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ABSTRACT:

Remote sensing has become an important mean to assess crop areas, specially for the identification of crop types. Google Earth
Engine (GEE) is a free platform that provides a large number of satellite images from different constellations. Moreover, GEE
provides pixel-based classifiers, which are used for mapping agricultural areas. The objective of this work is to evaluate the
performance of different classification algorithms such as Minimum Distance (MD), Random Forest (RF), Support Vector Machine
(SVM), Classification and Regression Trees (CART) and Naı̈ve Bayes (NB) on an agricultural area in Tuscany (Italy). Four different
scenarios were implemented in GEE combining different information such as optical and Synthetic Aperture Radar (SAR) data,
indices and time series. Among the five classifiers used the best performers were RF and SVM. Integrating Sentinel-1 (S1) and
Sentinel-2 (S2) slightly improves the classification in comparison to the only S2 image classifications. The use of time series
substantially improves supervised classifications. The analysis carried out so far lays the foundation for the integration of time
series of SAR and optical data.

1. INTRODUCTION

Food security is a broad concept that goes beyond production
since it requires accounting for spatial and temporal variabil-
ity of food availability, as well as physical and economic ac-
cess. Accurate and continuous information on food produc-
tion are essential to food producers, traders and consumers.
In order to collect relevant data and to gain firsthand know-
ledge about the domestic and international agricultural situ-
ations, many countries and institutions around the world de-
veloped dedicated agriculture monitoring systems by comple-
menting their traditional ground-based approach with satellite
remote sensing based inputs (Wu et al., 2015).

Optical and microwave remote sensing technologies have be-
come an important mean for extracting crop information at local
and global scale (Sun et al., 2019; Belward, Skøien, 2015).

Traditionally, remote sensing for agricultural applications has
focused mainly on optical data, acquired at the visible and near-
infrared part of the electromagnetic spectrum (Orynbaikyzy et
al., 2019). Nowadays, with the advancement in sensor techno-
logy and processing capability, it is possible to expand meth-
odological approaches and use complementary data sources as
satellite Synthetic Aperture Radar (SAR) imagery.

Van Tricht et al. (2018) used the integration of radar Sentinel-1
(S1) and optical Sentinel-2 (S2) images and an optimized Ran-
dom Forest (RF) classifier to create a crop map for Belgium.
They concluded that the synergistic use of radar and optical data
increases classification accuracies in crop mapping compared to
optical-only classification.

∗Corresponding author

Sun et al. (2019) compared three advanced machine learning
algorithms such as Support Vector Machine(SVM), Artificial
Neural Network (ANN), and Random Forest for crop mapping
on a test area in Yangzi River in China using scenes from S1, S2
and Landsat-8 (L8). The authors concluded that the combina-
tion of the three satellite data provided the best overall accuracy
and Random Forest resulted to be the best classifier.

Recently Google Earth Engine (GEE) has been used on a wide
range of Earth observation activities as i) land cover mapping of
Continental Africa by integrating pixel-based and object-based
algorithms using S2 and L8 data (Xiong et al., 2017), ii) paddy
rice mapping in north eastern Asia using L8 images, (Dong et
al., 2016), iii) deriving cropland extent product of Australia and
China (Teluguntla et al., 2018), iv) evaluating combinations of
temporally aggregated S1, S2 and L8 for land cover mapping
(Carrasco et al., 2019), v) testing the performances of S1 data
for classifying croplands (Mirelva, Nagasawa, 2019), vi) land
cover classification in Lesotho using machine learning and S2
data (Mardani et al., 2019).

Agriculture in Italy faces problems and challenges as to men-
tion calamities, drought, ungulates and predators and deficient
management of the Community Agricultural Policy and the
Rural Development Program. The Tuscany Council of the
Italian Confederation of Agriculturist (2017) issued an alert
about the heavy situation of the Tuscan agricultural enterprises,
which is very critical in all the productive sectors. Some initiat-
ives have been taken by local, regional and national workforces,
but, to date, results have been disappointing. The consequence
is land abandonment and the closure of farms.

The aim of this research is to develop a classification method-
ology based on Google Earth Engine and free satellite images
provided by the ESA S1 and S2 constellations. This classific-
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ation methodology will be the first step to implement an oper-
ative monitoring of agricultural practices, land degradation and
will also provide tools for regional rural agencies in support of
decision making and rural development programming.

2. MATERIALS AND METHODS

2.1 Study area

The study area is located in the south of Empoli and west of
Florence, in the Tuscany region (Italy). The central coordinate
is 43◦39’33”N, 10◦57’22”E, as shown in Figure 1.

It is a flat area, crossed by the Elsa river and surrounded by
low and mild hills cropped with olive, vineyards and grass. The
main crops are wheat, maize, sunflower and fava bean.

2.2 Field data

The land cover data was downloaded from the website of the
Sistema Informativo Territoriale ed Ambientale (2019). A mask
was built in order to exclude rivers, urban areas, forests and
roads from crop classification.

Field campaigns were conduced from February 2019 to
September 2019, where different crop types were identified and
vectorized as Regions of Interest (ROI) (Figure 1).

Figure 1. Regions of interest selected during the 2019 in situ
measurement campaigns. Map data c© 2015 Google

The most represented classes of vegetation described during the
campaigns are listed below and were used for the classifications
as shown in Table 1.

Classes Number of
polygons

Area
(m2)

Number of
pixels

Fava beans 11 2121245 212124
Corn 5 1435953 143595
Wheat 39 2848868 284887
Vineyards 5 799831 79983
Fallow 14 2584841 258484
Pasture 12 2402975 240298
Sunflower 21 2618176 261818

Table 1. Agricultural classes used for crop classification of the
test area

2.3 Cloud platform for imagery supplying and classifica-
tion

The research described in this paper was carried out using
Google Earth Engine (GEE). This cloud infrastructure allows us
to access and seamlessly process large amount of freely avail-
able satellite imagery, including those acquired by the L8, S2
and S1 (Gorelick et al., 2017).

GEE also provides a set of the state-of-the-art tools for
pixel-based classification that can be used for crop mapping
(Shelestov et al., 2017).

2.4 Satellite data

S1 and S2 satellite images from GEE were used individually
or together, depending on the scenario applied. The S2 scenes
were atmospherically corrected using sen2cor (Müller-Wilm et
al., 2019). The S1 scenes were calibrated and geocoded using
the S1 Toolbox (ESA, 2019).

The S2 2, 3, 4, 5, 6, 7 and 8 bands and the S1 VV and VH
backscatter and incidence angle bands were used according to
the scenario applied. In Table 2 it is shown the SAR and optical
images used.

Date Sensor Passage Date Sensor Passage
2019-06-01 S1 Asc 2019-02-13 S2 Des
2019-06-05 S1 Des 2019-02-23 S2 Des
2019-06-13 S1 Asc 2019-03-20 S2 Des
2019-06-18 S1 Asc 2019-03-25 S2 Des
2019-08-12 S1 Asc 2019-03-30 S2 Des
2019-09-04 S1 Asc 2019-04-19 S2 Des
2019-09-04 S1 Des 2019-06-03 S2 Des
2018-09-26 S2 Des 2019-06-13 S2 Des
2018-10-21 S2 Des 2019-06-18 S2 Des
2018-11-15 S2 Des 2019-08-12 S2 Des
2018-12-25 S2 Des 2019-09-01 S2 Des
2019-01-04 S2 Des 2019-09-11 S2 Des

Table 2. SAR and optical images used in different scenarios.
Descending (Des), Ascending (Asc)

Also Optical and SAR indices were derived and used for the
classification, as shown in Table 3.

Vegetation Index
(VI) Abbreviation Reference

Normalized
Difference VI NDVI Bilal et al. (2019)

Enhanced
Vegetation Index EVI Bilal et al. (2019)

Green-Red VI GRVI Motohka et al. (2010)
Simple Ratio
Red-Green SSRG Gamon and Surfus (1999)

VH/VV Ratio VH/VV Fieuzal et al. (2013)

Table 3. Vegetation indices derived from optical and SAR
information

2.5 Supervised Classification

The supervised classifiers Minimum Distance (MD) (Jony et
al., 2018), Random Forest (RF) (Breiman, 2001), Support Vec-
tor Machine (SVM) (Burges, 1998; Mathur, Foody, 2008; Ku-
mar et al., 2015), Classification and Regression Trees (CART)
(Bishop, 2006; Shelestov et al., 2017), Naı̈ve Bayes (NB)
(Haykin, 2009; Shelestov et al., 2017) available from the GEE
were used and tested in this work.
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2.6 Statistical analysis

A confusion matrix was derived for each classification test.
From each matrix the global or overall accuracy (GA) and
Kappa index (k) were calculated.

GA compares the number of correct predictions (pixels cor-
rectly classified) and reference pixels based on ground truth
(Rwanga, Ndambuki, 2017).

k represents the degree of accuracy of image classification. k
statistic ranges between zero and one, where k index equal to
one means perfect agreement (Jog, Dixit, 2016). The scale pro-
posed by Monserud and Leemans (1992) was used to interpret
the k values.

2.7 Scenario workflow

Four different scenarios were implemented in GEE to classify
individual images or time series, as shown in Figure 2.

Figure 2. Different scenarios implemented in GEE

3. RESULTS AND DISCUSSION

3.1 Scenario 1

Scenario 1 assessed the classification accuracy of different al-
gorithms using only individual S2 images. Bands 2, 3, 4, 5,
6, 7, and 8 were used. Scenes that gave the best results were
2019-06-03 and 2019-08-12, as shown in Figure 3.

Among all the classifiers applied to the selected images in the
scenario 1, the only case that obtained fair values of k (0.48)
was SVM using the 2019-06-03 S2 scene, with 58% of GA.
Then, the following in performance were RF and CART, that
reached a poor degree of agreement for k. For all the images
analysed MD and NB had the lowest performances, since they
did not exceed 44% of GA.

Figure 3. Comparison of GA and k for each classifier and date
used in Scenario 1

3.2 Scenario 2

In this scenario only S2 images were used for the classification.
In order to improve the classification accuracy, bands 2, 3, 4,
5, 6, 7 and 8 were coupled by NDVI, GRVI, EVI and SSRG
indices.

In general, images from September, October, November and
December 2018 showed low classification k degrees of agree-
ment. This is because agricultural vegetation was harvested or
just seeded. Of the 22 classifications applied to the 11 images,
only four exceeded 60% of GA as shown in Figure 4.

Figure 4. Comparison of GA for each classifier and date used in
Scenario 2

The best performances were obtained for the 2019-03-20 scene,
where RF (bands and indices) and SVM (bands) obtained val-
ues of 63% of GA and good values of k (Table 4).

Maps of the classification results for 2019-03-20 scene obtained
with RF (bands and indices) and SVM (bands) are presented in
Figure 5.

Figure 5. Classified Images in Scenario 2. a) RF for the date
2019-03-20 with bands and indices. b) SVM for the date

2019-03-20 with bands (Scenario 2)
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Data Scenario Bands and indices Bands indices
k k k

2018-09-26 RF 0.15 0.10 0.16
SVM 0.17 0.13 0.01

2018-10-21 RF 0.19 0.15 0.21
SVM 0.16 0.18 0.12

2018-11-15 RF 0.36 0.26 0.41
SVM 0.28 0.16 0.26

2018-12-25 RF 0.35 0.42 0.29
SVM 0.34 0.34 0.12

2019-01-04 RF 0.24 0.21 0.17
SVM 0.31 0.23 0.24

2019-02-23 RF 0.38 0.32 0.42
SVM 0.43 0.41 0.31

2019-03-20 RF 0.56 0.50 0.48
SVM 0.53 0.54 0.26

2019-04-19 RF 0.44 0.45 0.29
SVM 0.35 0.39 0.25

2019-06-13 RF 0.50 0.48 0.34
SVM 0.39 0.39 0.38

2019-08-12 RF 0.34 0.35 0.37
SVM 0.29 0.29 0.31

2019-09-01 RF 0.35 0.39 0.26
SVM 0.41 0.41 0.20

Table 4. k index for RF and SVM classifiers applied to different
dates and using combinations of bands and/or indices in

Scenario 2

3.3 Scenario 3

In the scenario 3 the integration of different inputs correspond-
ing to one optical and one radar image for crop mapping was
tested. The combinations of images are presented in Table 5.

Test Integration of images
1 S1: 2019-06-01, Asc. S2: 2019-06-03
2 S1: 2019-06-05, Des. S2: 2019-06-03
3 S1: 2019-06-13, Asc. S2: 2019-06-13
4 S1: 2019-06-18, Asc. S2: 2019-06-18
5 S1: 2019-08-12, Asc. S2: 2019-08-12
6 S1: 2019-09-04, Asc. S2: 2019-09-01
7 S1: 2019-09-04, Des. S2: 2019-09-01

Table 5. Integration of images used for scenario 3

Among all the combinations of input data the two best perform-
ing are presented in Table 6, where it is shown the GA and k
values for the Test 3 and 4.

The highest performance was obtained for Test 3, where optical
bands, optical indices along with SAR backscatter and incid-
ence angle were used. In this case 63% of GA was obtained
with good k values.

3.4 Scenario 4

The scenario 4 tested the classification accuracy using time
series (TS) of S2 bands (bands 2, 3, 4, 5, 6, 7, 8) and indices
(EVI, SSRG, GRVI) acquired in key periods of the 2019 Italian
agricultural year (Table 7).

The algorithm uses image time series to improve the discrimin-
ation among different classes with respect to the classification
carried out on single images. The discriminating capacity of
time series can be appreciated in Figure 6, where the time evol-
ution of the median EVI of each class is reported.

Since SVM and RF showed better performances in the previous
scenarios only these two were used in this case.

In general, classifications using time series provided better res-
ults than previous scenarios. In all cases they were higher than

Test Inputs Results
B2, B3,
B4, B8 EVI NDVI VV VH angle Ratio

(VH/VV) GA (%) k

3

x x x x x x x 63 0.54
x x x x x x 59 0.50
x x x x x 60 0.51
x x x 58 0.50
x x x x 61 0.53
x x x x 53 0.42
x x x x 54 0.44
x x x x 61 0.52
x 50 0.39

x x x x x 60 0.50
x x x 36 0.14
x x x x 36 0.14

x x 30 0.00
x x x x 55 0.43

x x x 55 0.45

4

x x x x x x x 58 0.48
x x x x x x 56 0.47
x x x x x 56 0.46
x x x 50 0.40
x x x x 53 0.43
x x x x 52 0.41
x x x x 53 0.43
x x x x 60 0.52
x 44 0.32

x x x x x 58 0.48
x x x 39 0.18
x x x x 39 0.18

x x 29 0.00
x x x x 47 0.36

x x x 51 0.41

Table 6. Combination of bands and indices used for the
classification with SVM in Scenario 3, along with GA and k.

‘x’= included

Image TS1 TS2 TS3
20180926T101021 20180926T101704 T32TPP x x
20181021T101039 20181021T101201 T32TPP x x
20181115T101251 20181115T101746 T32TPP x x
20181225T101421 20181225T101424 T32TPP x x
20190104T101411 20190104T101407 T32TPP x x
20190223T101021 20190223T101729 T32TPP x x
20190320T101029 20190320T101437 T32TPP x x
20190419T101029 20190419T101030 T32TPP x x
20190613T101031 20190613T101027 T32TPP x x
20190812T101031 20190812T101028 T32TPP x x
20190901T101031 20190901T101134 T32TPP x x

Table 7. Time series of S2 acquired during in the italian
agricultural period. ‘x’= included

Figure 6. Time series of the median EVI for each sampled class
(Scenario 4)

55.5% of GA, nevertheless in only two cases the k value is fair
(Table 8).

Scenario Inputs Time Serie GA (%) k

RF (number of trees: 10) Bands and indices
TS1 75.40 0.70
TS2 74.80 0.70
TS3 71.90 0.66

SVM (Kernel Type: ’LINEAR’. cost: 10) Bands and indices
TS1 77.30 0.73
TS2 77.30 0.73
TS3 77.30 0.73

RF (number of trees: 10) Bands
TS1 71.10 0.65
TS2 68.30 0.61
TS3 60.20 0.52

SVM (Kernel Type: ’LINEAR’. cost: 10) Bands
TS1 77.30 0.73
TS2 70.00 0.64
TS3 55.50 0.47

RF (number of trees: 15) Indices TS1 75.25 0.70
SVM (Kernel Type: ’LINEAR’. cost: 5) Indices TS1 75.72 0.71

RF (number of trees: 20) Indices TS1 75.14 0.70
SVM (Kernel Type: ’LINEAR’. cost: 3) Indices TS1 77.12 0.72

Table 8. Combination of bands and indices used for the
classification with SVM in Scenario 4, along with GA and k
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As already stated in scenario 2, when bands and indices (EVI,
SSRG and GRVI) are used in combination the classification ac-
curacy is improved. SVM (kernel type: “LINEAR.” Cost: 10)
used for the three time series and using either bands and indices
was the best performer, reaching GA values higher than 77%
and very good k values according to the scale of Monserud and
Leemans (1992).

The best RF result was 1.9% (GA) below the best SVM results,
in both cases the k degree of agreement is very good.

In the Figure 7 are presented the classification maps belonging
to the highest RF and SVM results.

Figure 7. Classified Images in Scenario 4: a) RF (number of
trees:10) for the time series number 1 with bands and indices. b)

SVM (Kernel Type: ’LINEAR’. cost: 10) for the time series
number 1 with bands

4. CONCLUSIONS

In this first approach, the use of Google Earth Engine platform
for crop mapping was used in order to asses the performance of
different classification algorithms. The results of applying the
classifiers in different scenarios in a rural area in center Italy are
presented.

The use of scarce field data partially hampered the training of
the algorithms.

Among the five classification algorithms (Minimum Distance,
Random Forest, Support Vector Machine, Classification and
Regression Trees and Naı̈ve Bayes) that were used in the pro-
posed scenarios, the best performers were obtained RF and
SVM.

Integrating S1 and S2 slightly improves the classification with
respect to only S2 image classification results. On the other
hand, the use of time series substantially improves supervised
classifications.

A future development of the research is to test the advantages
brought by the integration of Sentinel-1 and Sentinel-2 time
series.
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