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ABSTRACT 

 

A classification method with multi-temporal images of synthetic aperture radar (SAR) combined with Geographic information 

system, geoinformation data, and field validation, was applied for wetland mapping accuracy and typology. Wetland mapping is vital 

for management and conservation, particularly under environmental pressures such as wetland drainage and land reclamation. The 

aim of this study is to develop an accurate mapping of wetlands and open water systems of the Lower Doce River Valley - LDRV 

(Southeastern Brazil) with Synthetic Aperture Radar (SAR) imagery, using multitemporal classification techniques and ground truth 

validation. Sentinel-1B SAR imagery from 2016 and 2019 was processed with Google Earth Engine (GEE). Monthly median 

imagery condition for the rainy season was obtained and K-means unsupervised classification was applied. The study yields 4,157 

wetlands, 262.27 km2 with predominant small patches. Fieldwork revealed three main wetlands categories: coastal wetlands, inland 

wetlands and artificial wetlands. The results have shown an overall accuracy of 81.9% and a Kappa coefficient of 0.71. Wetlands, 

non-wetlands, and open waters classes present accuracy of 50, 80 and 95%, respectively. 

 

 

1. INTRODUCTION 

Wetlands are ecosystems of shallow water or saturated soil, 

with organic matter content of the slow decay of plants, 

supporting a variety of plants and animals adapted to the 

saturated conditions and with high primary productivity (Mitsch 

and Gosselink, 2000). Permanent or temporary inland, coastal 

and artificial wetlands may comprise several types of 

hydrological conditions, such as lentic and flowing waters, 

under different salinity ranges (i.e., freshwater, brackish and 

marine) with different vegetation features, such as herbaceous, 

shrub, and forest cover. This complexity has been classified 

under different wetland typology schemes, such as RAMSAR 

(1971) and the Brazilian typology (Junk et al., 2014).   

 As a key component of the landscape, wetlands 

regulate hydrological cycles in river basins and provide several 

ecosystems services, such as coastline protection, climate 

regulation, carbon sink, water cycling and groundwater 

recharge, pollution abatement, food provision and landscape 

aesthetics (Barbier et al., 2011). The delineation and mapping of 

wetlands ecosystems is essential to promote ecosystem 

conservation and to develop ecosystem restoration with the 

assessment of drivers of environmental changes and the loss of 

hydrological connectivity. 

 Remote sensing has been an effective tool for 

characterizing, mapping, and monitoring the complexity and 

dynamics of large areas of wetlands. Several different sensors 

have been applied in wetland ecosystems, with great emphasis 

on spectral responses of wetland types in different parts of the 

electromagnetic spectrum (Tiner et al., 2015).  

 More recently, with the development of microwave 

sensors, the Synthetic Aperture Radar (SAR), the technology 

has been applied effectively in persistent cloud, smoke, and 

haze conditions (Lucas and Costa, 2018). The literature shows 

an increase use of SAR data for the study of wetlands: ALOS 

Phased Array L-band Synthetic Aperture Radar (PALSAR), 

European Remote Sensing (ERS-1), RadarSAT, ASAR, 

Japanese Earth Resources Satellite 1 (JERS-1), AIRSAR, and 

TerraSAR-X, Sentinel 1 (S1), are some of sensors applied in 

wetlands studies (Guo et al., 2017).  

 Previous studies have shown that low frequency 

bands (P and L) are better for detecting forest bogs, while 

higher frequency bands, such as C is most suitable for wetlands 

with dominant herbaceous vegetation (Kasischke et al., 1997; 

Baghdadi et al., 2001; Parmuchi et al., 2002; Henderson and 

Lewis, 2008). Zhang et al. (2019), addressed the capacity of the 

S1 sensor for wetland monitoring with promising results of VH 

versus VV polarization. Speckles are common features on SAR 

imagery and can produce noise that can troubled high precision 

classification, particularly when single polarization is applied 

(Bruzzone et.al., 2004). Multitemporal series have been 

considered as an alternative to improve classification quality 

(Quegan et al. 2000, Wegmüller et al. 2002, Bruzzone, et al. 

2004, Tan et al. 2008, Wei et al. 2019, Zhang et al. 2019). 

 Along the last decade, successful studies with SAR 

technology have been developed in wetlands mapping 

throughout the world, such as Patuxent coastal plain in 

Maryland, USA (Lang and Kasischke, 2008), Pantanal in West 

Brazil (Evans et al, 2010), Bay of Mont-Saint-Michel, France 

(Betbeder et al., 2015), Newfoundland and Labrador, Canada 

(Mahdianpari et al., 2017), Ciénaga Grande de Santa Marta, and 

Poyang Lake in the central Yangtze, China (Zhang, Li and 

Wang 2019). Applications of SAR in disturbed wetlands with 

impaired hydrologic connectivity as a consequence of human 

impacts is a challenging opportunity for SAR technology 

(Jaramillo et al., 2018).  

 In the Lower Doce River Valley (LDRV), 

Southeastern Brazil, coastal wetland drainage for agriculture 
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and pastureland development have lowered water table, 

exposing acid sulphate soils and decreasing soil pH as low as 

3.5 (Lani et al., 2007). In the late years decreasing river 

discharge, in response to reduced rainfall and river regulation 

and fragmentation of cascade reservoirs for hydropower 

generation, produced short pulses of river discharge decreasing 

regularity of coastal plain flooding events.     

 This work aimed to develop an accurate wetlands 

mapping and related aquatic ecosystems of the Lower Doce 

River Valley (southeastern Brazil) with radar imagery of 

Sentinel 1, using multitemporal classification techniques and 

ground truth validation.  

 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The Doce River Basin (DRB) spreads over 86,141 km2 in 

Southeast Brazil (Fig. 1). Climate is characterized with a 

tropical warm and rainy season, from October to March, and a 

mild dry season, from April to September. The mean annual 

rainfall at the LDRV is 1,123 mm (Linhares station 01839006). 

The lower river section is delimited from the border of Minas 

Gerais and Espírito Santo states towards the Atlantic Ocean. In 

the LDRV river channel drains PreCambrian, Tertiary and 

Quaternary geologic formations, with a network of alluvial 

valleys, river channels, lakes, wetlands and coastal plains.  

 The focal area of this study comprises two 

geomorphological unities: The Tertiary plateau formed of 

Barreiras Formation, and the Quaternary Coastal Plain. 

Barreiras plateaus are composed with sedimentary continental 

deposits with slightly sloping oceanward, dissected by a 

network of subparallel streams in narrow valleys with flat 

bottoms, presently silted up by Quaternary sediments. The 

coastal plain spreads along 130 km the north-south axis, with 30 

km width in the river mouth (Fig. 1). Coastal geomorphology 

processes took place 5,100 years B.P. with a paleo deltaic 

formation and associated sea-level changes. The paleo lagoon 

was filled with alluvial, marsh and mangrove deposits (Martin 

et al., 1996a and b).  

 

 
Figure 1: Lower Doce River Valley with the study area (3,896.1 

km²) inside the rectangle. 

 

  

The Doce River show a predictable monomodal hydrology 

pulse with a low amplitude (1.9m) (Junk et al., 2014). River 

discharge in the LDRV (Colatina station 56994510), 107 km 

upstream of the river mouth in the Atlantic Ocean, show mean 

high and low water discharges of 918 and 450 m3.s-1, 

respectively. Despite the perennial condition from 1990 to 2013 

river water discharge in the LDRV varied from 72 to 9,195 

m3.s-1 (Oliveira and Quaresma, 2017). Lower discharge has 

prevailed since 2014, with the years of 2014 and 2015 

characterized with a very intensive drought (Nobre et al., 2016). 

Currently, the connectivity between the river channel and the 

coastal plain is restricted to major Doce River floods (> 2,500 

m3.s-1) such as December 2013 and January 2016. Mean 

monthly values of rainfall and river discharge are shown in Fig  

2 a and b, respectively.  

 

 
Figure 2: Mean annual values of rainfall (a) and river discharge 

(b) for the period of 2009 to 2018. Rainfall data were acquired 

from National Institute of Meteorology (INMET, 2019) and 

river discharge from National Water Agency (ANA) (SNIRH, 

2019). 

 

 

The impaired hydrological connectivity of LDRV coastal plain 

wetlands has been associated to the drainage works of the 

Brazilian federal government in the late 1960s, when a network 

of ditches was opened to drain wetlands for agriculture and 

pastureland conversion. The lowered water table has exposed 

organic hydromorphic soils, enriched with sulphates, to an 

oxidizing environment, resulting in low pH values (up to 3.5) 

(Lani et al. 2007).   

 On November 5th of 2015, in the upper section of the 

DRB, a collapsed iron ore tailing dam released 40x106 m3 of 

tailings, affecting nearly 600 km of river channel before 

reaching the ocean (Rudolf et al., 2018). Environmental impacts 

related to the technological disaster were considered within two 

exposures regimes a pulse disturbance (November 2015 to 

December 2016) and a press disturbance (2017 to 2029) 

(Magris et al., 2019). The flood of January 2016 caused the 

intrusion of tailings in the LDRV coastal plain.   

 

2.2 Synthetic Aperture Radar (SAR) imagery 

Ninety-one Interferometric Wide Swath (IW) Sentinel-1B C-

band SAR imagery of LDRV were acquired (10 m spatial 

resolution, VV/VH polarization) from Google Earth Engine 

platform. Imagery sorting criteria considered wet months for the 

period of October 2016 to October 2019. All images were 
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obtained as Ground Range Detected (GRD) product, with the 

same acquisition geometry (path and incidence angles) through 

the Google Earth Engine (GEE). In GRD products a basic 

preprocessing has been already implemented (Zan and 

Guarnieri, 2006). 

 

2.3 Auxiliary geoinformation data 

A digital elevation model (DEM) of Shuttle Radar Topography 

Mission (SRTM) (30 m resolution) was used for Range-Doppler 

correction. Aiming to support field validation of wetland 

mapping, a 2012 land cover and land use (LULC) digital map at 

1:25,000, and a 1:250,000 soil map was acquired from Espírito 

Santo Integrated Georeferenced Database (GEOBASES). A 

cross analysis between SAR imagery and LULC vectoral data 

was applied to detect land use changes along the dataset, 

specifically for permanent areas of open water and forest. 

Although, the LULC dataset is a certified reference for State of 

Espírito Santo, the vectorization process on 0.25m spatial 

resolution of aerial photographs was manual, which might have 

induced to classification errors.   

 

2.4 Data processing and analysis 

Multitemporal SAR imagery were preprocessed with GEE 

scripts. Imagery preprocessing were carried out with metadata 

update of orbit, GRD border and thermal noise removal, 

radiometric calibration with backscattering coefficient (σº). A 

geocodificacion for Range-Doppler range terrain correction was 

made using the digital elevation model (DEM) of Shuttle Radar 

Topography Mission (SRTM) (30 m resolution). The 

geocodification was set with UTM projection (24S zone) using 

WGS84 reference ellipsoid. Speckle removal was done with a 

Lee 7x7 refined filter (Lee, 1981). Geocodified imagery of 

backscattering coefficients were converted in dB. 

 The study area (3.986 km2) is characterized by 

five LULC types: open waters, urban areas, exposed soils, 

agricultural areas, forests and wetlands. Time series were 

generated for some of these coverages (Figure 3). Each 

coverage shows a different temporal variability. The time series 

of the cross-polarization channel backscattering shows lower 

values in all cases, compared to the VV polarization channel. 

The open water areas present very low backscattering (<-20 dB) 

due to the specular reflection of the incident radiation that 

generates very small return backscattering. Urban and forestry 

areas in the SAR dataset shown low variability, indicating the 

perennial characteristics of these features. 

 

 
Figure 3. Time series of backscattering coefficient for different 

types of land cover and land use for the study area: deep water, 

forest, urban areas and wetland. 

 

 

Variability of wetlands backscattering intensity are due to 

different factors. Non-flooded vegetation produces double 

bounce scattering resulting in high backscattering. Scattering of 

non-flooded vegetation is often described as volume scattering 

of diffuse nature and, therefore, generally not as bright as 

double bounce scattering (lower backscattering) (Tiner, 2015).    

 Since wetlands show high temporal variability a 

workflow for wetlands delineation and mapping with five main 

steps is illustrated in Figure 5. A median product of pre-

processed imagery was generated for a typical of wet season 

(October-February). Median data also reduces the remaining 

speckle, facilitating imagery interpretability. 

 

 
Figure 4. Workflow of multitemporal SAR imagery 

classification for wetland mapping. 

 

GEE offers several unsupervised clustering algorithms 

including K-means, the algorithm that groups objects into k 

groups based on their characteristics. The latter is based on 

minimizing the sum of Euclidean distances between each object 

and the center of its cluster. This method yields few classes for 

analysis. Basically, it aims to compare the results of multiple 

interactions with different classes in order to select the best ones 

according to certain criteria. Three classes were selected: 

wetlands, open water and others. 

 

2.5 Field validation 

Fieldwork was carried out on August 16th 2019 with a river 

discharge of 530.7 m3.s-1 (dry season). Selected sites were 

chosen across the study area based on previous analysis from 

Google Earth imagery, aiming to include wetlands, open-waters 

and non-wetlands classes. Field positioning was based on GPS 

receiver and site features were registered with digital camera. A 

drone device was also employed for aerial imagery. The field 

survey described the LULC types, presenting six predominant 

classes: open waters, wetlands, urban areas, exposed soils, 

agricultural areas, and forests. The late four classes were 

merged in the class of non-wetlands   

 Validating sites for comparison of observed and 

modeled wetlands were based on fieldwork, soil map with 

preference for poorly drained hydromorphic soils, and wetland 

areas identified on Google Earth. Aiming to evaluate wetland 

mapping accuracy a Confusion Matrix between classified and 

reference data (i.e., wetlands, deep-water and non-wetlands) 

was applied. Users and producers’ accuracies were verified 

using Kappa coefficient for global landscape features 

classification (Richards & Richards 1999). 
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3. RESULTS AND DISCUSSION 

The study yielded a total of 4,157 wetlands with an area of 

262.27 km2, embracing 6.7% of the study area, with a pattern of 

very small patches (0,06±0.31 km2) (Figure 6). Shallow lakes 

associated with wetlands were classified as open water bodies 

with an area of 56.06 km2.  

 Wetlands and open water areas could be much larger 

if the classification process were more effective and regional 

and local rainfall were within the regular range during the study. 

The severe drought in southeastern Brazil during 2014 and 2015 

(Nobre et al 2016) was considered the most extreme drought at 

the Rio Doce Basin for the last 30 years (Lima et al 2019). 

Since 2015, rainfall in the river basin, and particularly at 

LDRV, has been low, which can be regarded for the shrinkage 

and disappearance wetland areas. According to Lyra and Rigo 

(2019) the conversion forests by pasture reduces mean annual 

river discharge, with a decrease in mean flows. The authors 

suggest that deforestation increase flood events, while the 

annual minimum flows is reduced with deforestation. 

 Around 80% of wetlands is located in the coastal 

plain (3,003 ecosystems with an area of 210.52 km2), while the 

other 20% (1,154 wetlands with an area of 51.54 km2) was 

found on the Barreiras plateau. The predominance of coastal 

plain wetlands was in response to a very gentle slope (1.5%) 

and poorly drained hydromorphic soils, such as gley types rich 

in organic matter, quartz marine sands, hydromorphic podzols, 

and eutrophic cambisoils. LULC in the coastal plain is basically 

composed by pasture (41.2%), sugar-cane (3.4%), Eucalyptus 

sp forestry (1.6%), and coconut culture (0,6%). Natural features 

were represented by wetlands (22.6%) in hydromorphic soils, 

forests (17.5%) in cambisoils and restingas (2.7%), a shrub 

vegetation formation on sandy soils.       

 In the Barreiras plateau, wetlands were associated 

with a gentle slope of 3.9% and dystrophic yellow podzols with 

high clay content. LULC in the Barreiras Formation is much 

more diversified with wetlands (6.6%), lakes (6.5%), forest 

(17.2%), pasture (6.7%), Eucalyptus sp forestry (8.0%), coffee 

(7.2%) and sugar-cane (1.0%) croplands. 

 

 

 
Figure 5. Wetlands mapped with SAR in the Barreiras formation 

and coastal plain, and examples of wetland typologies found in the 

study area. (a) freshwaters lagoons; (b) mixed forest; (c) artificial 

wetland; (d) monodominant herbaceous swamps of cattails, Typha 

dominguensis; and (e) peatland. 

 

 

 

An attempt to define wetland typologies in the study area 

considering the classification scheme proposed for Brazilian 

wetlands (Junk et al 2014), considering pedological, 

hydrological and botanical criteria, has resulted in three main 

categories: inland wetlands, coastal wetlands, and artificial 

wetlands (Figure 7). Inland wetlands were found in the 

Barreiras formation and were most associated with freshwater 

lakes and monodominant herbaceous swamps of cattail, Typha 

dominguensis. Artificial wetlands were associated to irrigation 

reservoirs, road stream damming, and lowlands along roads. 

Coastal wetlands occurred in the coastal plain as without 

permanent connection to the sea and those without connection 

but with fluctuating level. Most of them are associated with 

waterlogged soils with shallow phreatic level and coastal lakes 

with different salinities. Drainage channels were important 

wetland features in the coastal plain. T. dominguensis swamps 

were also a common feature in coastal wetlands.         

  

 

 
Figure 6. Wetlands types in Lower Doce River coastal plain 

based on Junk et al (2014). 

 

3.1 Field validation 

Field validation process was evaluated with a cross validation of 

LULC classes (i.e., wetlands, open water, non-wetlands) with 

63 wetlands sites, 97 open waters, and 166 non-wetlands. A 

Confusion Matrix (Table 1) between reference data (i.e., LUL 

classes) and classified data (i.e., SAR median wet season 

condition) yielded an overall accuracy and Kappa coefficient of 

81.9% and 0.71, respectively. The lower accuracy of user 

wetland class (<60%) can be regarded to the relatively small 

wetland area compared to other classes, besides can be confused 

with other land cover types, such as pasture and cropland. 
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Table 1. Confusion matrix of K-means classification. 

  Reference data 

Classified data 

(Pixels) 

Wetland  Open 

water  

Non-

wetland  

User’s 

accuracy 

(%) 

Wetland 47 7 36 52.22 

Open water 1 90 0 98.90 

Non-wetland 15 0 130 89.65 

Producer’s 

accuracy (%) 

74.60 92.78 78.31 
 

 

Despite the study missed a typical wet season with flooded 

coastal plain with high river discharges (> 2,500 m3.s-1) and 

shallow phreatic level, the tested approach is suitable as an 

alternative for optical sensors. The application of optical sensors 

can be severely restricted due to high cloud cover during wet 

seasons.  

 Even with the combination of VV/VH polarization of 

SAR imagery, which increases the capacity to discriminate open 

water, other targets can produce similar signatures of flooded 

vegetation. According to Tiner (2015) classification process is 

improved when polarimetric datasets are used. In the present 

study areas of flooded grasslands, herbaceous wetlands, such as 

T. dominguensis, and forested wetlands were misclassified as 

non-wetlands.   

 Finally, cloud computing of GEE was very helpful to 

handle massive dataset of multitemporal SAR imagery in a 

relative short time.    

 

 

4.   CONCLUSIONS 

Recent advances in cloud computing create new opportunities to 

process large amounts of remote sensing data. Though the use 

of GEE to process Sentinel-1 images has been decisive for fast 

processing, but it has limitations in availability of unsupervised 

classification tools for wetland mapping.  

 The southeast region of Brazil presents remnants 

areas of wetlands, nevertheless, which are poorly mapped 

landscape features and under hydrological distress of water 

scarcity. The results of this study represent the first 

classification of the spatial distribution of wetlands in this 

region which is important for land reclamation management and 

conservation of these ecosystems. 

 It was achieved overall accuracy of 81,9% to the final 

map using the K-mean method and the accuracy of wetlands 

classification was 52,55%, showing unsatisfactory results for 

this class. The open water class were detected with an accuracy 

close to 99%, indicating the advantages of this methodology for 

the classification of water bodies. 
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