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ABSTRACT: 

Interest in Unnamed Aerial Vehicle (UAV)-sourced data and Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) 

photogrammetry has seen a dramatic expansion over the last decade, revolutionizing the fields of aerial remote sensing and mapping. 

This literature review provides a summary overview on the recent developments and applications of light-weight UAVs and on the 

widely-accepted SfM - MVS approach. Firstly, the advantages and limitations of UAV remote sensing systems are discussed, 

followed by an identification of the different UAV and miniaturised sensor models applied to numerous disciplines, showing the 

range of systems and sensor types utilised recently. Afterwards, a concise list of advantages and challenges of UAV SfM-MVS is 

provided and discussed. Overall, the accuracy and quality of the SfM-MVS-derived products (e.g. orthomosaics, digital surface 

model) depends on the quality of the UAV data set, characteristics of the study area and processing tools used. Continued 

development and investigation are necessary to better determine the quality, precision and accuracy of UAV SfM-MVS derived 

outputs. 

* Corresponding author

1. INTRODUCTION

Over the last decade the emergence of Unnamed Aerial Vehicle 

(UAV)-acquired observations has considerably contributed to 

the fields of aerial photogrammetry, remote sensing and 

mapping. Not only has the UAV technology assisted in 

collecting data with higher spatio-temporal resolution than 

before, but it has also supported the development of enhanced 

algorithms for photogrammetric processing and remote sensing 

analysis, such as the Structure-from-Motion (SfM) and Multi-

View Stereo (MVS) approach (Remondino et al., 2014). In 

parallel to the advance of light-weight consumer-grade UAV 

platforms and sensor miniaturisation, a dramatic expansion in 

research over a wide spectrum of disciplines has also been 

observed.  

As a complementary piece of work to previous reviews (Eltner 

et al., 2016, Fonstad et al., 2013, Manfreda et al., 2018, 

Colomina and Molina, 2014), the review presented here 

highlights the benefits and drawbacks of the UAV technology 

when applied to different photogrammetric and remote sensing 

applications. It presents the recent developments of various 

miniature remote sensing sensors as well as discusses the 

challenges and merits of the widely-accepted SfM-MVS 

process. This review constitutes an up-to-date, concise summary 

of the UAV based photogrammetry and remote sensing 

advances and considerations.  

2. UAV PHOTOGRAMMETRY AND REMOTE

SENSING APPLICATIONS 

A new era of fine-scale remote sensing has emerged with the 

arrival of light-weight consumer-grade UAVs (<10 kg) (Berni et 

al., 2009, Sharma et al., 2013). UAVs are also known as aerial 

robots, drones, remotely piloted aircraft systems (Toth and 

Jóźków, 2016) and most recently defined by the UK Civil 

Aviation Authority as small unmanned aircrafts (SUA; CAP 

393 (2019)). Originally employed by the military, such 

technology has notably expanded into the civil sector in the 

2000’s, and it has been increasingly used for numerous 

commercial (e.g. recreation, cinematography) and research 

applications including photogrammetry and remote sensing, due 

to their affordability and flexibility (Colomina and Molina, 

2014).  

Over the last two years, a range of consumer off-the-shelf 

(COTS) sensors, attached to UAVs creating aerial data 

acquisition systems, have provided observations of high spatio-

temporal resolution for applications in a wide spectrum of 

photogrammetry and remote sensing, as listed in Table 1. Many 

sensors have been miniaturised and/or adapted to be fitted on a 

UAV platform, ranging from low-cost mass-market, amateur 

and professional, to sensors specifically developed for UAVs 

(Colomina and Molina, 2014). In particular, Van Blyenburgh 

(2013) identified 406 imaging and ranging instruments 

specifically designed for UAVs. 

 Table 1 reports on UAV-based applications, found in literature 

over the last two years, based on six sensor type categories: 1) 

COTS (either unmodified, detecting RGB, or modified to sense 

visible and near infra-red radiation); 2) multispectral; 3) 

hyperspectral (either imaging cameras or radiometers); 4) Light 

Detection And Ranging (LiDAR); 5) Thermal; and 6) Synthetic 

Aperture Radar (SAR). Among these, COTS sensors have 

become the most widely used remote sensing tool to date 

(Torresan et al., 2017), due to their ease of use, low cost, 

compact size, portability, low weight and compact data storage 

(Rabatel et al., 2014). At the other extreme, SAR technology 

has been one of the most challenging to be miniaturised and 

fixed on lightweight UAVs (Aye et al., 2017). Nevertheless, due 

to the rapid technological development and growing interest in 

this area, the other sensors (categories 2-6 above) are expected 

to become common-place for data acquisition with lightweight 

UAVs. However, high operational costs of a few instruments 

(e.g. LiDAR; Torresan et al. (2017)) constitute yet a critical 
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factor for monitoring applications that require repeated UAV 

surveys. 
 

Table 1. Various UAV platforms and sensor models used for a 

wide spectrum of applications. 
 

UAV  Sensor  Application Publication 

1. COTS (unmodified and/or modified visible and near infra-red) 

QPOD-FW Panasonic Forest phenology Berra et al. 

(2019) 

Phantom 4-

RW 

DJI’s RGB 

sensor- 

Tree detection Santos et al. 

(2019) 

Quest-FW Panasonic, 

Sony 

Landslide change 

detection 

Peppa et al. 

(2019) 

Custom-

build-FW 

Sony Glacier 

monitoring 

Jouvet et al. 

(2019) 

DJI F550-

RW 

Canon Fluvial 

sedimentology 

Woodget et 

al. (2018) 

SenseFly 

eBee-FW 

Sony Glacier 

monitoring 

Dall’Asta et 

al. (2017) 

2. Multispectral 

DJI S1000-

RW 

ICI-T, 

Sequoia 

Biomass 

estimation  

Maimaitijian

g et al. 

(2017) 

PHawk-FW Micasense Plant species 

monitoring 

Samiappan et 

al. (2017) 

3. Hyperspectral (either imaging cameras or radiometers) 

Aibot X6 -

RW 

Headwall Wetland species 

distribution 

Li et al. 

(2017a) 

Aeronavics-

RW 

Headwall Vegetation 

mapping  

Malenovský 

et al. (2017) 

Anteos-RW Ocean Optics Spectroscopy 

measurements 

Garzonio et 

al. (2017) 

4. LiDAR 

DJI 

Matrice600

-RW 

RobinMini-

LiDAR 

Calibration  Davidson et 

al. (2019) 

RIEGL 

RiCopteR-

RW 

RIEGL VUX-

1LR-LiDAR 

Calibration and 

mapping 

Glira et al. 

(2019) 

RIEGL 

RiCopteR-

RW 

RIEGL VQ-

880-G-IR 

LiDAR 

Shallow water 

bathymetry 

Schwarz et 

al. (2019) 

5. Thermal 

Aeromax 

600-RW 

Optris-T Cultural heritage Parisi et al. 

(2019) 

DJI 

Phantom 2-

RW 

Optris-T Tree canopy 

temperature 

Smigaj et al. 

(2019) 

RW 

custom-

built 

FLIR-T Coal fire detection Li et al. 

(2018) 

5. SAR 

DJI S1000-

RW 

SAR  

(In-house) 

Landmine 

detection 

Fernandez et 

al. (2018) 

Custom-

build-RW 

SAR  

(In-house) 

Design tests Aye et al. 

(2017)
  

DJI S1000-

RW 

SAR  

(In-house) 

Marine 

monitoring 

Li et al. 

(2017b) 
FW: fixed-wing; RW: rotary-wing 

Recently, advanced open-source pre-trained deep learning 

neural networks have been implemented with UAV imagery and 

are used as complementary tools for various geoscientific 

applications. For instance Santos et al. (2019) compared three 

different region-based convolutional neural networks (R-CNNs) 

to identify tree species from UAV-acquired RGB images. 

Another study in Vetrivel et al. (2018) incorporated CNNs with 

oblique imagery acquired from various UAV platforms to detect 

earthquake damages. They designed a deep learning architecture 

by combing a conventional supervised classification algorithm 

(e.g. Support Vector Machine) with a CNN to classify UAV 

images in undamaged and damaged regions. The 

aforementioned studies demonstrate the recent trend to integrate 

UAV-borne data with advanced deep learning technologies. 

 

3. UAV ADVANCES AND LIMITATIONS 

This widespread exploitation of UAV technology can be 

attributed to a series of favourable factors such as: data 

acquisition in (near) real time; lower operational cost than the 

cost of manned aerial surveys; user-defined temporal and spatial 

resolution (e.g. 5 cm spatial resolution in Figure 1); high-

intensity data collection and flexibility based on the sensor type 

on-board. Advantages compared to in-situ surveys include 

repeated UAV surveys a) over hazardous areas (e.g. glaciers; 

Dall'Asta et al. (2017)); b) over specific targeted areas (e.g. pest 

outbreak Lehmann et al. (2015) or wildfires Yuan et al. (2015)); 

and c) at optimal seasons (e.g. forest phenology; Berra et al. 

(2019)). Unlike satellite remote sensing, UAVs can also be 

particularly helpful in generating time-series data without being 

constrained by cloudy conditions (Torres-Sanchez et al., 2013). 

Also, UAV-based observations can complement multi-scale 

analysis from ground to airborne to satellite observations 

(Garzonio et al., 2017). 

 

However, some limitations of UAVs include: a) relatively small 

area coverage compared to areas observed with manned aerial 

aircrafts and satellites; b) data acquisitions not often 

simultaneous to acquisitions from spaceborne sensors-this in 

turn can limit the analysis of multi-scale monitoring 

applications; c) UAV operational constrains in high winds 

and/or during precipitation; d) significant investment in UAV 

pilot training; e) time taken for in-house manufacturing of 

bespoke UAV systems; f) flat terrain requirement for landing in 

the case of fixed-wing UAVs; g) UAV payload constrains due 

to heavyweight sensors types and/or limited space on the 

aircraft’s body; and e) flight endurance (Anderson and Gaston, 

2013, Chabot and Bird, 2013). The challenge of surveying 

larger areas is due primarily to battery endurance, but also often 

imposed by civil and federal aviation laws, such as the 

requirement to retain the line-of-sight during operations 

(Torresan et al., 2017).  

 

 
Figure 1. Orthomosaic (true-colour) and Digital Elevation 

Model (DEM) derived from a UAV RGB camera (details in 

Berra et al. (2019)), showing the fine detail (5 cm spatial 

resolution) that can be achieved with UAV imagery; in this 

case, individual trees across a Sitka spruce (Picea sitchensis)-

dominated woodland in northeast UK.  

 

However, to overcome these challenges scientists prefer 

engineering custom-built platforms to serve particular purposes. 

For example, Jouvet et al. (2019) manufactured a power-

efficient fixed-wing UAV lasting for almost three hours flying 

beyond the line of sight over glaciers in Greenland. They used a 
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bungee catapult for taking off and a net for landing for safety 

reasons. When engineering a UAV there is always the potential 

to develop a robust equipment for specific needs but cost and 

expertise are certainly required.  

 

Regarding UAV acquisitions, there are some technical 

challenges when dealing with data of unprecedented spatial 

resolution, such as influence of viewing geometry, geometric, 

radiometric calibration and atmospheric correction (Berni et al., 

2009), georeferencing and mosaicking hundreds of images 

typically acquired during a single UAV flight (McGwire et al., 

2013). These factors can diminish the capability to generate 

detailed quantitative information (Kelcey and Lucieer, 2012), 

critical for geomorphological applications and/or time series 

analysis. Furthermore, a large volume of data can be acquired 

per study site, the size of which can increase significantly with 

derivation of photogrammetric and/or remote sensing products, 

potentially resulting in information management problems 

(Rychkov et al., 2012). Despite the freedom of choosing which 

UAV and sensor(s) can be employed, it is necessary to be 

careful regarding all technical and operational processes needed 

to generate datasets of high quality with meaningful 

interpretable information. Extra efforts might be necessary if 

using non-scientific sensors (e.g. COTS) as these require further 

geometric and radiometric calibration (Berra et al., 2017). 

 

3.1 Fixed and rotary-wing UAVs 

An important aspect to take into consideration when choosing a 

UAV is which aircraft type is optimal for a specific study site: 

fixed- or rotary-wing (Figure 2). Unlike rotary-wings, fixed-

wing UAVs have the advantage of covering larger areas. 

However, the target area must be close to a relatively flat terrain 

with an open space zone allowing for a safe take-off and 

landing. Conversely, rotary-wing are less demanding, as they 

are manoeuvrable, easy to take-off and land (vertically) even in 

challenging environments such as steep rugged slopes. They can 

also fly at lower heights, but they cover smaller areas (Anderson 

and Gaston, 2013, Chabot and Bird, 2013). Another advantage 

of rotary-wing UAVs is their ability to hover over a selected 

target for a pre-defined time, allowing for multiple 

measurements (e.g. for Bidirectional Reflectance Distribution 

Function (BRDF) investigation (Burkart et al., 2015)). 

Experience with operating UAVs has shown that it is easier to 

set up an oblique image capture with rotary-wing than fixed-

wing UAVs. Rotary-wing UAVs can also offer a more flexible 

gimbal setup compared to fixed-wing UAVs for accommodating 

heavyweight sensors such as LiDAR and SAR (see example in 

Figure 2). As evidenced in Table 1, reported studies prefer the 

use of rotary-wing UAVs for the deployment of all other sensor 

types than COTS (i.e. categories 2-6 in Table 1).  

 

  
Figure 2: Examples of rotary-wing (left: DJI Matrice 600 

LiDAR; Davidson et al. (2019)) and fixed-wing (right: QPOD;  

Berra et al. (2019)) UAVs. 

 

3.2 Consumer and survey-grade UAVs 

UAVs are also classified into consumer and survey-grade with 

respect to accuracy levels of the on-board positional sensors 

(Rehak and Skaloud, 2017), which is another critical aspect 

when choosing a UAV as a data acquisition system. 

Specifically, in a consumer-grade UAV the on-board Global 

Navigation Satellite Systems (GNSS) receiver is normally 

limited to single frequency and provides positional accuracy to 

5 m or better (Rehak and Skaloud, 2017). Typically, a UAV 

autopilot unit contains a small, low-grade Micro-Electro 

Mechanical System-Inertial Measurement (MEMS-IMU), 

comprising of three-axis accelerometers, gyroscopes and 

magnetometers as well as a barometer. As these sensors are 

small in size, lightweight and inexpensive they are prone to 

errors (gyro drift and accelerometer bias) that accumulate 

rapidly over time. Survey-grade UAVs consist of high 

performance IMU or multiple MEMS-IMU sensors (Rehak and 

Skaloud, 2017) alongside dual frequency GNSS and/or 

augmentation with Real Time Kinematic (RTK)-GNSS 

receivers (Carbonneau and Dietrich, 2017). Such UAVs rely on 

a base ground control GNSS station (with known coordinates) 

which send corrections to the on-board GNSS receiver 

(Dall'Asta et al., 2017).  

 

The RTK-integrated UAV allows for direct georeferencing (i.e. 

without the use of ground control points (GCPs) versus indirect 

georeferencing; see section 4.1) with the aid of the on-the-fly 

GNSS coordinates of the sensor exposures, thereby enabling an 

automatic orientation of the photogrammetric image block. 

Even with this emerging technology, compared to conventional 

airborne photogrammetric approaches with metric sensors, 

UAV approaches fitted with COTS still cannot provide better 

than dm-level positional and arc-minute orientational accuracy, 

independently of direct or indirect georeferencing approach, as 

noted in Rehak et al. (2013). Alternative approach is the use of 

precise point positioning (PPP) on consumer-grade UAVs with 

long flight duration to secure fixed ambiguities, as in Grayson et 

al. (2018). They proposed a global position system PPP by 

using satellite orbits and clock parameters from the 

International GNSS Service to conduct UAV on-board GPS 

level-arm calibration. This approach delivered cm-level 

horizontal precision of the UAV trajectory without the need for 

GCPs. Apart from the accuracy level, it is noteworthy that with 

respect to operational costs, consumer-grade UAVs are 

generally more affordable than survey-grade UAVs due to the 

demanding market.  

 

4. UAV-BASED SFM-MVS 

Together with the continuously emerging UAV technology, as 

discussed previously, contemporary processing approaches have 

been developed blending well-known photogrammetric (e.g. 

Triggs et al. (2000)) and computer vision (e.g. Hirschmüller 

(2008)) algorithms (Colomina and Molina, 2014). This blend 

has resulted in the current state of the Structure-from-Motion 

(SfM) and Multi-View Stereo (MVS) processing pipeline 

(Remondino et al., 2014). SfM-MVS is related to the 3D 

geometry of an object or a scene (structure) viewed from 

multiple positions (multi-view) of a moving camera (motion) 

(Snavely et al., 2008). The SfM-MVS pipeline has expedited 

the automatic generation of high spatio-temporal resolution 

UAV products (Remondino et al., 2014, Snavely et al., 2008), 

in a time-efficient, cost-effective and user-friendly manner 

(Fonstad et al., 2013).  
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4.1 Typical SfM-MVS process 

According to published studies and reviews (Eltner et al., 2016, 

Remondino et al., 2014, Snavely et al., 2008, Westoby et al., 

2012, Granshaw and Fraser, 2015, James et al., 2017, Fonstad 

et al., 2013), the standard SfM-MVS pipeline can be 

summarized into three main phases, as follows: 

 

Sparse point cloud reconstruction: Firstly, the generation of a 

point cloud of tie points (i.e. image observations, internal 

constraints, sparse point cloud) is performed, with feature-based 

matching, via a self-calibrating bundle adjustment without any a 

priori information). This step aligns acquired images and 

establishes relative orientation, recosntructing multi-stereo pairs 

based on epipolar geometry. In particular, a feature-based 

algorithm detects and matches corresponding points lying on 

epipolar lines across images. Subsets of images are 

incrementally aligned until the complete photogrammetric block 

is orientated. Outlier detection is recursively performed to 

eliminate erroneous point matches. The camera’s interior (IOP) 

and exterior orientation parameters (EOPs) are simultaneously 

determined through iterations in a least squares sense by 

minimizing a global reprojection error. This quantifies the pixel 

differences between the initially detected corresponding points 

and those estimated and back-projected into all overlapping 

images of the photogrammetric block. Hence, space resection 

and intersection of every tie point is resolved and a sparse point 

cloud with 3D coordinates in an arbitrary coordinate system is 

generated.  

Georeferencing: Control information is necessary to scale and 

orientate the resultant sparse point cloud and photogrammetric 

block, determining the precise 3D shape of a surface. It is 

usually provided in the form of surveyed GCPs (indirect 

georefencing, IG), or obtained from the positions and/or 

orientations of the camera exposure stations (direct 

georeferencing, DG). This information is used as weighted 

observations (i.e. external constraints) in conjunction with the 

tie points (i.e. internal constraints) in a least squares bundle 

adjustment, thereby re-estimating the camera’s IOPs, EOPs and 

the 3D coordinates of the sparse point cloud in the desired 

coordinate system. 

Dense point cloud (DPC) reconstruction: Given the already 

established epipolar geometry of the photogrammetric block 

from the first phase, disparities are computed at all pixels via 

image matching approaches, such as the semi-global matching 

(Hirschmuller, 2007). The pixels are back-projected to all 

images and triangulated (i.e. via spatial intersection) to form a 

3D surface without abrupt irregularities through gradient-based 

and energy minimization algorithms. The SfM-MVS pipeline 

results in a RGB-coloured DPC that constitutes the raw form of 

a 3D surface representation. 

The georeferenced point cloud (either sparse or dense) can be 

exported and/or interpolated to generate a digital surface model 

(DSM) or a digital elevation model (DEM) without vegetation 

(e.g. Figure 1) or a digital terrain model representing only the 

bare ground. Ultimately, this model can be used to generate 

orthophotos and orthomosaics. 

 

The SfM-MVS pipeline has been adopted in commercial (e.g. 

Agisoft Metashape; Metashape (2018), Pix4D; Pix4D (2016)) 

and open-source (e.g. MicMac; Pierrot Deseilligny and Clery 

(2011), Clustering View for Multi-view Stereo CMVS- Patch-

based Multi-view Stereo PMVS2; Furukawa and Ponce (2010), 

VisualSfM; Snavely et al., (2008)) software packages that offer 

automated routines designed for non-expert users. In recent 

years, Agisoft has gained popularity in the scientific 

community, as evidenced in Figure 3, mostly due to its user-

friendly, almost “black-box”, workflow (Eltner et al., 2016). 

The number of published studies have gradually increased 

relative to Pix4D, whereas there is a steady linear trend for 

MicMac use. It should be noted that the results in Figure 3 

include UAV studies from many scientific communities, and 

not only photogrammetry or remote sensing.  

 
Figure 3: Number of published studies processing UAV 

imagery with PhotoScan, Pix4D and MicMac in the last eight 

years, as extracted from Scopus on 28th November 2019. 

 

4.2 Advantages and challenges of SfM-MVS process 

The SfM-MVS pipeline has become a standard workflow for 

processing UAV imagery as it can handle mixed image block 

geometries of non-vertical, unordered and marker-less images. 

This is mainly attributable to the feature-based image matching 

algorithms, which are able to generate a high number of image 

correspondences (usually >1000) regardless of the different 

image rotations, scales and baselines within the 

photogrammetric block (Fonstad et al., 2013).  

 

However, numerous recent studies have revealed the presence 

of systematic errors in the automatic SfM-MVS pipeline 

(Carbonneau and Dietrich, 2017, Eltner et al., 2016, Harwin et 

al., 2015, James et al., 2017, Remondino et al., 2014). Such 

systematic errors usually originate from image sensor 

characteristics, camera distortion models included within the 

SfM-MVS software, SfM-MVS software settings, imaging 

network configurations, GCP characteristics, surface texture, 

lightning and weather conditions, as well as over-

parameterisation.  

 

For instance, low image overlap might yield mismatches during 

the initial step of the SfM-MVS pipeline and generate 

discontinuities in the reconstructed sparse point cloud. This, in 

turn, can destabilise the bundle adjustment solution and errors 

can propagate into the DEMs (Harwin et al., 2015). 

Illumination differences are caused by either wrong exposure 

camera settings or variations in lighting during a UAV flight. 

Overexposing bright areas or under exposing dark areas can 

vary the distinctive properties of surface features, thereby 

adversely affecting the tie point detection. In addition, parallel 

flight lines can cause vertical systematic bowl-shape 

deformations on the resultant DEM. According to James and 

Robson (2014) these errors can be significantly reduced either 

by acquiring convergent images, or with the inclusion of evenly 

distributed GCPs into the SfM-MVS bundle adjustment. 

Further, Remondino et al. (2014) suggested that when GCPs 

constitute “ground truth” for the SfM-MVS pipeline, they 

should be independently surveyed, providing an estimated 

precision at least three times better than the expected results. 

 

As several parameters are involved at different stages of the 

SfM-MVS pipeline, errors are propagated through the process 
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(Eltner et al., 2016). Typical quality indicators of a 

photogrammetric process are provided from the covariance and 

correlation matrices computed in bundle adjustment. A large 

number of observations from hundreds of images and many 

estimated parameters in the self-calibrating bundle adjustment 

can impede the matrix inversion, essential for covariance 

estimation. Thus, another possible source of the systematic 

errors is over-parameterisation, which cannot be easily 

controlled with SfM-MVS software packages. In response, 

recent studies (Carbonneau and Dietrich, 2017, James et al., 

2017) suggested analytical ways of quantifying the internal 

precision of the estimated IOPs within SfM-MVS, such as 

Monte Carlo tests either to derive optimal combinations of 

camera distortion coefficients or examination of the optimal 

SfM-MVS software parameters (i.e. marker/tie points 

accuracies) and camera distortion models. 
 

The aforementioned examples show how various factors affect 

the SfM-MVS pipeline. Further details can be found in 

Remondino et al. (2014) and Eltner et al. (2016). Nevertheless, 

isolating or correcting the exact source of errors is often 

challenging when using “black-box” software packages, as they 

hardly provide well explained bundle adjustment reports. 
 

Other challenges of SfM-MVS process include: a) lengthy 

processing time (although this depends upon computational 

power) that can only be reduced after downsampling the 

original high spatial resolution of UAV imagery; b) the 

difficulty to visualise high resolution point clouds in some GIS 

platforms; and c) areas with dense complex vegetation, or water 

bodies (with homogeneous image texture) or steep topography 

can often hinder the tie point detection and in turn the 3D scene 

reconstruction. A recent trend is the combination of SfM-MVS 

pipeline with deep learning CNNs to automate vegetation 

filtering process in point clouds as described in Gruszczyński et 

al. (2019). Such developments can improve the DEM 

reconstruction minimising vertical deformations due to very low 

vegetation captured with UAV. 
 

On the other hand, a key characteristic and advantage of SfM-

MVS is that during tie point detection and matching, it can 

overcome the aforementioned common challenges present on 

UAV images up to a certain degree as noted in James et al. 

(2017). It can also process images acquired with different 

camera settings or sensors (Snavely et al., 2008). As described 

in section 4.1, another great advantage of the SfM-MVS 

pipeline is the fully automated processing from feature 

extraction to scene geometry reconstruction and then to 

appealing, photo-realistic products for 3D visualisation even for 

non-experts.  
 

Overall, the accuracy and quality of the SfM-derived products 

depends on the quality of the data set, characteristics of the 

study area and processing tools used (James et al., 2017).  

 

5. CONCLUSION 

Over the last decade, UAV remote sensing platforms have 

become increasingly easy and fast to deploy on an operational 

basis. The success of UAVs in remote sensing and mapping 

applications has been due to not only technological 

developments in UAVs (including positioning systems) and 

sensors, but also significant advances in data processing 

techniques, especially in SfM photogrammetry and computer 

vision.  

While the SfM-MVS approach has a number of advantages, it 

equally has a number of data collection and data processing 

challenges. With the continuous interest in UAV-sourced 

images and SfM and continuous development and investigation 

of the quality, precision and accuracy of outputs, this method 

has the potential to evolve, creating new opportunities and 

insights across all the sectors (science, industry and military) 

currently benefitting from it. Overall, the presented brief review 

provides to non-expert users a fundamental understanding of 

the advantages but also the challenges and errors that are 

associated with the UAV SfM photogrammetry. 

 

ACKNOWLEDGEMENTS 

This research was supported a) by the Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES - 

Brazil), PhD grant 1121/13-8 and by the Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq), grant 

150486/2019-7; and b) jointly by a Natural Environment 

Research Council (NERC)-British Geological Survey (BGS) 

BUFI award (S241) and an Engineering and Physical Sciences 

Research Council (EPSRC) DTA award (EP/L504828/1). 

 
REFERENCES 

ANDERSON, K. & GASTON, K. J. 2013. Lightweight unmanned aerial vehicles 

will revolutionize spatial ecology. Front. Ecol. Environ., 11, 138-146. 

AYE, S. Y., LIU, W., FENG, H. & NG, B. P. Study of multi-rotor UAV SAR 

processing.  2017 IEEE Radar Conference (RadarConf), 8-12 May 2017 

2017. 0226-0232. 

BERNI, J. A. J., ZARCO-TEJADA, P. J., SUAREZ, L. & FERERES, E. 2009. 

Thermal and Narrowband Multispectral Remote Sensing for Vegetation 

Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote 

Sens., 47, 722-738. 

BERRA, E. F., GAULTON, R. & BARR, S. 2017. Commercial Off-the-Shelf 

Digital Cameras on Unmanned Aerial Vehicles for Multitemporal Monitoring 

of Vegetation Reflectance and NDVI. IEEE Trans. Geosci. Remote Sens., 55, 

4878-4886. 

BERRA, E. F., GAULTON, R. & BARR, S. 2019. Assessing spring phenology of 

a temperate woodland: A multiscale comparison of ground, unmanned aerial 

vehicle and Landsat satellite observations. Remote Sens. Environ., 223, 229-

242. 

BURKART, A., AASEN, H., ALONSO, L., MENZ, G., BARETH, G. & 

RASCHER, U. 2015. Angular Dependency of Hyperspectral Measurements 

over Wheat Characterized by a Novel UAV Based Goniometer. Remote 

Sens., 7, 725-746. 

CAP 393 2019. The Air Navigation Order 2016 and Regulations. Civil Aviation 

Authority, UK. 

CARBONNEAU, P. E. & DIETRICH, J. T. 2017. Cost-effective non-metric 

photogrammetry from consumer-grade sUAS: implications for direct 

georeferencing of structure from motion photogrammetry. Earth Surface 

Processes and Landforms, 42, 473-486. 

CHABOT, D. & BIRD, D. M. 2013. Small unmanned aircraft: precise and 

convenient new tools for surveying wetlands. Journal of Unmanned Vehicle 

Systems, 1, 15-24. 

COLOMINA, I. & MOLINA, P. 2014. Unmanned aerial systems for 

photogrammetry and remote sensing: A review. ISPRS Journal of 

Photogrammetry and Remote Sensing, 92, 79-97. 

DALL'ASTA, E., FORLANI, G., RONCELLA, R., SANTISE, M., DIOTRI, F. & 

MORRA DI CELLA, U. 2017. Unmanned Aerial Systems and DSM matching 

for rock glacier monitoring. ISPRS Journal of Photogrammetry and Remote 

Sensing, 127. 

DALL’ASTA, E., FORLANI, G., RONCELLA, R., SANTISE, M., DIOTRI, F. & 

MORRA DI CELLA, U. 2017. Unmanned Aerial Systems and DSM matching 

for rock glacier monitoring. ISPRS Journal of Photogrammetry and Remote 

Sensing, 127, 102-114. 

DAVIDSON, L., MILLS, J. P., HAYNES, I., AUGARDE, C., BRYAN, P. & 

DOUGLAS, M. 2019. Airborne to UAS LiDAR: An analysis of UAS LiDAR 

ground control targets. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 

XLII-2/W13, 255-262. 

ELTNER, A., KAISER, A., CASTILLO, C., ROCK, G., NEUGIRG, F. & 

ABELLÁN, A. 2016. Image-based surface reconstruction in geomorphometry-

merits, limits and developments. Earth Surface Dynamics, 4, 359-389. 

FERNANDEZ, M. G., LOPEZ, Y. A., ARBOLEYA, A. A., VALDES, B. G., 

VAQUEIRO, Y. R., ANDRES, F. L. H. & GARCIA, A. P. 2018. Synthetic 

aperture radar imaging system for landmine detection using a ground 

penetrating radar on board a unmanned aerial vehicle. IEEE Access, 6, 45100-

45112. 

FONSTAD, M. A., DIETRICH, J. T., COURVILLE, B. C., JENSEN, J. L. & 

CARBONNEAU, P. E. 2013. Topographic structure from motion: A new 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-267-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9285975

 
 

271



development in photogrammetric measurement. Earth Surface Processes and 

Landforms, 38, 421-430. 

FURUKAWA, Y. & PONCE, J. 2010. Accurate, Dense, and Robust Multiview 

Stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

32, 1362-1376. 

GARZONIO, R., DI MAURO, B., COLOMBO, R. & COGLIATI, S. 2017. 

Surface Reflectance and Sun-Induced Fluorescence Spectroscopy 

Measurements Using a Small Hyperspectral UAS. Remote Sens., 9, 472. 

GLIRA, P., PFEIFER, N. & MANDLBURGER, G. 2019. HYBRID 

ORIENTATION OF AIRBORNE LIDAR POINT CLOUDS AND AERIAL 

IMAGES. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 

567-574. 

GRANSHAW, S. I. & FRASER, C. S. 2015. Editorial: Computer Vision and 

Photogrammetry: Interaction or Introspection? The Photogrammetric Record, 

30, 3-7. 

GRAYSON, B., PENNA, N. T., MILLS, J. P. & GRANT, D. S. 2018. GPS precise 

point positioning for UAV photogrammetry. The Photogrammetric Record, 33, 

427-447. 

GRUSZCZYŃSKI, W., PUNIACH, E., ĆWIĄKAŁA, P. & MATWIJ, W. 2019. 

Application of convolutional neural networks for low vegetation filtering from 

data acquired by UAVs. ISPRS Journal of Photogrammetry and Remote 

Sensing, 158, 1-10. 

HARWIN, S., LUCIEER, A. & OSBORN, J. 2015. The impact of the calibration 

method on the accuracy of point clouds derived using unmanned aerial vehicle 

multi-view stereopsis. Remote Sensing, 7, 11933-11953. 

HIRSCHMULLER, H. 2007. Stereo processing by semiglobal matching and mutual 

information. IEEE Transactions on pattern analysis and machine intelligence, 

30, 328-341. 

HIRSCHMÜLLER, H. 2008. Stereo processing by semiglobal matching and mutual 

information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

30, 328-341. 

JAMES, M. R. & ROBSON, S. 2014. Mitigating systematic error in topographic 

models derived from UAV and ground-based image networks. Earth Surface 

Processes and Landforms, 39, 1413-1420. 

JAMES, M. R., ROBSON, S., D'OLEIRE-OLTMANNS, S. & NIETHAMMER, 

U. 2017. Optimising UAV topographic surveys processed with structure-from-

motion: Ground control quality, quantity and bundle adjustment. 

Geomorphology, 280, 51-66. 

JOUVET, G., WEIDMANN, Y., VAN DONGEN, E., LÜTHI, M. P., VIELI, A. & 

RYAN, J. C. 2019. High-Endurance UAV for Monitoring Calving Glaciers: 

Application to the Inglefield Bredning and Eqip Sermia, Greenland. Frontiers 

in Earth Science, 7. 

KELCEY, J. & LUCIEER, A. 2012. Sensor correction of a 6-band multispectral 

imaging sensor for UAV remote sensing. Remote Sens., 4, 1462-1493. 

LEHMANN, J. R. K., NIEBERDING, F., PRINZ, T. & KNOTH, C. 2015. 

Analysis of Unmanned Aerial System-Based CIR Images in Forestry-A New 

Perspective to Monitor Pest Infestation Levels. Forests, 6, 594-612. 

LI, F., YANG, W., LIU, X., SUN, G. & LIU, J. 2018. Using high-resolution UAV-

borne thermal infrared imagery to detect coal fires in Majiliang mine, Datong 

coalfield, Northern China. Remote Sens. Lett., 9, 71-80. 

LI, Q., WONG, F. & FUNG, T. 2017a. Assessing the utility of UAV-borne 

hyperspectral image and photogrammetry derived 3D data for wetland species 

distribution quick mapping. The International Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 42, 209. 

LI, W., ZHANG, H. & OSEN, O. L. 2017b. A UAV SAR Prototype for Marine 

and Arctic Application. V07BT06A002. 

MAIMAITIJIANG, M., GHULAM, A., SIDIKE, P., HARTLING, S., 

MAIMAITIYIMING, M., PETERSON, K., SHAVERS, E., FISHMAN, J., 

PETERSON, J., KADAM, S., BURKEN, J. & FRITSCHI, F. 2017. 

Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-

sensor data fusion and extreme learning machine. ISPRS Journal of 

Photogrammetry and Remote Sensing, 134, 43-58. 

MALENOVSKÝ, Z., LUCIEER, A., KING, D. H., TURNBULL, J. D. & 

ROBINSON, S. A. 2017. Unmanned aircraft system advances health mapping 

of fragile polar vegetation. Methods in Ecology and Evolution, 8, 1842-1857. 

MANFREDA, S., MCCABE, M. F., MILLER, P. E., LUCAS, R., PAJUELO 

MADRIGAL, V., MALLINIS, G., BEN DOR, E., HELMAN, D., ESTES, L., 

CIRAOLO, G., MÜLLEROVÁ, J., TAURO, F., DE LIMA, M. I., DE LIMA, 

J. L. M. P., MALTESE, A., FRANCES, F., CAYLOR, K., KOHV, M., 

PERKS, M., RUIZ-PÉREZ, G., SU, Z., VICO, G. & TOTH, B. 2018. On the 

Use of Unmanned Aerial Systems for Environmental Monitoring. Remote 

Sens., 10, 641. 

MCGWIRE, K. C., WELTZ, M. A., FINZEL, J. A., MORRIS, C. E., 

FENSTERMAKER, L. F. & MCGRAW, D. S. 2013. Multiscale assessment 

of green leaf cover in a semi-arid rangeland with a small unmanned aerial 

vehicle. Int. J. Remote Sens., 34, 1615-1632. 

METASHAPE. 2018. Agisoft Metashape photogrammetric SfM-MVS commercial 

software version 1.5.0 (https://www.agisoft.com/) [Online].  [Accessed 15th 

January 2019]. 

PARISI, E. I., SUMA, M., GÜLEÇ KORUMAZ, A., ROSINA, E. & TUCCI, G. 

Aerial platforms (uav) surveys in the vis and tir range. Applications on 

archaeology and agriculture.  ISPRS Annals of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 2019. 945-952. 

PEPPA, M. V., MILLS, J. P., MOORE, P., MILLER, P. E. & CHAMBERS, J. E. 

2019. Automated co-registration and calibration in SfM photogrammetry for 

landslide change detection. Earth Surface Processes and Landforms, 44, 287-

303. 

PIERROT DESEILLIGNY, M. & CLERY, I. Apero, an open source bundle 

adjusment software for automatic calibration and orientation of set of images.  

The International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 2011. 269-276. 

PIX4D 2016. Stand-alone software Pix4D (www.pix4d.com), Pix4D SA. 

RABATEL, G., GORRETTA, N. & LABBE, S. 2014. Getting simultaneous red 

and near-infrared band data from a single digital camera for plant monitoring 

applications: Theoretical and practical study. Biosys. Eng., 117, 2-14. 

REHAK, M., MABILLARD, R. & SKALOUD, J. 2013. A micro-UAV with the 

capability of direct georeferencing. UAV-g2013. Rostock Germany: Int. Arch. 

Photogramm. Remote Sens. Spatial Inf. Sci. 

REHAK, M. & SKALOUD, J. 2017. Time synchronization of consumer cameras 

on Micro Aerial Vehicles. ISPRS Journal of Photogrammetry and Remote 

Sensing, 123, 114-123. 

REMONDINO, F., SPERA, M. G., NOCERINO, E., MENNA, F. & NEX, F. 

2014. State of the art in high density image matching. The Photogrammetric 

Record, 29, 144-166. 

RYCHKOV, I., BRASINGTON, J. & VERICAT, D. 2012. Computational and 

methodological aspects of terrestrial surface analysis based on point clouds. 

Computers & Geosciences, 42, 64-70. 

SAMIAPPAN, S., TURNAGE, G., HATHCOCK, L. A. & MOORHEAD, R. 

2017. Mapping of invasive phragmites (common reed) in Gulf of Mexico 

coastal wetlands using multispectral imagery and small unmanned aerial 

systems. Int. J. Remote Sens., 38, 2861-2882. 

SANTOS, A. A. D., MARCATO JUNIOR, J., ARAÚJO, M. S., DI MARTINI, D. 

R., TETILA, E. C., SIQUEIRA, H. L., AOKI, C., ELTNER, A., 

MATSUBARA, E. T., PISTORI, H., FEITOSA, R. Q., LIESENBERG, V. & 

GONÇALVES, W. N. 2019. Assessment of CNN-Based Methods for 

Individual Tree Detection on Images Captured by RGB Cameras Attached to 

UAVs. Sensors, 19, 3595. 

SCHWARZ, R., MANDLBURGER, G., PFENNIGBAUER, M. & PFEIFER, N. 

2019. Design and evaluation of a full-wave surface and bottom-detection 

algorithm for LiDAR bathymetry of very shallow waters. ISPRS Journal of 

Photogrammetry and Remote Sensing, 150, 1-10. 

SHARMA, R. C., KAJIWARA, K. & HONDA, Y. 2013. Automated extraction of 

canopy shadow fraction using unmanned helicopter-based color vegetation 

indices. Trees-Structure and Function, 27, 675-684. 

SMIGAJ, M., GAULTON, R., SUÁREZ, J. C. & BARR, S. L. 2019. Canopy 

temperature from an Unmanned Aerial Vehicle as an indicator of tree stress 

associated with red band needle blight severity. Forest Ecology and 

Management, 433, 699-708. 

SNAVELY, N., SEITZ, S. M. & SZELISKI, R. 2008. Modeling the world from 

Internet photo collections. International Journal of Computer Vision, 80, 189-

210. 

TORRES-SANCHEZ, J., LOPEZ-GRANADOS, F., DE CASTRO, A. I. & PENA-

BARRAGAN, J. M. 2013. Configuration and specifications of an Unmanned 

Aerial Vehicle (UAV) for early site specific weed management. PloS one, 8, 

e58210-e58210. 

TORRESAN, C., ANDREA BERTON & FEDERICO CAROTENUTO, S. F. D. 

G., BENIAMINO GIOLI, ALESSANDRO MATESE, FRANCO 

MIGLIETTA, CAROLINA VAGNOLI, ALESSANDRO ZALDEI & LUKE 

WALLACE 2017. Forestry applications of UAVs in Europe: a review. Int. J. 

Remote Sens., 38, 2427-2447. 

TOTH, C. & JÓŹKÓW, G. 2016. Remote sensing platforms and sensors: A survey. 

ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. 

TRIGGS, B., MCLAUCHLAN, P. F., HARTLEY, R. I. & FITZGIBBON, A. W. 

2000. Bundle adjustment – a modern synthesis. Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics). 

VAN BLYENBURGH, P. 2013. 2013-2014 RPAS Year book: Remotely piloted 

aircraft systems: The global perspective 2013/2014. UVS International: Paris, 

France. 

VETRIVEL, A., GERKE, M., KERLE, N., NEX, F. & VOSSELMAN, G. 2018. 

Disaster damage detection through synergistic use of deep learning and 3D 

point cloud features derived from very high resolution oblique aerial images, 

and multiple-kernel-learning. ISPRS Journal of Photogrammetry and Remote 

Sensing, 140, 45-59. 

WESTOBY, M. J., BRASINGTON, J., GLASSER, N. F., HAMBREY, M. J. & 

REYNOLDS, J. M. 2012. 'Structure-from-Motion' photogrammetry: A low-

cost, effective tool for geoscience applications. Geomorphology, 179, 300-

314. 

WOODGET, A. S., FYFFE, C. & CARBONNEAU, P. E. 2018. From manned to 

unmanned aircraft: Adapting airborne particle size mapping methodologies to 

the characteristics of sUAS and SfM. Earth Surface Processes and Landforms, 

43, 857-870. 

YUAN, C., ZHANG, Y. M. & LIU, Z. X. 2015. A survey on technologies for 

automatic forest fire monitoring, detection, and fighting using unmanned aerial 

vehicles and remote sensing techniques. Canadian Journal of Forest Research, 

45, 783-792. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-267-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9285975

 
 

272

https://www.agisoft.com/
www.pix4d.com



