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ABSTRACT: 

 

Initial results of biomass estimation in the La Fusta area from existing equations found in literature are presented. As expected, accuracy 

of general equations suffer from the equation coefficients being obtained from fitting training data from different sites. It is also clear 

from the results that there is a high variance between different methods, in particular when complex data mixture is applied. Biomass 

is difficult to assess for dense forests, as pixels are saturated. This must be considered when planning field-data collection, with more 

samples in dense forest to provide more robust estimators from the training phase. The SAR-only (PALSAR) method from eq. 4 

provided the most bias in results, overestimating with respect to the other methods. 

 

 

 

1. INTRODUCTION 

Understanding the distribution and dynamics over time of tree 

biomass distribution is a key topic for understanding and 

monitoring forest ecosystems. Forest carbon stock represents an 

important component of the total biomass and can be grouped by 

the following sub-components: below ground, above ground, and 

the latter further into trunk, leaves, branches. Ground sampling is 

the most accurate way to measure biomass (Segura and 

Kanninen, 2005), in particular when allometric equations are 

available in a specific site. Unfortunately ground measurements 

are a time-consuming and expensive process, in particular in 

areas that are difficult to access (Vaglio Laurin et al., 2016; Wang 

et al., 2011). It remains clear that in-situ sampling is the only way 

to train a model. The sampling strategy can be optimized through 

initial rough estimation of biomass through remote sensing. 

These downsides of ground-sampling have led to a wide interest 

in the use of remote sensing data for estimating forest 

characteristics, from tree height distribution to more detailed 

vertical structure information. Fields of applications are also 

numerous, ranging from global biomass maps to more detailed 

hazard maps related to dead-wood, important for example for 

estimating fire hazard  (Jucker et al., 2017; Marchi et al., 2018).  

 

Remote sensing is a term that aggregates a wide array of sensors 

that provide data. Active and passive remote sensing are 

differentiated from emitting or not emitting the electromagnetic 

energy (EME) that is then recorded; both types are useful for 

analysis of vegetation, in agriculture and forestry (Koch, 2010). 

Also, different range capabilities distinguish sensors; from UAVs 

to platform orbiting ~700-1000 kilometres from the Earth 

surface. The geospatial aspect is embedded in remote sensing, as 
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accurate geolocation of data is of paramount importance. A lot of 

scientific effort has been dedicated to finding new and improved 

ways to get better understanding of forest characteristics using all 

types of remote sensing data. Figure 1 shows a survey over the 

past 10 years on scientific literature using the key phrase “forest 

volume and biomass estimation using remote sensing” as 

opposed to only searching for “remote sensing” in Google 

Scholar. It shows that a relative significant increase is evident in 

the past 10 years of activities using remote sensing for estimation 

of biomass and volume.  

 
Figure 1.  Google Scholar literature search for keywords 

“forest volume and biomass estimation using remote 

sensing” (orange) and “remote sensing” only (blue). 

 

Technology has greatly improved the spatial and radiometric 

resolution of satellite imagery. The past years have seen a fast 

development of many methods for applying passive and active 
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satellite imagery as source of information in the field of forest 

measurements. Higher resolution imagery improved the quality 

of several vegetation indices that can estimate values of some 

forest stand attributes such as basal area, volume and above 

ground biomass.  Forest structure impacts on the reflectivity of 

the incident EME from the sun or from the active sensor, and this 

information is recorded and available in the image. Specifically 

height and crown cover are highly correlated with biomass 

(Lefsky et al., 1999; Yáñez et al., 2008) and both spectral 

signatures and backscatter intensities change from a bare-ground 

area to a dense tropical forest. One of the main challenges in 

based on remote sensing for biomass estimation is overcoming 

the saturation effect, i.e. predictions of small biomass changes at 

low biomass values are more accurate than at high biomass 

values. This is true for methods using optical properties and 

backscatter properties, i.e. optical remote sensing and SAR 

(Ulaby et al., 1984). Therefore, it must be taken in consideration 

that predicted values are less reliable when estimating higher 

biomass values.  

 

The presented research compares results from using various 

existing and new approaches for biomass estimation using 

imagery with different resolutions, including open and 

commercial imagery (e.g., Sentinel-2A, Landsat-8, QuickBird, 

etc.). The focus is to define the impact of resolution over the 

estimation of the forest stand attributes in Araucaria forest type, 

as a pilot study area. Accurate allometric equations are used to 

estimate volume and above ground biomass from ground 

samples. A non-linear model with more than one covariate is 

used to provide detailed biomass values by tree components (e.g., 

wood, foliage, etc).  

 

Initial investigation regarding the assessment of biomass over the 

study area is performed. At this stage ground-data is not yet 

available, so the focus of results is on comparing different 

methods that are available in existing literature for estimating 

biomass in similar ecosystems. We start enumerating the 

methods and sensors that are tested, with a critical discussion on 

differences found in results. The natural continuation of this work 

will be training stage of a model using ground-data acquired in-

situ.  

 

Field data providing tree position, diameter, height and crown 

volume are used for training, testing and validation phases. The 

allometric equation that will be used on to estimate above ground 

biomass in the field-samples with Araucaria araucana shows a 

strong relationship, obtaining a R2 of 0.99 and a relative root 

mean square error (rRMSE) of 13.8% and a bias of 0.5% (journal 

publication with further details is currently under review), thus is 

considered suitable for training and validation of the prediction 

models. At the final stages this study will use both direct band 

reflectance and band transformations such as spectral indices 

such are NDVI, SAVI and DVI. These will be combined with 

forest inventory data, using relationships between forest 

structural variables and vegetation indices to provide an accurate 

prediction.  

 

At this stage data from field sampling are not yet available, 

therefore comparisons are carried out over biomass maps derived 

from existing equations found in literature. In this comparison 

both optical and radar datasets are used, separated or also mixed 

in a single model. More details are provided in the methods 

sections.  

2. MATERIALS AND METHODS 

2.1 Study area 

The study area is located at La Fusta forest, region of the 

Araucania in the south of Chile (38º34’28’’S and 71º26’22’’W), 

covering a total area of ~9000 ha and divided in 981 stands (see 

Figure 2). The terrain is characterized by low altitudinal 

variation, between 1,290 and 1,380 meters. The mean annual 

precipitation of this location varies from 1,500 to 2,500 mm, with 

temperatures from -1ºC to 9ºC (Hajek and Rubio, 1982). The 

soils were composed under volcanic rocks, being soils 

moderately deep with a medium to fine texture in deep, showing 

a moderate to high erodibility, acid pH and low nutritional level 

(Donoso, 2006). The area is mainly dominated by Araucaria 

araucana, but commonly is associated to Nothofagus spp. in low 

zones. Especially, with Lenga (Nothofagus pumilio) as is well 

described by Schmidt, (1977). 

 

 

Figure 2. Study area, La Fusta, Chile. 

 

2.2 Materials 

Data from multiple active and passive remote sensors were used 

for application of existing equations in literature for assessing 

biomass. Google Earth Engine (GEE) was used as data provider 

and partially for some procedures. Google Earth Engine provides 

remote computing capabilities over remote sensing data 

collections. Processing is done through mapping pre-defined and 

user-defined functions for data analysis and aggregating results 

through aggregating operators called “reducers”(Gorelick et al., 

2017). For this initial comparative analysis these satellite 

missions are used: Landsat 5/7/8, Sentinel-2 and PALSAR. 

Because vegetation has a natural seasonal variation, image 

collections were filtered to use only months with highest 

vegetation photosynthetic activity. In this area in the southern 

hemisphere the time window from January to end of March 

provide warmest days with low precipitation, and therefore it was 

used to keep a low seasonal variation regarding vegetation 

response to certain EME wavelengths, such as the red-edge area 

of spectrum.  Pre-processing steps and details on work-flow are 

provided in the next sections. 
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2.3 Methods 

A lot of investigation has been done in the past 30 year by the 

scientific community for finding best methods for forest volume 

and biomass estimation using different sources of remote sensing 

technologies; optical passive sensor data, Synthetic Aperture 

Radar (SAR) and lidar. Several authors have provided summary 

of state-of-the-art on remote sensing-based aboveground biomass 

estimation methods in forest ecosystems (Koch, 2010; Lu et al., 

2016). Biomass estimation techniques using remote sensing data 

can use either parametric and nonparametric approaches. 

Parametric models assume that the relationships between 

dependent (i.e. biomass) and independent (derived from remote 

sensing data) variables have explicit model structures that can be 

specified a priori by parameters (Lu et al., 2016). In this study 

ground measurements are not yet available; therefore, no training 

data is yet available for testing non-parametric algorithms. 

Instead parametric methods with parameters defined in literature 

from studies in similar contexts can be tested to compare different 

sensors and different time windows. Therefore, based on 

previous literature, the methods presented in the next sections are 

used and results compared in the discussion sections.  

 

2.3.1 Optical sensor data:   the most common data available 

from satellite missions is passive optical sensor data providing 

visible, near infrared and short-wave infrared 

radiance/reflectance information. Numerous satellite missions 

provide open-data, which is an important paradigm for fostering 

a rich environment in scientific collaboration (Pirotti, 2019).  

 

Early work from (Steininger, 2000) found a correlation value of 

R=0.8 p < 0.01 using Landsat TM channel 5   atmospherically 

corrected reflectance values to estimate biomass over stands in 

Brazil’s secondary tropical forest up to 15.0 kg·m-2. Saturation 

effects were present above that amount of dry biomass.  

 

  AGB = 50.77 − 287.62 ∙ X    (1)  

 

      AGB = 4.166e + 5e−73.936∙𝑋      (2) 

 

where: AGB=above-ground biomass (kg·m-2), X=Landsat TM 

channel 5   atmospherically corrected reflectance and e=natural 

logarithm. In our study-case the corresponding bands in Landsat 

5, 7 and 8 have been used, to provide a timeline of biomass values 

over the La Fusta area. 

 

Methods based on band transformations and indices have been 

used for predicting biomass of vegetation. The red-edge area in 

the EME spectrum is sensible to photosynthetic activity, as 

chlorophyll absorbs the red EME and healthy vegetation strongly 

reflects near infrared (NIR). Therefore, NDVI and other red-edge 

indices are strongly correlated to the photosynthetic activity and 

are thus a proxy of vegetation-fraction in a mixed pixel. A 

drawback is that equations relating NDVI to biomass are very 

robust at low values of biomass, and get saturated as biomass 

increases (van der Meer et al., 2000).  

 

2.3.2 Synthetic Aperture Radar - SAR: biomass models 

based on using SAR data have been tested in both agriculture and 

forestry. SAR is an active remote sensing technology which emits 

signals in the microwave part of the energy spectrum. Reflected 

signal contains phase and amplitude information that can be 

analysed for relation with biomass. Amplitude is recorded as 

backscatter magnitude value commonly expressed in decibels 

(dB) after applying the following conversion: 

 

 𝐷𝑁 (𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔10 (𝐷𝑁)  - CF (3) 

 

where DN is the recorded backscatter at the sensor after 

processing the raw signal to sigma naught and/or gamma naught 

and CF is a calibration factor. Sigma naught 𝜎0 is the 

backscattered portion of the incident energy on the illuminated 

area,  gamma naught (𝛾0) is the backscatter portion of the area 

defined to be in the plane perpendicular to the line of sight from 

sensor to an ellipsoidal model of the ground surface (Small, 

2011). Depending on the wavelength of the emitted signal, SAR 

missions are put in categories defined by a letter (see Figure 3).   

 

 
Figure 3.  Radar band designations relative to emitted 

wavelength (image credit 

https://www.sweclockers.com/artikel/21125-

kommunikation-i-rymden/6 ). 

 

Earth surface objects interact with radar emitted energy back-

scattering the signal with an intensity that depends on the 

wavelength and on the surface characteristics. The surface 

characteristics include geometry of the surface (incidence angle), 

texture, and surface properties, such as dielectric properties, 

material and water content (Wohlfart et al., 2018). In the case of 

vegetation, longer wavelengths have a greater degree of canopy 

penetration.   Shorter  SAR  wavelengths such  as  X-band  and  

C-band  interact mainly with  the  top  part  of  the  canopy  while  

long  wavelengths such  as  L-band  have  a  greater  penetration 

depth, interacting  with  the  entire  canopy  (Jiao et al., 2010; 

Ulaby et al., 1984). 

 

In this work a test was done using the HH and HV polarizations 

of the following radar sensors available in GEE: 

 

• Sentinel-1 C-band radar with 10 m spatial resolution; 

• PALSAR/PALSAR-2 L-band radar with 25 m spatial 

resolution 

 

For both sensors the following pre-processing steps were carried 

out by the provider, GEE: radiometric calibration and terrain 

correction using SRTM 30 m digital elevation model. Sentinel-1 

also had thermal noise removed. PALSAR also had de-striping 

according to method in (Shimada, 2010). It must be noted that 

Sentinel-1 data are provided as sigma naught, whereas PALSAR 

are provided as gamma naught.  

 

SAR backscatter is weakly correlated with biomass, and is 

therefore used mainly to improve models that use optical 

information (Basuki et al., 2013). Equations that use mixed 

models are discussed in the next section.  A SAR-only approach, 

the Water Cloud model (Attema and Ulaby, 1978; Ulaby et al., 

1984) was tested successfully in (Peregon and Yamagata, 2013) 

and is tested here as well: 

 

 AGB =  
1

0.03
∙ ln (

𝜎0+12.6

−10.119
)   (4) 

 

AGB=above-ground biomass (Mg·ha-1). 

 

2.3.3   Mixed:  using SAR and optical sources of data can 

improve biomass models. Fusion implies different sources of 

data such as: (i) SAR backscatter, (ii) SAR coherence, (iii) 
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reflectance from optical sensors, (iv) derived vegetation indices, 

and (v) texture maps through Grey Level Co-occurrence 

Measures GLCM (Haralick, 1979) of optical or SAR backscatter 

values. These features have been tested for improvement of 

predictions of  above-ground biomass models by (Basuki et al., 

2013; Vaglio Laurin et al., 2016) and others. Authors in Vaglio 

Laurin et al. (2016) used SAR backscatter intensity from ALOS-

2, NDVI values from Landsat-8 and GLCM maps finding that the 

best model was obtained using both SAR and NDVI (R2 = 0.66, 

RMSE=7.162 kg·m-2). In their work GLCM values did not help 

to predict variance in above-ground biomass. Saturation of the 

model occurs approximately over 35 kg·m-2 

 

AGB = 4.53 + 16 ∙ HH. HV + 10.03 ∙ NDVI (5)  

 

where: AGB =above-ground biomass (Mg·ha-1), HH.HV is the 

sum of backscatter values (in dB), and NDVI is the average 

NDVI over a 5x5 window.  

 

In other tests, GLSM values have proven to be a valid support to 

biomass prediction, providing equations with significant 

correlation. A coefficient of determination R2 = 0.84 was the 

result of the work by Gascón and Eva, (2014) using high 

resolution imagery (around 1 m x 1 m cell size) with the 

following relation:    

 

AGB = -179 + 70.5 ∙ GLCM H45 + 3.201 ∙GLCMSD2  

             - 0.012 ∙Mean4 + 59.01 ∙ NDVI     (6) 

 

Where GLCM SD2 is the standard deviation of band 2, GLCM 

GLCM H45 is the GLCM Homogeneity at 45°, Mean4 is the 

GLCM mean of band 4 and NDVI is the Normalized Difference 

Vegetation Index.Another mixed approach is presented by 

Basuki et al. (2013) with results providing a coefficient of 

determination R2 = 0.746 and an RMSE of 7.89 kg·m-2 with the 

following equation: 

 

 AGB = –83.304 + 1073.298·veg_hh – 1436.975·soil_hh (7) 

 

where: AGB is above-ground biomass (Mg·ha-1), veg_hh and 

soil_hh are respectively the HH polarization mixed with the 

vegetation and soil fractions calculated using endmembers of the 

respective components. Endmembers were derived by defining 

in the image a pure pixel for each component, vegetation and soil. 

Authors in (Basuki et al., 2013) inject SAR’s HH backscatter and 

fractional reflectance using discrete wavelet transformation 

(DWT). Authors do not provide information on what 

software/library was used for DWT and only indicate a generic 

orthogonal wavelet transform, but do not specify which from the 

possible orthogonal wavelet filters (e.g. Haar, Daubechies, 

Binomial QMF). In this presented study steps (i) spectral 

unmixing to endmembers “soil” and “vegetation” and (ii) DWT 

steps were done respectively by using GRASS GIS’s 

i.spec.unmix package (Tonolli et al., 2011) and  R-cran waveslim 

package (Mallat, 1989; Whitcher, 2019). Reconstruction of the 

optical fraction of soil and vegetation with injection of 

PALSAR’s HH backscatter using the inverse transform with 

DWT was done with the following weighted model as indicated 

in Basuki et al. (2013):  

 

 𝐶𝑜𝑝𝑡
𝑍 =  𝑎𝑜𝑝𝑡

𝑍 ∙ 𝐶𝑃𝐴𝐿𝑆𝐴𝑅
𝑍 + 𝑏𝑃𝐴𝐿𝑆𝐴𝑅

𝑍   (8) 

 

where Z = three directions, horizontal, vertical and diagonal 

Wavelet detail image directions; 𝑎𝑜𝑝𝑡
𝑍  is the mean of the optical 

remotely sensed data, 𝑏𝑃𝐴𝐿𝑆𝐴𝑅
𝑍  is the standard deviation of the 

PALSAR data. 

3. RESULTS AND DISCUSSION 

From the methods described in the previous sections, five 

equations for estimating biomass are finally applied to the La 

Fusta area: equation 1, 4, 5, 6 and 7. The first is based on a single 

reflectance band, the short-wave infrared band at 1.55-1.75 μm 

wavelength range. The others use SAR backscatter only or mix 

GLMC and a mixed combination of SAR and optical band 

transformations, either with spectral indices and with endmember 

fractions.  

  

   
Figure 4. La Fusta area in 2002 – above-ground biomass 

estimated using eq. 1 with Landsat 7 ETM+ (top 

left) and Landsat 5 TM (top right) and difference 

map from single year (bottom left) and from 

composite (bottom right).  

 

 
Figure 5.  Model from eq. 1 applied using Landsat-8 and 

PALSAR/PALSAR-2 – area without vegetation at 

bottom left is in-line with lost vegetation checked 

with global forest change in (Hansen et al., 2013). 
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Figure 6. Intermediate and final results from application of 

mixing optical and SAR data with wavelet as in 

(Basuki et al., 2013). 

 

A critical comparison between the results can provide initial 

information on the area and on criticalities of the methods. The 

difference maps can be used to map higher ground sample density 

in future sampling planning. A first exploratory analysis can be 

done comparing histograms of frequency distribution of biomass 

values over all the area (Figure 7).  

 

 
Figure 7.  Histogram of biomass estimated values (v) in kg·m-2 

with different methods: title shows sensor, year and 

equation used.  

 

3.1 Multi-temporal comparison 

Due to the long-term Landsat missions, equation 1 was applied 

to Landsat 5, 7 and 8, the first two in 2002 the latter in 2018. 

Landsat 7 had a failure in 2003 of its scan line corrector in the 

ETM+ sensor, therefore earlier dates that were analysed.  

It is worth noting that testing on a composite over a single season 

(2002) as opposed to a larger composite over three years (2000 

to 2002), respectively   and 26 Landsat-5 images and 40 Landsat-

7 images, using the median surface reflectance values, provided 

a much more robust result as seen in the image below. It is trivial 

to say that taking a first moment statistic (mean or median) will 

smooth results and therefore obviously decrease differences, but 

it must be said that the objective of this test is to see behaviour of 

two sensors, TM and ETM+ over the same time window and that 

first moment statistics will remove random errors (white noise), 

but will still be sensible to systematic errors.  

 

Parcels used for management are used here for aggregating 

biomass data at parcel level and analyse results from the different 

methods. Six of the largest areas are used to provide quantiles 

and represent them in boxplot (Figure 8).  

 

 

Figure 8. Aggregated statistics for six parcels. 

 

 

4. CONCLUSIONS 

Several equations for estimating biomass using optical and SAR 

remote sensing are tested and results are presented in this paper. 

As expected, general equations suffer from the equation 

coefficients being obtained from fitting training data from 

different sites. It is also clear from the results that there is a high 

variance between different methods, in particular when complex 

data mixture is applied. Biomass is difficult to assess for dense 

forests, as pixels are saturated. This must be considered when 

planning field-data collection, with more samples in dense forest 

to provide more robust estimators from the training phase. The 

SAR-only (PALSAR) method from eq. 4 provided results which 

appear more biased, overestimating with respect to the other 

methods. 
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