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ABSTRACT: 

Time series data have been applied for forest disturbance detection. The validation of detected changes is challenging partially because 

the validation data are often not readily available. Unlike multi-temporal change analysis, time series analysis not only detects areas 

of change but also reports time of change. Both spatial and temporal accuracy are therefore important for the accuracy assessment. 

Ayuquila River Basin (ARB) is one of the early action areas in Mexico for the implementation of REDD+ initiatives under UNFCCC. 

In ARB, shifting cultivation and cattle grazing often take place, resulting in degraded forestland. Sub-annual forest disturbance 

detection and estimation contribution to the improved local forest management and REDD+ implementation. Landsat-based NDVI 

time series data covering 1999-2018 were analysed using linear regression and the breakpoints of change and the magnitude of change 

were detected. Breakpoints with magnitude of change ranging from (-0.05) to (-0.2) were verified during a field campaign in October 

2018. Here the magnitude of change is related with NDVI differences. Areas with magnitude of change higher than (-0.2) were 

identified as false changes. Verification data were generated by visually interpreting time series Landsat images of 2016-2018. In this 

way, areas with forest loss were identified. By stratified random sampling, 683 points were applied for the verification including 511 

points of forests and 172 points of forest loss. It yields 75.84% for the overall accuracy of the change detection; for the detected forest 

loss as a category, the user’s accuracy is 88.89% and the producer’s accuracy is 0.46%. A possible reason for the very low producer’s 

accuracy is that the selected magnitude value (-0.2) is too low and some of the detected changes were filtered out.    

1. INTRODUCTION

1.1 Background 

Forest disturbance is an important source of greenhouse gas 

(GHG) emission and contributes to global temperature rise and 

climate change. The UNFCCC initiative REDD+ combats 

climate change by reducing GHG through reducing deforestation 

and forest degradation. Ayuquila River Basin (ARB) is one of the 

“Early Action Areas” for implementation of REDD+ in Mexico. 

Tropical dry forest in ARB is going through degradation by 

disturbances including slash and burn agriculture practices, cattle 

grazing, extraction of poles and forest fires. A timely disturbance 

detection is important to take effective actions and make 

management plans work. Multi-temporal change detection 

methods have been carried out in ARB (Ghilardi et al. 2012). 

However, temporally dense satellite image observation detects 

forest thinning before a clear-cutting as it may need a few weeks 

to finish.  

Forest degradation has been studied by trajectory-based analysis 

with time series data (Banskota et al., 2014). Annual composites 

(Huang et al., 2010) have been used in detecting long term 

changes, including forest regrowth (Czerwinski et al., 2014). 

Since annual data may underestimate the extent of forest 

disturbances such as from selective logging (Matricardi et al., 

2005), a more frequent time series may be necessary to capture 

the optical signature of logging before the evidence of logging 

disappears (Matricardi et al., 2015; De Sy et al., 2012). Dense 

time series data may also be useful to capture positive changes in 

forest cover such as the natural recuperation and recovery that 

often follow degradation.  
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Landsat based time series data have been applied to estimate 

forest degradation (Hamunyela et al., 2016). Normalized 

Difference Vegetation Index (NDVI) was least affected by 

topographic factors and NDVI time series are fundamental to the 

remote sensing-based vegetation phenology and vegetation 

dynamics (Dutrieum et al. 2016).  

1.2 Hypothesis and objectives 

The hypothesis of this work is that time series Landsat NDVI is 

suitable for forest disturbance detection. The objective is to carry 

out vegetation cover change detection using temporally dense 

Landsat based NDVI images spanning 1990 – 2018, and to verify 

the accuracy of the detected vegetation cover change. This work 

contributes to forest degradation monitoring and to the 

implementation of REDD+ initiatives in Mexico.  

2. DATA, METHODS, RESULTS

2.1 The study area and data 

The ARB is located in western Jalisco (Figure 1). The average 

annual temperature is about 19°C and the mean annual rainfall 

ranges from 700 to 1000 mm (Gao et al., 2016). Tropical dry 

forest is the largest forest category covering 24% of the 

watershed. Pine-oak forest is the next largest forest category with 

approximately 12% of the coverage (Ghilardi et al. 2012). During 

the past 20 to 30 years, tropical dry forest and scrubland in its 

central part have been cleared for permanent agriculture 

(Morales-Barquero et al. 2014). The main drivers of forest 
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degradation include shifting cultivation, cattle grazing, fence 

construction, and fires.  

 

 
 

Figure 1. The study area represented by land cover land use map 

of 2010, including 17 categories, interpreted from Landsat 

images.  

 

Landsat data from 1990 to 2018 were collected through Google 

Earth Engine (GEE). NDVI images were calculated using near 

infrared band (NIR) and red band (RED) of Landsat images, 

NDVI = (NIR-RED) / (NIR+RED). Images from Planet 

(www.planet.com) were downloaded to visually verify the 

detected forest cover changes. Planet images have very high 

spatial resolution of 3 meters with four multispectral bands (blue, 

green, red, and near infrared). RapidEye images are also available 

in Planet with a spatial resolution of 5 m and five spectral bands 

(blue, green, red, red-edge and near infrared), both types of 

images are collected daily.  

 

Verification data were derived from visual interpretation of time 

series Landsat images from 2016 to 2018 for the two categories 

of “forest loss” and “forest”. The design of verification data 

follows Cochran (1977). In total, 683 random points comprising 

172 points of “forest loss” and 511 points of “forest” were used 

for accuracy assessment.  

  

2.2 Methods 

NDVI time series data were pre-processed in GEE using quality 

layer and fmask that are implemented in GEE to screen out the 

clouds and cloud shadow. BFAST spatial was applied for the 

change detection. The NDVI data spanning 1999-2015 were used 

to construct a stable reference period, and data from 2016-2018 

were used for change detection. A moving sum of residuals 

(MOSUM) between the observed and predicted NDVI values 

was used to compare with the MOSUM from the reference period 

based on which the breakpoints of change were detected. 

Magnitude of change was then computed by subtracting the 

predicted NDVI from the observed one. To define the threshold 

of magnitude of change, breakpoints with magnitude of change 

ranging from (-0.05) to (-0.2) were verified during a field 

campaign in 15-24 October 2018, during which, forest condition 

at 12 locations where forest disturbance was detected by time 

series NDVI were evaluated, including tropical dry forest, 

tropical humid forest, and oak forest. Areas with false changes 

were identified during field campaign which corresponds to the 

areas which the magnitude of change higher than (-0.2). Inside 

Chamela forest reserve, forest disturbance were caused by 

natural events such as hurricane damage and post-hurricane fire. 

In the north of ARB, anthropogenic causes of deforestation for 

agave plantations were identified. An area of fire induced forest 

disturbance was also identified; however, the type of forest was 

not identifiable due to the inaccessibility. Based on the 

observation from field campaign, the threshold value of (-0.2) 

was selected as the magnitude of change. The general workflow 

of this paper is described Figure 2. 
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Figure 2. the general workflow of the forest disturbance detection 

and verification.  

 

2.3 NDVI values and forest disturbance 

The range of NDVI values is (-1 – 1). Since green vegetation has 

strong reflectance in the NIR and weak reflectance in RED, 

higher positive NDVI values correspond to undisturbed green 

vegetation and this value decreases when vegetation is disturbed, 

for example, by fires. The common agriculture practices of slash 

and burn in this area leave some areas devoid of vegetation 

(tropical dry forest) for some time, usually around 3-5 years, and 

then the land was left to rest for another period, during which the 

natural vegetation recovers. When monitored by time series 

NDVI images, the NDVI values are expected to be stable and 

positive before the disturbance, and then experience a sharp drop 

in the moment of slash and burn, and then somehow recover 

during the agriculture activity. After the land was left to rest, 

NDVI values would expect to recover almost to the level before 

the disturbance. This cycle repeats when another round of slash 

and burn happens, and finally leaves the vegetation in a degraded 

state. In the case of deforestation due to cattle ranching or agave 

plantation, the forest area experiences a clear-cutting, and is 

replaced with grassland or agave plants which can be registered 

by the change in the NDVI time series data by a sharp drop of 

NDVI values comparing to the stable reference period. However, 

when the grassland is established, the NDVI values recover. 

 

2.4 Change detection 

Forest disturbance was detected using BFAST spatial. The time 

series Landsat NDVI data were fitted to a linear regression model 

using equation 1. In this model, a harmonic function is included 

to consider the vegetation seasonality. BFAST identifies and 

models historical data automatically as the reference period 

(Verbesselt et al. 2012b). 

 

𝑌𝑡 = 𝛼1 + 𝛼1𝑡 + ∑ 𝛾sin(
2𝜋jt

𝑓
+ 𝛿𝑗)𝑘

𝑗=1 + 𝜀𝑡       (equation 1) 

Here 𝑌𝑡 is the predicted NDVI value. 𝛼1 is the intercept by 

regressing the historical data with time 𝑡, calculated by ordinary 

least squares. 𝛼2 is the slope of the linear regression, and 𝜀𝑡 is the 

random error. In the harmonic function, 𝛾 is the amplitude, 𝛿𝑗 is 
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the phase of the harmonic season, 𝑓 is the frequency of the 

observations per year and 𝜅 is the fitted terms defined by the user. 

We used 23 annual observations for the Landsat NDVI time 

series obtained every 16 days and fitted three harmonic terms 

𝜅=3 in the model. For the change detection, the predicted NDVI 

value 𝑌𝑡and the observed NDVI value 𝑦𝑡were compared and the 

residual of the model was calculated. Using equation 2, a moving 

sum of the residuals was calculated.  

 

MO𝑡 =
1

𝜎√𝑛
∑ (𝑦𝑠 − 𝑌𝑠)𝑡

𝑠=𝑡−ℎ+1     (equation 2)  

 

MO𝑡 is the moving sum of the residuals, 𝜎 is the variance 

estimator, 𝑦𝑠 is the actual observation, 𝑌𝑠 is the predicted value, 𝑛 

is the number of observations in the historical period and ℎ is the 

size of the moving window defined as a fraction of n and t is the 

time. Here we assigned 25% of the historical period as the size of 

the moving window. In the next step, we tested whether MO𝑡 is 

significantly different from the moving sum of the residuals of 

the reference period MOt. A change is detected when the MO𝑡 is 

significantly different from MOt and the magnitude of change is 

computed through the difference between the observed and the 

predicted NDVI value (𝑦𝑠 − 𝑌𝑠).  

 

BFAST spatial applies the algorithm of BFAST monitor in the 

context of satellite images, where potentially each pixel 

corresponds to a time series. To detect forest disturbance, the 

magnitude of change of only those pixels where breakpoints 

occurred is considered. To avoid false positive detection, a 

threshold of (-0.2) was established by verifying the detected 

changes with field observations. Field data: tracks of field visit, 

characteristics of verified points for magnitude; Pixels with 

magnitude of change lower than this threshold were labelled as 

deforestation. Since this algorithm returns only one breakpoint 

per pixel, and only forest pixels were analysed, we assume the 

detected changes are results of activities that cause forest 

disturbance such as slash and burn, or deforestation. 

 

By applying the threshold (-0.2) for magnitude of change, 394 

patches of deforestation were detected for a period of 3 years: 

2016-2018.  The total area of detected forest cover loss is 5.2 

km2, which is 0.23% of total area of forest in the ARB (Figure 3). 

 

 
 

Figure 3. The detected forest loss by applying the threshold of 

magnitude of change (-0.2).  

 

2.5 Accuracy assessment 

Two methods of accuracy assessment were applied. The first one 

verified the detected changes visually with high resolution 

images from Planet (www.planet.com). We randomly selected 51 

patches of change which is about 15% of the total changes to go 

through validation. High spatial resolution images before and 

after the changes were compared. 35 patches (68.1%) were 

verified correctly, and therefore there is about 32% error is the 

commission error. However, no omission error can be reported 

by this method. 

 

The second method verified the accuracy using verification data 

including two categories: forest loss and forest which were 

derived from visual interpretation of time series Landsat images 

from 2016-2018. Afterwards, a stratified random sampling 

method was applied to extract random points for the verification. 

The size of the samples was determined after Cochran (1977) 

using the following equation: 

 

𝑛 = [(
𝑧

𝑚
)

2

] × 𝑝 × (1 − 𝑝) 

 

where z is the standard deviation according to the established 

level of confidence, in this case 1.96 for 95% of the confidence 

level, m is the margin of the error (0.03), and p is the proportion 

of the assumed population, in this case (0.8). 

 

𝑛 = [(
1.96

0.03
)

2

] × 0.8 × (1 − 0.8) = 683 

 

And then we estimated the sample size for both forest and forest 

loss after Czaplewski (2003). 

 

𝑛𝑖 = [𝑝𝑖 × (𝑛 2⁄ ) + (
1

𝑘
) (

𝑛

2
)] 

 

where 𝑛𝑖 is the sample size for the mapped stratum 𝑖, 𝑛 is the total 

sample size, 𝑝𝑖 is the proportion of the population mapping in 

category 𝑖, and 𝑘, is the total mapped categories. In this case, the 

total number of pixels per category is considered (Table 1). 

 

Table 1. Total detected changes and sample sizes. 

  
Category Number of 

pixels 

Area (km2) Percentage Sample 

size 

Forest 2442980 2198.682 99.68 511 

Forest loss 7679 6.911 0.31 172 

Total 2450659 2205.593 1 683 

 

𝑛𝑖 = [0.9968 × (683 2⁄ ) + (
1

2
) (

683

2
)] = 511 

 

 

𝑛2 = [0.0031 × (683 2⁄ ) + (
1

2
) (

683

2
)] = 172 

 

 

For the accuracy assessment, we applied the method proposed by 

Card (1982) and Olofsson et al. (2014), which allow the 

correction of the bias due to the proportion of the categories in 

the map. The correction of the bias was through a plugin in Qgis 

(Mas et al. 2014). The results of the accuracy assessment are 

presented in table 2. Within 172 points of forest loss, only 8 

points were correctly identified, which shows huge omission 

error of disturbance detection. This can be an indication that the 

threshold of magnitude of change of (-0.2) was set too high, 

resulting in many detected breakpoints as non-change.   
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Confusion Matrix 

 Forest Forest loss 

Forest 510 164 

Forest loss 1 8 

Adjusted Confusion Matrix (Card Correction) 

 Forest Forest loss 

Forest 0.756 0.243 

Forest loss 0.0001 0.001 

   
Overall Accuracy 0.757  

User Accuracy 0.757 0.889 

Producer Accuracy  0.99 0.005 

 

Table 2. accuracy assessment results described in error matrix.  

 

3. DISCUSSIONS  

3.1 Landsat NDVI time series data 

NDVI time series data were filtered with quality layer and fmask 

algorithm to remove cloud and cloud shadow which left data gaps 

in time series data. Although by BFAST spatial, the change 

detection algorithm works with gaps in the time series. The future 

topic is to find out how the number of no-data pixels (NA) in a 

time-series affects change detection. The data gap is a common 

problem for Mexico with about 4 months of raining season.  

 

3.2 Accuracy assessment 

To ensure a proper verification of spatial and temporal changes 

from time-series analysis, verification data need to be collected 

correctly. The case of verification with two-time change analysis 

results; the case with field data; obtaining verification data with 

Google Earth images depends on the spatial and temporal 

coverage of high-resolution images. The case with planet: 15% 

of 394 detected patches went through visual verification with 

high resolution images available at planet (www.planet.com). 

Independent verification data generated by visual interpretation 

of Landsat images (time consuming); A comparison with change 

detection by MODIS NDVI time series; scale matters 

 

3.3 Relate forest disturbance with forest degradation  

Forest degradation reflects a loss in biomass, forest carbon and 

forest services and is difficult to detect by remote sensing 

methods. The change detection returns forest loss; however, it is 

difficult to relate the loss to forest degradation. Some of the 

reasons include forest degradation often happens in fine scales. 

For example, the degradation caused by disturbances such as 

cattle grazing and fuelwood collection only happens under the 

canopy cover, invisible to optical satellites until its cumulative 

effects result in changes to the forest cover (Pratihast et al. 2014). 

With time series analysis, Defries et al. (2015) found a large 

spread in the relationship between probability of degradation and 

magnitude, both with and without breakpoints.  

 

Several studies suggested that once a certain threshold of 

disturbance is reached, tropical forests may collapse or switch to 

an alternative stable state. Poorter et al. (2016) shows that forests 

can be resilient, and their biomass resilience strongly depends on 

water availability. Although the carbon value of tropical dry 

forest in ARB is low in comparison with temperate forest, it is 

important to conserve the tropical dry forest because of its 

importance in biodiversity conservation (evidence of wild 

animals such as deer, cheetah) and water retention, and in 

combating climate change. One of the useful practices is through 

silvo-pastoralism which combines cattle grazing with 

conservation of forests.  

 

4. CONCLUSIONS 

It is challenging to detect forest degradation with remote sensing 

methods. Comparing with deforestation, forest degradation 

involves changes to the structure of the forest and frequently 

happens in small areas. Time series analysis presents advantages 

in detecting vegetation cover change. On one hand, not severely 

damaged forest often recovers fast and so data with enough 

frequency ensures the detection of change before the evidence 

disappears. On the other hand, not all the open forests are 

degraded; time series analysis can separate degraded forest from 

naturally open forest. This paper presents forest disturbance 

detection using time series NDVI data for the Ayuquila 

watershed, Jalisco state, Mexico for the period of 1998 – 2018. 

The accuracy assessment showed a 75% overall accuracy. The 

detected forest disturbance is mainly related with forest cover 

loss. The future challenge includes how to relate the detected 

forest disturbance to forest degradation.  
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