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ABSTRACT: 

In this paper we benchmark a previously introduced big data platform that enables the analysis of big data from remote sensing and 
other geospatial-temporal data. The platform, called IBM PAIRS Geoscope, has been developed by leveraging open source big data 
technologies (Hadoop/HBase) that are in principle scalable in storage and compute to hundreds of PetaBytes.  Currently, PAIRS hosts 
multiple PetaBytes of curated and geospatial-temporally indexed data. It organizes all data with key-value combinations, performing 
analytics close to the data to minimize data movement. 

1. INTRODUCTION

Remote sensing data useful for government, industry, and 
research is accumulating at an ever-increasing rate with satellite 
imagery alone exceeding several hundred TeraBytes per day 1. 
Data archives are increasing even faster, because most 
applications require multiple data sets for context and 
comparison, especially for machine-learning models where 
historical data sets are required for training and validation. This 
rapid growth leads to the notion of data gravity, which results 
from two observations: first, remote sensing data is becoming too 
big to move so it stays where it is, and second, the value of data 
is increased by proximity to other data, so it attracts more.  

Geospatial-temporal data is also complex due to numerous data 
formats, consisting of both vector data (points, polygons) and 
raster data (imagery) from multiple sensors like LiDAR (Light 
Detection And Ranging), RaDAR (Radio Detection And 
Ranging), and hyperspectral cameras, using multiple platforms 
like satellites, drones, cell phones, or IoT (Internet of Things) 
devices. Efficient use requires new technology designs.  In this 
sense, data gravity also means that future platforms must heavily 
leverage public or private cloud computing to reach scalability, 
and they need to move the analytics and computation to the data 
rather than the traditional way, where the data are moved to the 
applications. Only then will this massive and rich source of 
remote sensing information be fully exploited in a timely manner.  

Today, most geo-coded imagery is indexed only at the metadata 
level, but what if one wanted to search for certain data within an 
image? A most basic example would be to compare images of an 
airport from both a satellite and a cell phone at a series of 
different times. Today, an analyst might download all the related 
data to an application, open multiple files, extract the airport 
locations, overlay them with the cell phone data, and then run a 
comparison. In the system described here, such a task can be 
simplified with minimum data movement and file opening. 

1 https://www.esa.int/Applications/ Observing_the_Earth/ 
Working_towards_AI_and_Earth_observation 

2. IBM PAIRS GEOSCOPE

To facilitate the improved discovery of information in remote 
sensing data, IBM has built a cloud-based platform that 
continuously ingests and curates more than 10 TeraBytes per day 
and presents it to multiple users for example with a web-based 
interface for search, analysis and viewing. This platform, called 
PAIRS Geoscope, has been developed using open-source big data 
technologies that can be  scalable to hundreds of PetaBytes [1]. 
PAIRS is an acronym which stands for Physical Analytics 
Integrated Data Repository and Services [2, 3]. Instead of 
organizing plain files with a relational database, it stores data of 
any type (vector and raster) and complexity with key-value 
combinations, doing analytics close to the data to minimize data 
motion. 

PAIRS Geoscope targets geospatial-temporal applications of 
interest to various industries, ranging from energy and utilities 
(e.g., when and where to trim vegetation to avoid storm outages), 
to agribusiness (when and where to buy or sell commodities), 
insurance (when and where are the highest risk assets) and 
government (when and where to optimally respond to a natural 
disaster). In PAIRS, there are hundreds of data layers spanning a 
wide range of spatial resolutions and decades in time. The 
architecture allows flexibility for data use, and has several key 
attributes: (1) it is cloud-based and  parallel in data and compute 
for wide and dynamic scaling; (2) the data organization allows 
efficient  time sampling and change or motion detection; (3) data 
pre-processing puts curated data within reach of a few user 
commands; and (4) familiar tools and an user interface can lower 
the threshold for widespread use.  

Figure 1 illustrates the basic architecture of PAIRS Geoscope 
while Figure 2 shows a screenshot of the PAIRS UI. Data from 
various sources enter an ingestion and curation engine (2nd tier) 
for cleaning, filtering, re-projecting and resampling. Raster data 
are organized by pixels at the appropriate spatial resolution in a 
quad-tree hierarchy of scales. 
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 Storage location for data values is determined by 16 Byte keys, 
which contain the geographical positions and times for the data 
in Z-order at scales ranging from 8.4 deg (940 km at the equator) 
to one-millionth of a deg   (0.11 m), and with time resolved to the 
nearest second. Pre-processing like this is highly efficient when 
data are used multiple times. Generally, for individuals, the 
largest fraction of time spent with big data analytics is in the data 
preparation stage, and PAIRS does this once for all users.  
 
The 3rd tier in Figure 1 is a massive distributed compute and data 
store based on the open source Apache Hadoop Data File System 
(HDFS) and Apache HBase [4]. Apache Hadoop distributes data 
across nodes in a computer cluster and transfers code into these 
nodes to process data locally; it automatically handles hardware 
errors, i.e. it is designed to be fault-tolerant. HBase is a key-value 
store that runs on Hadoop and consists of values identified by 
row, column, and qualifier keys. The key is a composite where 
the row contains the geospatial-temporal index mentioned above, 
the column contains the data layer, such as the red or near 
Infrared band for satellite data or the temperature layer for 
weather data, and the qualifier is a third quantity, such as the 
atmospheric pressure or altitude in the case of temperature. The 
value associated with the key is the data at that position and time. 
HBase intrinsically applies lossless compression by about a 
factor of 3, which compensates for the triple redundancy to 
ensure availability and fault tolerance. Another open-source 
technology commonly used for vector data is GeoMesa, which is 
able to use HBase as its backend to scalably store and process 
vector data or bounding box polygons for images [5, 6]. GeoMesa 
is an integral part of the system. In GeoMesa, distributed, 
scalable analytics using data from HBase are performed close to 
the data with Apache Spark [7]. Hadoop allows the use of the 
Apache Map/Reduce function in which queries or analytical tasks 
are done in parallel on separate nodes  (mapped) and then merged 
into single or Master nodes (reduced). Map/Reduce gives highly 
scalable performance [8, 9]. Metadata are also ingested with the 
data values and stored in a relational database management 

system for easy retrieval and cross referencing of multiple 
sources. 

 

The 4th tier in Figure 1 is an analytics and data platform, which 
enables users via an interface (Tier 5) to interact with the system. 
Because of the common geospatial-temporal organization for all 
data, analytics involving syntheses and comparisons of data from 
different sources with different resolutions, source formats, and 
types (vector, raster, LiDAR point cloud, etc.) are efficient, 
scalable, and involve minimal data movement which is usually 
the bottleneck for big data analytics. Ready access to PetaBytes 
of data can give machine learning and artificial neural network 
techniques greater predictive accuracy. Inter-comparisons among 
diverse data layers may allow for discovery of subtle correlations. 
Rapid change detection becomes more feasible because the keys 
used for storage have the time dimension in their lowest bits, 
which means that all events happening at the same spatial 
location are stored on the same or nearby servers for rapid use. 
With PAIRS, producing a time sequence at a single position or 
searching for time-variability in a spatial region are simple 
operations (see below).  
 

 

To summarize, PAIRS has the following technical merits:  
 
(i) Most importantly, it is a big geospatial-temporal platform that 
indexes raster data on a pixel level. The basic technical 
challenges here lie in the design of the key and an appropriate 

Figure 1: PAIRS Geoscope Architecture 

Figure 2: Example of data retrieval and geospatial-temporal 
browsing using today’s PAIRS Geoscope web-based graphical 
user interface (GIU). For details and demos, visit: 
https://ibmpairs.mybluemix.net/ 

Figure 3: An example of a user-defined function submitted 
within the query  
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value format to host the remote sensing data. Geospatial-

temporal relational databases such as e.g. Postgres with PostGIS 
extension becomes inefficient at large data sizes (>10 Terabytes), 
or are based on files (GeoTIFF, ESRI Shapefile, etc.) in object 
store or file systems, whose content is very difficult and often 
slow to search. An example is the retrieval of a time-series of 
Earth surface reflectance from a satellite. Doing this today using 
satellite image repositories is quite involved on other platforms, 
and may require searching for available tiles, downloading, re-
sampling, re-projecting, and opening each tile to extract pixels 
within an area of interest (aoi). To the best of our knowledge, 
alternative approaches which go beyond file-based indexing have 
been proposed and researched in academia, but still not 
demonstrated at scale on top of a total of PetaBytes of indexed 
data. PAIRS does this type of search quickly and with minimal 
data movement because only the aoi needs to be addressed using 
the spatial component of the key, and because time is the lowest 
order bit string in the key so that all times for a given position are 
located near each other in storage.  
 
 (ii) PAIRS deploys nested “resolution” levels to accommodate 
different spatial and temporal resolutions, thereby linking the 
different layers of geospatial-temporal information in a 
hierarchical tree. For the spatial domain, in the current system, 
the keys are arranged in Z-order, where the length of the key 
determines the resolution on a logarithmic scale, rapidly 
spanning the range from kilometers to centimeters with each 
additional bit. Extending this hierarchical organization to the 
temporal domain, e.g., adding additional information to the key 
or optimizing the order of the information in the key etc., are 
current research goals.  
 
(iii) PAIRS aligns all data to a global grid and organizes it in 
linked layers at the time of data ingestion, versus on-demand. 

This enables scalable performance but also fast response to 

queries including multiple layers. For such computationally 
intensive data ingestion, the design of the key and its 
corresponding value, thereafter referenced as supercell, needs to 
be carefully picked. In fact, PAIRS enables analytics during the 
query, i.e., in addition to filtering and aggregation over space and 
time, user-defined functions allow queries to perform arbitrary 
math between the requested data layers. User defined functions 
could be as complex as a machine-learnt decision tree, which can 
be submitted within the query.  A most basic example for such a 
user defined function is shown in Figure 3, where the radiative 
heat loss for the state of Iowa (aoi=136) is calculated using the 
Landsat 8 Band 10 (10.6-11.2 m). Initially three data sets are 
being requested from PAIRS: Landsat Band 8 (id=49677), 
Landsat Data Quality (id=49679), and the ambient temperature 
from an IBM weather reanalysis data set id=49257). Two features 
are highlighted: First, we note that the output for each data set is 
“False”, which means they will not be downloaded. Instead of 
downloading we can calculate within the query the radiative heat 
loss for all high-quality pixels (=2720) using the Stefan- 
Boltzmann Law based on the difference of the surface and 
ambient temperature. Second, we note that spatial resolutions 
between the Landsat Band 10 (100 m) and the ambient 
temperatures, which come from a weather reanalysis model (4 
km) are quite different but nevertheless this difference is being 
taken care of by the uniform spatial grids.  
  
(iv) Other subtler features of PAIRS include Spark and GPU 
nodes on the PAIRS core cluster to host query results and enable 
users to interact with these results using a dockerized Python 
environment for customized analytics; this also minimizes data 
movement. 
 

Figure 4: Cartoon to illustrate how Apache Spark DataFrames can be used in IBM PAIRS in order to coarse-grain raster data. 
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From a user’s perspective, PAIRS offers four core services. On a 
very basic level, PAIRS provides data services for the many 
PetaBytes of curated information. On the next level, search and 
query services can be used to extract data and run analytics on it, 
such as filtering different layers of geospatial-information or 
aggregation. For users who want to develop custom analytics, 
PAIRS provides analytics platform services such as a dockerized 
Python environment to work with the queried data. 
 
PAIRS Geoscope performs queries using a RESTful 
(Representational State Transfer) API employing the HTTP 
protocol that is agnostic to programming language. It allows one 
to define virtual layers that are computed and combined on-the-
fly during query time. A comprehensive tutorial may be found 
here: https://pairs.res.ibm.com/tutorial/. For Python users, an 
open-source module wrapping the core PAIRS API is available 
here: https://github.com/ibm/ibmpairs. It loads query results into 
Python data structures at the user’s end for further consumption 
and local processing. PAIRS is available commercially with a 
Fremium version at https://ibmpairs.mybluemix.net/. 
 
Finally, users can upload their own data using the data curation 
and ingestion services. This allows users to run scalable searches 
and do analytics on their data along with the other multi-
PetaBytes of PAIRS data. Data layers in PAIRS Geoscope can be 
shared, private or public, according to pre-established 
permissions. 
 
 

 

3. KEY-VALUE DESIGN & ANALYTICS 

For raster data, the values associated with the three keys in HBase 
are packed in supercell blocks of 32x32 that come from nearby 
pixels in the image. This blocking makes the storage overhead 
required for the keys much smaller than the storage required for 
the data, saving storage overall. Blocking also significantly 
improves read/write speeds by a factor of about 50 compared to 
single-pixel keys.  Blocking means that the keys assigned at 
ingest contain the position coordinates of the lower left corners 
of the supercells, rather than the coordinates of all individual 
pixels. Reading and writing processes all 1024 pixels at once, 
while the value assigned to each supercell key is the array of 1024 
variables.  In general, the value of the HBase (key1, key2, key3, 
value)-tuple might host any kind of geospatial-temporally tagged 
data structure. The keys and values can be any sequence of bytes, 
although key2 is limited to printable characters and needs to be 

fixed on HBase table creation. Values can be tensors, for 
example, or hyperspectral cubes, or Twitter commentary. Vector 
data such as discrete points and polygons, and point clouds, such 
as LiDAR scans, are stored in PAIRS Geoscope too, using a 
format that can be queried by Spark SQL. It is the query engine’s 
responsibility to correctly interpret the incoming data using the 
associated Metadata or other information for data fusion. The 
format is fixed at ingestion by the PAIRS upload and curation 
module. 
 
Figure 4 schematically depicts the integration of Spark 
DataFrames in combination with Spark SQL and HBase: A 
PAIRS raster query’s result is placed into an HBase table that can 
be loaded as a Spark DataFrame employing Spark’s HBase 
connector. The resulting table pairs_spark_table hosts 
supercells cell (4x4 pixels in the cartoon) with spatial 
spat_key and temporal timestamp indices derived from the 
PAIRS key pairs_key. Running the user-defined function 
spat_agg() on the supercells reduces them to 16x16 (2x2 in 
the cartoon). In order to assemble these back to 32x32 pixels by 
the user-defined function assemble_cell(), the spatial part 
of the PAIRS key needs to be truncated with parent_key() 
to group_key, on which a GROUP BY-SQL operation is 
applied. The resulting, spatially aggregated data can be readily 
stored back into HBase. A looping scheme allows to iteratively 
generate a pyramid of overview layers critical for accelerated 
analytics to be discussed next. 
  
 

 
 

4. OVERVIEW LAYERS TO ACCELERATE 
ANALYTICS 

Queries involving multiple layers can be sped up exponentially 
by constructing a pyramid with increasingly coarse-grained 
pixels commensurate with the PAIRS grid, built recursively and 
stored at the time of data curation by combining 2x2 pixels (cf. 
previous section) in each pyramid layer into one new pixel in the 
next-higher overview layer. Following a geometric series, the 
required storage is only 30% larger than the original volume. In 
mathematical terms: Given the size S of a raster layer, the 
generation of M overview layers would grow the required storage 
to:  
                S    S (1+q+q2+...+qM) = S (1-qM+1)/(1-q) 
with q=1/b where b=2x2=4. Therefore, the total amount of data 
needed is bounded from above (M  ) by 
 S/(1-q) = S b/(b-1) 

Figure 5: Illustration of efficient analytics exploiting the generation of overview layers in PAIRS. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-255-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165675

 
 

258



i.e. each pyramid of overview layers adds a fraction of 1/(b-
1)=1/3 to the HBase storage. Of course, skipping overview layers 
is an option to further minimize the extra data storage required. 
Systematically skipping k layers from overview to overview 
leads to a fraction 1/(bk-1) which practically becomes zero for 
sufficiently large k. 
 
The advantages for speed up are large, as this allows rapid cross-
filtering of layers at different resolutions. Figure 5 shows a 
schematic of this hierarchically gridded pyramid (yellow boxes) 
for a geospatial area of interest (green polygon). For example, if 
one is interested in areas of layer A where the values in another 
layer B are larger than a given value X, e.g., “areas in a 
population density map where the average temperature exceeds a 
certain value”, then a series of overview layers consisting of 
maximum values in B can exclude big patches where B<X. Thus, 
the high-resolution data do not need to be retrieved in full, but 
only the relevant parts of the overview layer and the associated 
parts of the high-resolution layer that satisfy the condition. 
Moreover, storing raster data statistics helps to compute certain 
aggregate values such as the mean of a raster layer’s pixels in a 
given aoi (green polygon) as depicted in Figure 5: Recording the 
number of valid pixels nj in an overview layer at PAIRS 
resolution level lj prevents PAIRS from counting them down on 
the high-resolution pixel level L of the PAIRS raster layer. It 
allows one to more efficiently determine the total number N of 
pixels in the aoi. To identify the overview layers to be queried, 
the aoi is decomposed into a corresponding QuadTree (yellow 

boxes). In combination with the mean values <v>j of the pixels 
in the overview layers, it is possible to efficiently reconstruct the 
pixel mean value <v> over the aoi without costly access to all 
pixel values vi from the raster layer under consideration. 
In summary, for accelerated analytics, a PAIRS raster layer can 
be enriched by adding several overview layer statistics with 
PAIRS resolution level difference k. The additional storage 
required is limited by  
 a m/(4k-1)  
from above relative to the raster data ingested. The multiplicative 
factor a (greater than or equal to 1) captures the fact that e.g. a 

 
2 The test was performed for the full history of PRISM  
temperature and precipitation data. 

raster layer with one byte per pixel might still require, for reasons 
of numerical precision, overview layers that store e.g. 4 or even 
8 bytes single/double precision floating point numbers (cf. pixel 
mean), or integers (cf. pixel count). 
 

5. PERFORMANCE BENCHMARK OF PAIRS 

PAIRS Geoscope can be built with commodity hardware as speed 
is achieved by scale-out and fault tolerance through redundancy. 
Moreover, since PAIRS’s big data software stack orchestrates 
Hadoop, HBase, Spark, and GeoMesa (which itself is based on 
Java and Scala) portability from one hardware configuration to 
another is straightforward. PAIRS Geoscope has also been 
successfully ported to IBM Power Systems. 
 
Currently, PAIRS is running with Hadoop/HBase/Spark on about 
80 nodes and upload functions plus curation processing on about 
40 nodes. Each data center rack contains up to 24 data nodes with 
10 GB/s network interconnect switches, while the racks are 
connected by an aggregator switch. No additional resources are 
needed for the analytics because it is done on the data nodes 
themselves - some directly on HBase tables and others loaded 
from HBase into Spark DataFrames.  
 
The most basic query in PAIRS Geoscope is that of a time series 
for a single geospatial location. It retrieves all the data with the 
same position key, resulting in an efficient HBase scan due to the 
storage of temporal information in the HBase key’s least 

significant bits. The current PAIRS Geoscope platform returns 
data for 14,000 timestamps at a given location for two physical 
quantities (i.e. 28,000 data points in total) in about one second. 
Carrying out the same procedure in a file stored system, one 
would need to open the files separately for each timestamp of the 
scene containing the location and extract the single pixel2. 
Furthermore, range queries based on polygon outlines for a single 
timestamp, i.e. maps, are easily set up and rapidly processed, too.  
For example, generating a raster image for the mean temperature 
in Iowa at a spatial resolution of 250m meters over around 4 
months takes less than a minute to process.  

Figure 6: Query time versus query data size on PAIRS Geoscope, showing the increase from latency at low data size to a plateau 
of relatively constant query time for a wide range of data sizes in the scalable regime. Query time increases for larger data sizes 
when each storage node requires more than full utilization. The scalable range can be increased by adding more nodes. 
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This organizational feature of PAIRS Geoscope, with rapid 
processing of data along the time axis, is ideal for change or 
motion detection in large spatial fields. Field size does not affect 
processing time because the spatial dimensions are scaled out in 
parallel, which is a basic feature of Z-ordering in a quad-cube. 
Discovery Notification would be an example of such scaled 
analytics. 
 
Latency and scaling are key for performance. Figure 6 provides 
insights of how to think about the performance of the PAIRS 
platform or other similar platforms for that matter. The graph of 
a piecewise regression analysis is plotted and shows the 
estimated data retrieval time against the processed data size. 
Three data size regimes are apparent. Firstly, if few data values 
are retrieved, the performance is limited by latency which is 
determined by the overhead of the parallelization (i.e. the 
Map/Reduce job). Secondly, as the processing time increases 
with query size, latency becomes negligible. The interval of 
optimal query sizes is referred to as the optimal range. In it, the 
data retrieval time is only weakly dependent on the actual data 
size as the number of parallel map jobs increases accordingly to 
the requested data size. Finally, as data size grows even larger, 
parallelization capabilities are depleted and cause the data 
retrieval time to be highly sensitive with respect to data size once 
again. 
 
Empirically speaking, the first segment’s regression function 
characterizes the latency while the second characterizes 
scalability. Remarkably, the first segment’s slope is rather flat 
indicating that retrieval time for small queries is almost 
independent of data retrieval size. On the other hand, the slope of 
the regression function within the optimal range characterizes the 
scalability and is given by 0.26. Although this value is 
significantly different from zero with a p-value of 2.2 10-16, an 
adjusted R-squared of 72% indicates that data size is not the sole 
contributor to this data retrieval time. Therefore, the number of 
involved data layers or timestamps could play a crucial role too. 
Moreover, scalability remains a relative term. For example, even 
for large query sizes in the range of one TeraByte, retrieval rates 
at around 540 MB/s were consistently observed proving that 
PAIRS is rapid across the board.   
 
However, not only size matters but complexity too. PAIRS 
Geoscope can respond to complex queries such as “Calculate the 
average precipitation in the 2017 growing season on all planted 
corn fields in the contiguous United States where the Normalized 
Difference Vegetation Index (NDVI) in the first 15 days of June 
was larger than 0.5.” Such a query involves 216 data layers, 22 
TB of processed data (temporarily matched to the highest 
resolution data set) and three different data sets: MODIS 
(Satellite), Precipitation (weather service), and USDA Cropscope 
(government).  It recently took 693 seconds, which is 31.7 GB/s 
of data analysis or 2.7 PB/day equivalent. On the current 
platform, five such queries can be run in parallel without 
performance degradation, amounting to 13.7 PB/day. The output 
of this query is also shown in Figure 2. 
 
Although PAIRS Geoscope uses HBase which does not allow 
SQL for queries, the capability to use SQL is present as a PAIRS 
query can be directly exported into a Spark DataFrame which is 
similar to a distributed relational database table. The Spark SQL 
functionality then allows the use of well-known SQL expressions 
and user-defined functions on the DataFrame.  There can also be 
multiple result tables with, e.g., different resolutions which can 
be joined using SQL commands and the geospatial-temporal key 
indexing. 

 
The Spark DataFrame is distributed throughout the memory of 
the PAIRS computer cluster. Using PySpark, the DataFrame may 
be accessed via a (local) Python Jupyter notebook. The link 
between the user’s local machine and PAIRS is established 
through a RESTful API employing an Apache Livy server 
(https://livy.apache.org/).  No downloading of data to the local 
machine is required as the notebook instructions operate on the 
data where they reside in the database.  
 

6. CONCLUSION 

PAIRS Geoscope is a curation, storage and analytics platform for 
discovery and collaboration that can incorporate a wide variety 
of geospatial-temporal data. Given its software design, PAIRS is 
able to deliver the following unique features: (1) scalability to 
accommodate multiple sources of real-world data efficiently 
sorted by position and time; (2) ability to compare, combine, 
filter, sort and display multiple data sets simultaneously for 
correlation discovery and change detection; (3) PetaByte 
processing close to the data for advanced analytics, and (4) 
familiar user interfaces involving common  tools and software in 
a combination of private, collaborative and public work spaces. 
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