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ABSTRACT:

Knowing the spatial distribution of endangered tree species in a forest ecosystem or forest remnants is a valuable information to
support environmental conservation practices. The use of Unmanned Aerial Vehicles (UAVs) offers a suitable alternative for this
task, providing very high-resolution images at low costs. In parallel, recent advances in the computer vision field have led to the
development of effective deep learning techniques for end-to-end semantic image segmentation. In this scenario, the DeepLabv3+
is well established as the state-of-the-art deep learning method for semantic segmentation tasks. The present paper proposes and
assesses the use of DeepLabv3+ for mapping the threatened Dipteryx alata Vogel tree, popularly also known as cumbaru. We
also compare two backbone networks for feature extraction in the DeepLabv3+ architecture: the Xception and MobileNetv2.
Experiments carried out on a dataset consisting of 225 UAV/RGB images of an urban area in Midwest Brazil demonstrated that
DeepLabv3+ was able to achieve in mean overall accuracy and F1-score above 90%, and IoU above 80%. The experimental
analysis also pointed out that the MobileNetv2 backbone overcame its counterpart by a wide margin due to its comparatively
simpler architecture in view of the available training data.

1. INTRODUCTION

Over the years, many remote sensing techniques like LiDAR
(light detection and ranging), hyperspectral, optical and SAR
(synthetic aperture radar) imaging, have been widely used for
performing large-scale analysis of forest systems (Jeronimo et
al., 2018, Laurin et al., 2013, Alonzo et al., 2014). Within the
larger field of mapping forest trends, monitoring of endangered
species populations has received increasing attention (Wang et
al., 2016, Santos et al., 2019). In this context, for single tree
detection, it is fundamental to understand crown morphology.
This involves not only delineating and measuring the size, but
also obtaining afterwards the volume, and diameter of the single
tree crowns (Mohan et al., 2017).

In the last years, advances in unmanned aerial vehicles (UAVs)
technology offered a suitable alternative to standard remote
sensing solutions, providing high-resolution images at lower
costs (Mohan et al., 2017). In this way, UAV images have
aroused great interest within the remote sensing community and
have been used for a wide variety of subjects (Honkavaara et
al., 2013, Lizarazo et al., 2017, Rauhala et al., 2017, Chenari
et al., 2017). In particular, studies focused on individual tree
level mapping through UAV images, suggest its potential for
the detection and delineation of tree crowns, and subsequently
estimate parameters of its morphology (Lim et al., 2015,
Grznárová et al., 2019, Tang, Shao, 2015).

In contrast with traditional machine learning algorithms,
deep learning (DL) methods present the ability to learn
representations directly from data. This capacity constitute
a huge advance in the computer vision field, since they are
able to automatic extract high level features for a particular
classification task. For instance, Convolutional Neural
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Networks (CNNs) boosted the state of the art methods and
have already proved to be very efficient in several tasks such as
classification (Fassnacht et al., 2016, Krizhevsky et al., 2017),
object detection (Baena et al., 2017, Santos et al., 2019) and
semantic segmentation (Dechesne et al., 2017, Maschler et al.,
2018). Therefore, in the forest monitoring context, many state-
of-the-art DL methods have been used recently, especially to
classify and detect tree species (Mizoguchi et al., 2017, Guan
et al., 2015, Hartling et al., 2019). However, most of those
solutions are based on LiDAR data.

Combining the power of DL methods with the ease of use
of UAV platforms, (Santos et al., 2019) proposed a method
for detecting endangered tree species, more specifically the
Dipteryx alata Vogel (Fabaceae) tree, popularly known as
cumbaru (henceforth cumbaru), using available RGB images.
In this case, a CNN is trained to delineate a bounding
box around the crown of the single target trees, providing
information about their position and location. Although this
information is valuable, some key important details regarding
the morphology of the tree crown, like its individual shape or
contour, are not provided. In this sense, semantic segmentation
based algorithms arise as an alternative to achieve fine-grained
information towards complete scene understanding, presenting
the potential to capture object forms more accurately than single
object detection.

Recent DL architectures for semantic image segmentation
typically fall into one of two major approaches. The first,
considers semantic segmentation as a classification problem
using a typical sliding window procedure. In this case, the
image is split into several snips or patches of the same size and
then fed into a traditional CNN to classify the central pixel of
each patch in a certain category (Farabet et al., 2012). One
important drawback of this approach is its high computational
complexity (Vigueras-Guillén et al., 2019). The second
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approach comprises the efficient Fully Convolutional Networks
(FCNs), in which the image classification is performed at a
pixel level using an end-to-end network. Moreover, the learning
and inference processes are performed for the whole input
image at once (Long et al., 2014).

Regarding FCNs, one of the earliest models was proposed
in (Badrinarayanan et al., 2017), introducing the encoder-
decoder architecture. The encoder uses the basic convolutions
and pooling operations to learn low- and high-level features,
while the decoder path recovers the resolution of the input
image. Even though the richest information is encoded
in the last feature map, detailed location/spatial information
related to object boundaries are missing due to the pooling
or striding operations (Chen et al., 2014). In this context,
modern networks such as the DeepLab architecture extended
the previous approaches by introducing the atrous convolution
(Chen et al., 2014). As a consequence, the high resolution of
the feature maps are maintained, storing detailed information
about the object boundaries, without increasing the number of
parameters. This version was extended later by the addition
of the Atrous Spatial Pyramid Pooling (ASPP), which is able
to capture context information at multiple scales (Chen et al.,
2016). At the same time, a combination with probabilistic
models, like the Conditional Random Field (CRF), was
proposed to improve localization performance (Chen et al.,
2016). Furthermore, (Chen et al., 2017) presented a version to
extend the ASPP module by using the image-level features of
(Zhao et al., 2016) to add global context information and extra
performance.

More recently, attempting to combine the advantages of
these methods with the faster computation of encoder-decoder
models, (Chen et al., 2018) presented the state-of-the-art
DeepLabv3+ models, built on top of powerful CNNs. Their
effectiveness were demonstrated by their significant results in
the challenging PASCAL VOC 2012 (Everingham et al., 2015)
and Cityscapes (Cordts et al., 2016) datasets.

Motivated by the state-of-the-art of DL semantic segmentation
models and the high cost-benefit of using UAV RGB images
for forest monitoring, this work aims to evaluate the usage
of the DeepLabv3+ for the individual segmentation of the
canopy of the endangered cumbaru trees. This paper has
two major contributions: (i) evaluating the applicability of
UAVs in generating RGB high-resolution observations for
canopy tree segmentation, (ii) Assessing two backbone model
variants of the state-of-the-art DeepLabv3+, more specifically
the Xception and MobileNetv2 models, on the performance of
cumbaru segmentation.

The rest of this paper is organized into four sections. First, in
section 2, we introduce the fundamentals of DeepLab approach
and its variants. On the sequence, in section 3, we describe
the study area and the methodology adopted to evaluate the
different models. In section 4, we present and discuss the results
obtained in the experimental analysis. Finally, section 5 reviews
the main conclusions and points to future directions.

2. METHODS

2.1 DeepLab Fundamentals

In the deep learning area, semantic image segmentation can be
efficiently achieved by modifying the fully-connected layer of

a traditional CNN into convolutional layers (Long et al., 2014).
Typically, these networks consist of an encoder module, which
reduces the feature maps resolution by convolution and pooling
operations through consecutive layers, and a decoder module
that retrieves the spatial resolution. The convolutional layers
extract meaningful features by convolving the input image with
kernels or filters. During convolution, each filter operates over
a local region of the input volume, which is equivalent to the
filter size. The spatial extent of the input image considered in
calculating a position of an activation map is called receptive
field or field of view. To enlarge the size of the receptive
field, we can use larger filters or add more layers. Both imply
more parameters, more operations, and higher computational
complexity. To compensate for this effect and reduce the
computational cost, pooling layers reduce the resolution of the
feature maps. In consequence, part of spatial information gets
lost, mainly at fine details.

To increase the field of view without increasing the number
of parameters, (Chen et al., 2014) proposed the atrous
convolutions. The basic idea consists in expanding a filter by
including zeros between the kernel elements. For example, if
a k × k filter is expanded by an expansion rate r, r-1 zeros
are inserted between each adjacent element of the original filter
along each dimension. Thus, the receptive field is expanded to
[k + (k − 1)(r − 1)] × [k + (k − 1)(r − 1)] (Li et al., 2018)
(see Figure 1). In this way, we increase the receptive field of the
output layers without increasing the number of learnable kernel
elements and the computational effort.

Later, (Chen et al., 2016) proposed the Atrous Spatial
Pyramid Pooling (ASPP), based on parallel multiple layers of
atrous convolutions. The objective is to capture contextual
information at multiple scales, as shown in Figure 1. Notice
that, the receptive field gets larger with increasing rates while
maintaining the number of parameters (Li et al., 2018).

Kernel 3x3

Rate = 1

Kernel 3x3

Rate = 2

Kernel 3x3

Rate = 3 Atrous Spatial 

Pyramid Pooling

Figure 1. Atrous Spatial Pyramid Pooling

2.2 DeepLabv3+

The DeepLabv3+ version was built on its predecessor
DeepLabv3 and brought back the encoder-decoder concept by
adding a decoder module to improve the spatial accuracy (Chen
et al., 2018). It applies separable convolution to both, the
encoder and the decoder stages. Conceptually, the spatial
separable convolution brakes down the convolution into two
separate operations: a depthwise and a pointwise convolution,
as illustrated in Figure 2.

In the traditional convolution, the kernel is as deep as the input
and operates on all input channels. A depthwise separable
convolution involves two steps. First, a spatial convolution is
carried out independently over each channel of the input. After
completing the depthwise convolution, a so-called pointwise
convolution performs a 1×1 convolution across the channels.
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Figure 2. Depthwise Separable Convolution

The main advantage of depthwise separable convolutions
is that they involve fewer parameters compared to regular
convolutions, implying fewer operations and faster computation
(Chollet, 2016).

In the encoder stage, the DeepLabv3 uses ASPP as feature
extractor augmented with an image level feature (Zhao et
al., 2016). This scheme concatenates the convolutions from
kernels with different dilation rates to exploit multi-scale
information, along with an image pooling to capture global
context. The features are then bilinearly upsampled by a factor
of 4 and then concatenated with the corresponding low-level
features from the encoder stage. The low-level features are
first convolved with a 1×1 filter before the concatenation, to
reduce the numbers of channels (Chen et al., 2018). Then, a
3×3 convolution is applied to refine the features, followed by
another bilinear upsampling by a factor of 4, see Figure 3.
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Figure 3. DeepLabv3+ Arquitecture adapted from (Chen et al.,
2018)

DeepLabv3 + architecture can operate with two backbones: the
powerful high-end Xception, or the computationally efficient
MobileNetv2 for mobile devices.

2.2.1 Xception backbone A new network module, called
Inception, was introduced in (Szegedy et al., 2014). Its central
idea consists in factorizing a regular convolution explicitly

into blocks of independent sequential operations: a cross-
channel correlation followed by a spatial correlation. The
Inception concept leads to less trainable parameters and faster
computation with little or no harm to the ability to learn
elaborated features. Chollet (Chollet, 2016) brought the
Inception style to the extreme and proposed the Xception
(Extreme Inception) architecture built entirely on depthwise
separable convolutions. To address the segmentation task
in DeepLabv3+ version, (Chen et al., 2018) applied the
Modified Aligned Xception model as its feature extractor. This
solution uses a deeper Xception module where all max-pooling
operations are replaced by depthwise separable convolutions. A
further batch normalization and a ReLU activation follow each
depthwise convolution.

2.2.2 MobileNetv2 backbone The DeepLabv3+ version,
called MobileNetv2, was conceived for mobile devices. It
uses extensively depthwise separable convolutions to reduce
the computational load (Howard et al., 2017). In particular,
it introduced the so-called inverted residual block (Sandler et
al., 2018). In standard residual blocks the input has a relative
large number of channels (activation maps), which is first
reduced in the subsequent layers and then expanded back to
(approximately) the original depth. In the inverted residual
block, occurs exactly the opposite. It starts with relative few
channels, which are first expanded to be later compressed back.
In both cases, a short-cut connections carries the input to be
added to the residual computed in the block. Compared with the
standard design the inverted counterpart is significantly more
memory efficient. (Sandler et al., 2018).

3. EXPERIMENTS

3.1 Study Area and Data Acquisition

We evaluated the above-mentioned methods on a dataset
that comprises 150,000 square kilometers in Campo Grande
municipality, Mato Grosso do Sul, Brazil (Santos et al.,
2019). The study site covers about 110 single cumbaru trees
interspersed among roads, buildings, cars, and others, a typical
urban scenario in Midwest Brazil. A total of 225 scenes
were recorded with a UAV Phantom 4 equipped with a high-
resolution RGB camera. The size of each image in the dataset is
5472×3648 with a spatial resolution of 0.82 cm. These images
were acquired on August 13−th and 22−nd September 2018 at
different times of the day, as seen in Figure 4 a-c. Observations
were also taken at multiple distances from the trees (20m to
40m) to capture variations in scale. Each single cumbaru tree
crown was delineated manually by a specialist. This procedure
was also cross-checked with in-situ observations. Examples are
depicted in Figure 4 d-f.

3.2 Experimental Setup

Both DeepLabv3+ variants, Xception and MobileNetv2, were
trained with learning rate setting at 0.0001, using Adam
optimizer with default beta values to update the gradient. As
we have two possible outcomes, Cumbaru or background, the
binary cross-entropy was used as loss function. The 225 images
of the dataset were randomly split into three subsets: 70%
for training, 10% for validation and 20% for test. The input
images were cropped in patches of 512×512. The training
batch size was empirically set to 2 and 6 for the Xception
and MobileNetv2, respectively. Each model was trained up
to 100 epochs to compensate for the smaller batch size and
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Figure 4. UAV observations of Cumbaru trees and their
respective references.

early stopping was used as a regularization technique. The
training stopped when the generalization error at the validation
set degraded for 10 consecutive epochs. The best performing
model in the validation stage was used for test.

Similar to (Chen et al., 2018), we adopted an output stride equal
to 16, with atrous rates r ∈ {6, 12, 18}.

The performance of both methods is reported in terms
of Overall Accuracy (OA), F1-score and Intersection over
Union (IoU). The OA measures how well the binary
classification correctly identifies the class Cumbaru (positives)
and background (negatives). The F1-score conveys the balance
between false positives and false negatives and is a good metric
under uneven class distribution. IoU is computed by dividing
the intersection area between the prediction and the ground-
truth (Reference), by the total area covered by the prediction
and ground-truth. These three metrics are defined by Equations
1, 2 and 3, respectively.

OA =
TP + TN

TP + TN + FP + FN
(1)

F1− score =
2TP

2TP + FP + FN
(2)

IoU =
|Reference ∩ Prediction|
|Reference ∪ Prediction| (3)

where TP , FP , TN , and FN stand for true positive, false
positive, true negative and false negative, respectively.

4. RESULTS AND DISCUSSIONS

Figure 5 summarizes the performance of each DeepLabv3+
variant. The values are averages over a 5-fold cross
validation. Overall, the both techniques were quite successful.
The DeepLabv3 with the Xception backbone achieved
88.9%(±2.7), 87.0%(±2.93) and 77.1%(±4.58), in terms of
OA, F1-score and IoU, respectively. The MobileNetv2 variant
performed better with 94.4%(±0.89) for OA, 93.5%(±1.24)
for F1-score and 87.8%(±2.18) for IoU. The low variation
across the folds further indicate the robustness of both
architectures regarding the choice of training and test sets. It is,
however, worth mentioning, that the MobileNetv2 performed a
better than Xception also in this respect.

The superiority of MobileNetv2 may at first be regarded as
unexpected because Xception has a higher capacity due to its

more complex architecture. Indeed, Xception involves about
twenty times as many parameters as MobileNetv2. When the
amount of labeled data available for training does not match
the number of parameters to be estimated, the network tends
to generalize poorly. The results indicate that this might have
occurred in our study. Under this assumption, it should be
considered that significant improvements can still be obtained
if a larger data set is available for network training.

Xception MobileNetV2
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Figure 5. Results for 5-fold cross validation for DeepLabv3+
backbones

Figure 6 presents some visual results of both backbones for
images at different scales and illumination patterns. Figure 6b)
and Figure 6d) show small errors (false positives) over the street
for both models. Similarly, portions of trees’ canopies were
predicted as background (false negatives), also by both models,
as it also seen in Figure 6a),b) and d). The Figure confirms
the general trend revealed in the plot of Figure 5, namely, that
Xception were more prone to make errors than MobileNetv2.

Indeed, MobileNetv2 delivered better segmentation outcomes,
mainly along object boundaries. Nonetheless, both methods
underperformed in instances affected by poor lighting. This
effect is especially apparent in Figure 6c).

In addition to the quality assessment, we also compared
the algorithms in terms of processing time measured on
the following hardware infrastructure: Intel(R) Core(TM) i7
processor, 64 GB of RAM and NVIDIA GeForce GTX228
1080Ti GPU. Table 1 summarizes the results.

Methods Training Inference
Time (h:min) Time (sec)

Xception 20:33 4.44

MobileNetv2 10:46 2.26

Table 1. Computational Complexity for the DeepLabv3+
Xception and MobileNetv2 backbones

As expected, the mobile version (MobilNetv2) required less
training and inference time, almost half as much as the Xception
model. The Xception backbone was more computationally
demanding due to its depth and the higher number of
parameters.
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Figure 6. Qualitative results for DeepLabv3+ method using Xception and MobileNetv2 backbones

5. CONCLUSIONS AND FUTURE WORKS

In this work, we assessed the state-of-the-art DeepLabv3+ Fully
Convolutional Network for the segmentation of instances of a
tree species from high-resolution images, captured by a UAV
platform. Two variants were tested: with the Xception and with
the MobileNetv2 backbones.

Both DeepLabv3+ variants delivered encouraging results in an
experimental analysis conducted on a data set comprising 225
RGB images.

The MobileNetv2 variant, consistently outperformed the
Xception counterpart, by 5.5%, 6.5% and 10.7% in terms of
overall accuracy, F1-score, and IoU, respectively. These results
are significant, considering that they add up to absolute values
above 75.0%. A visual analysis corroborated the quantitative
results, demonstrating that the crowns were generally well
delineated by both methods. Concerning the computational
cost, the DeepLabv3+ model using MobileNetv2 backbone was
about two times faster than Xception both in training as in
inference time.

We intend to extend this study by including other semantic
segmentation methods based on Fully Convolutional Networks.
In the continuation of this research, we also plan to evaluate
the benefits of post-processing based on Conditional Random
Field, as in earlier DeepLab approaches. We further plan to test
these methods in multi-temporal acquisitions to check crown
changes over time and also in more challenging scenarios,
specifically on datasets that comprise multiple tree species.
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