km2 during the wet season with 126 km of extension 

reaching seven cities.  

 
THR has several side effects, such as loss of forest, decrease of 

water quality, displacement of residents in the flooded area 

(including indigenous people), greenhouse gas emission, 

decrease of fish downstream and mosquito breeding ground 
(Fearnside, 2000). This dam is one of the biggest hydroelectric 

plant in Brazil, generating a total of 8,370 MWh.   

 

 
Figure 1. Location of study area: THR 

 

2.2 Dataset 

The sensor Operational Land Images (OLI) onboard the satellite 

Landsat-8 has 9 spectral bands, but only four were used in this 
research: costal blue (0.435 – 0.451 µm), blue (0.452 – 

0.512 µm), green (0.533 – 0.590 µm) and red (0.636 – 

0.673 µm) with 30 m of spatial resolution. The United States 

Geological Survey (USGS) provides for the Landsat-Collection 
a surface reflectance (Rsur) product, generated by using the Land 

Surface Reflectance Code (LaSRC). This product was proved to 

be suitable for aquatic application (Bernardo, 2017, Wei et al., 

2018). The OLI image was acquired on July 18th, 2013 near the 
date that the field survey was accomplished.  

 

The field survey was accomplished by Curtarelli (2015) from 

July 3rd to July 16th 2013. The depth samples used the 
ecobathymeter model GPSmap 520s Garmin® (Olathe, KS, 

USA) with vertical accuracy of ±0.1 m. The route is shown in 

Figure 1, covering a total of 2,600 km2 with 179,898 depth 

samples. 
 

2.3 Interpolation 

Curtarelli et al. (2015) showed that the best interpolation 

method for this area is the Ordinary Kriging (Isaaks, Srivastava, 

1989). We use as weight to this interpolation the spherical 

semivariogram model. 

 

2.4 Cloud and shadow exclusion 

The Landsat-8 metadata provides image quality assessment 

(QA) that exposes the clouds and their respective shadows 

(Scaramuzza et al., 2012). With this image we can remove the 

pixels that do not have water surface information by applying a 

mask with QA image. 

 

2.5 Remote sensing reflectance 

Remote sensing reflectance (Rrs) is a crucial propriety for water 

application, such as the determination of water depth and 

bottom composition. Rrs is defined as (Mobley, 1999):  

 
 Rrs(θ, φ, λ) = Lw(θ, φ, λ)/ Ed(λ) (1) 

 

Where θ is the zenithal angle, φ is the azimuthal angle, and λ is 

the wavelength. Lw(θ, φ, λ) is the water-leaving reflectance in 
the (θ, φ) direction and Ed(λ) is the downwelling irradiance. The 

water-leaving reflectance (a.k.a. marine reflectance) is defined 

as (Ruddick et al., 2006): 

 
 ρw(θ, φ, λ) = πLw(θ, φ, λ)/ Ed(λ) (2) 

 

Therefore: 

 

 Rrs(θ, φ, λ) = ρw(θ, φ, λ) /π (3) 

 

The ρw(θ, φ, λ) is, in other words, the Rsur for the water pixel, 

that can be estimated from atmospheric correction using the 
USGS product LaSRC. 

 

2.6 Depth retrieval algorithm 

One of the most popular depth retrieval algorithms that uses 
multispectral images was developed by Lyzenga (1978) 

(Pacheco et al, 2015; Kabiri, 2017). This algorithm uses linear 

regression to estimate the values of depth. Our computational 

implementation is based Lyzenga’s equation, as follows: 
 

 Z = ao + ai xi + aj xj + ak xk + al xl (4) 

 

Where: 
  

 xi = ln(Rrs,i - Rrs,∞i) (5) 

 

In equations (4) and (5): Z is the water depth; Rrs,∞i is the 

reflectance value of deep water; and a0, ai, aj, ak, and al are 

constants that should be determined using multiple linear 

regression and subscripts o, i, j, k and l mean different spectral 

bands. Initially the equation (4) was used for only two bands, 
however, studies (Pacheco et al, 2015; Kabiri, 2017) have 

shown that three bands provide better results. 

 

In this research, we applied equations (4) and (5) for depths 
ranging from 0 m to 15 m, i.e., a single model is firstly used for 

depth retrieval. We also applied these equations for partitioned 

depth intervals, as follows: one for depths ranging from 0 m to 
5 m, another for depths ranging from 5 m to 10 m, and the last 

one for depths ranging from 10 m to 15 m. This generates three 

different equation that applied to the respective intervals 

generate three different surface modeling, thus allowing a 
potentially better approximation of the whole bottom surface. 
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3. RESULTS 

 

3.1 Interpolation 

  

The interpolation method used in this research is the ordinary 

kriging, using spherical semivariogram model to determinate 

the weights (Isaaks, Srivastava, 1989). As a result of the 
interpolation model, we obtained an RMSE =2.22 m and a bias 

= 0.036.  

 

Figure 2 shows the result of the cross-validation procedure, 
which compares the ground truth measured on the field with the 

ordinary kriging interpolation. The maximum difference 

between the measure and the predicted depths is about 50 m and 

the minimum is 0 m. 
 

 

 
Figure 2. Scatter-plot of predicted and measure depths of the 

Ordinary Kriging 

 

3.2 Depth retrieval algorithm 

Appling the Lyzenga’s empirical method to the study area, 

using the single model for shallow waters (0-15 m), we obtained 

a good accuracy (RMSE=3.57 m) considering that this region 
has turbid water. For better understanding, the statistical 

analysis was divided into classes of 5 m (Table 1). The 

partitioned model was also applied to this test area, resulting a 

lower correlation for Class 2 and 3 (R2=0.50 and R2=0.36 
respectively) than in the single model (R2=0.63). Although, all 

partitioned models produce lower RMSE than the single model 

as shown in the Table 1. 

 

The RMSE can be five times higher for the single model, losing 
accuracy in some regions. The bias in the partitioned models is 

smaller for all classes while the single model exceeds 1 m in 

two out of three classes. The major unconformity is shown in 

the interval between 0-5 m, showing a standard deviation three 
times bigger in the single model and bias eleven times higher.  

 

Figure 3 shows two profiles (A and B) for the ground truth 

depth and for the depths derived from the partitioned and single 
models. Note that the partitioned model profile follows the 

ground truth profile, while the single model seems to have less 

variation in depth, maintaining almost the same range along the 

profiles (between 10 and 15 m). 
 

 

4. DISCUSSION 

Several authors have advised that the maximum depth that can 
be estimated using multispectral sensor is about 20 m (Gao, 

2009; Pacheco et al., 2015; Kabiri, 2017). It is not possible to 

predicted higher depths by using multispectral sensors due to 

the interactions that occur with the incident light in the water 
with the molecules and the optically significant components 

present in this system.    

 

In comparison to the other researches, as in Kabiri (2017) and 
Pachceco et al. (2015), the results obtained in this paper using 

the single model shows to be two and three times less accurate, 

respectively. However, the turbidity in the test area is higher.  

Using a single model, the interval between 0-5 m with RMSE= 
4.75 m, shows to be the highest in this research. That occurs due 

to the high value of the independent constant found in the 

regression (a0 = 22.11) and the small values of the other 

constants. When the model was applied to the whole area, it 
tended to show high values of depth. Contrary to what might be 

expected, unlike band 2, band 4 contributes significantly with 

the model. That is probably because the area has inorganic 

components, responding to the red wavelength.   
 

In pursuit of improvement in the depth retrieval, this research 

separates the area between 0 to 15 m in three sections (0-5 m, 5-

10 m, and 10-15 m), thereby is calculate three different 
regression models for the area. The first interval shows great 

correlation (R2=0.80) between the measured and the predicted 

depths and the lowest RMSE (RMSE = 0.89 m). Even though 

the other models do not have a satisfactory correlation (R2=0.50  

 
 

Figure 3. Profiles spaced by 30 m extracted by the ecobathymeter, the single model and the partitioned model 
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and R2=0.36 respectively), the RMSE of those models are better 

than the RMSE of the single model.  

 
It is also necessary to consider the error introduced by the 

interpolation model, which can lead to erroneous results in 

depth retrieval. The error of the interpolation is probably due to 

the lack of information on the borders of the reservoir, causing a 
bad estimative in this area. 

    

5. CONCLUSIONS 

 
 

After the applications of Lyzenga’s model to THR, it was 

verified that the single regression model is not able to explain 

all the depth accurately. As expected, the partitioned regression 
models showed a better result, since the depth intervals are 

smaller. The disadvantage of the partitioned model is that the 

application of equations requires as input multispectral images 

and depth information to determinate the domains of all 
regression. 
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Multiple linear regression – single 

Interval: 0 -15m Z_LSat8 = 22.11-4.16XCB+1.13XB+11.87XG-5.82XR      R2=0.63 

Residual Statistics Class 1 

0-5 m 

Class 2 

5-10 m 

Class 3 

10-15 m 

Overall 

0-15 m 

Num 4,262 66,213 224,144 294,619 

Std (m) 2.00 1.96 2.74 2.69 

Var (m) 3.99 3.85 7.52 7.24 

Max (m) 21.67 26.29 30.94 30.94 

Min (m) -1.74 -37.95 -33.84 -37.95 

Dif_mean (bias) (m) 4.25 0.95 -1.46 -0.83 

Dif_median (m) 3.67 0.06 -1.07 -0.86 

RMSE (m) 4.72 2.51 3.80 3.57 

Multiple linear regression – partitioned 

Interval: 0-5 m     Z_LSat8 = -3.87-2.09XCB-1.46XB+3.16XG-0.93XR    R2=0.80 

Interval: 5-10 m      Z_LSat8 = 14.17+5.11XCB-8.68XB+8.19XG-3.13XR R2=0.50 

Interval: 10-15 m Z_LSat8 = 3.07+6.91XCB-18.19XB+11,65XG-1,57XR R2=0.36 

Residual Statistics Class 1 

0-5 m 

Class 2 

5-10 m 

Class 3 
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Overall 
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Dif_mean (bias) (m) -0.38 0.23 0.48 0.41 

Dif_median (m) -0.42 -0.32 0.38 0.85 

RMSE (m) 0.89 1.61 2.48 2.29 

Table 1. Coefficients and residual statistics derived from single and partitioned linear regression between remote sensing 

reflectance and ecobathymeter depth. 
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